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Abstract

Background: We present an approach designed to identify gene regulation patterns using
sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the
combinations of transcription factor binding sites (also referred to as binding site modules)
identified in gene promoters to the expression of these genes. The novel aspects include local
expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a
method of rule generalization to include genes with unknown expression profiles.

Results: We have implemented the proposed framework and tested it on publicly available
datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of
the groups of genes matching the rules we infer from expression data against known sets of co-
regulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology
annotations. In order to make these tests more objective we compare our results with recently
published similar studies.

Conclusion: Results we obtain show that local expression similarity clustering greatly enhances
overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional
annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable
hypotheses on co-regulation that can be experimentally verified. An important feature of the
method is its reliance only on widely accessible sequence and expression data. The same procedure
can be easily applied to other microbial organisms.

Background has provided powerful tools to address this task, allowing
As the shape of an organism's transcriptome is deter-  for the accumulation of sequence, microarray, and func-
mined not only by the coding sequences of the genome  tional data. Similar advancements are needed in the com-
but also by the mechanisms of gene regulation, massive  putational methods of data analysis.

efforts in sequencing require a similar follow up with the

analysis of regulation systems. In recent years, technology
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The key role in transcriptional regulation of genes is
played by a group of proteins called transcription factors
(referred to as TFs) [1,2]. Their main function is to bind to
the DNA upstream of a gene and take part in initiating
transcription. TFs bind to the upstream DNA sequence
selectively, i.e. TFs recognize specific DNA sequence
motifs. Another important property of TFs is that they
often interact with each other to create functional protein
complexes [2,3]. Finding the connections between TFs as
well as their respective binding sites and understanding
the combinatorial nature of their interactions is currently
an active field of research.

Our method aims at discovering binding site modules, i.e.
functional sets of binding sites present in upstream regu-
latory regions of genes and used by several TFs in combi-
nation to regulate the expression of these genes. This task
presents a considerable challenge because motif data are
usually derived only from statistically significant over-rep-
resentations of hypothetical binding sequences and there-
fore contain many false positives (i.e. occurrences of
motifs that are not active in the cell in vivo). Also, a signif-
icant amount of noise in the expression data may lead to
errors in identifying correlations among genes.

Several studies [3-7] have applied gene expression cluster-
ing to find groups of genes that may be co-regulated.
However, some of the transcription factors are active only
during certain parts of the cell cycle [7], and therefore
genes that are co-regulated by those factors show strong
expression correlations only over a subset of data points.
Consequently, these modules may sometimes be undetec-
table by means of global expression clustering. Here we
show how local expression clustering may overcome these
shortcomings by means of an extensive comparison of the
performance of local and global expression similarity in
detecting biologically significant binding site modules.

Approach

Our method identifies regulatory binding site modules by
means of analyzing their ability to predict gene expres-
sion. To this end we systematically examine all the combi-
nations of binding sites suggested in the Hughes study [8].
As input data we use the expression time-profiles of a large
group of genes, and information on the presence or
absence of binding site motifs in the promoters of all
genes in the studied genome. Genome-wide expression
data are readily available for many organisms, for exam-
ple from public databases such as ArrayExpress [9] or
Stanford Microarray Database [10]. As for motif data,
there are extensive databases such as Transfac [11] cover-
ing experimentally verified motifs for many model organ-
isms. In cases where there is not enough motif data,
putative motifs may be obtained using one of the well
established motif finding tools (e.g. [12-20]).
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In the present study we expand on the framework we have
previously developed [4] by adding a capacity for analyz-
ing local expression similarity. Furthermore, instead of
the heuristic algorithm we have used earlier, we perform
an exact and exhaustive search of the rule space. We strive
for improvements in both sensitivity and coverage of our
approach.

The overall methodology of the current study is schemat-
ically depicted in Figure 1 and consists of four steps
(described in detail in the following sections and in Meth-
ods):

¢ Clustering. Selecting all groups of genes that are co-
expressed (in terms of Pearson correlation) limited to any
sufficiently long period of time (for an example see Figure
2).

Gene Expression Data
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Local gene correlations example. Example of Local gene correlations. The plot to the left shows the expression profiles of
7 genes during the cell cycle (data from Cho et al. [29]). Three different time windows are marked by vertical lines. The Venn
diagram to the right assigns the genes to clusters of co-expressed genes (correlation coefficient > 0.7) for the respective time
windows. Although there are some visible correlations in all three time windows, these similarities cannot be well described by
means of global correlation. Introducing analysis of local similarity allows for a better gene clustering, as shown in the Venn dia-

gram.

® Merging. Combining motif data and clustering informa-
tion into decision tables, one table per cluster (as in Figure
3), such that each cluster is a decision class in the respec-
tive table.

¢ Rule induction. Finding all motif combinations capable
of predicting the expression behavior of each cluster.

e Generalization. Assigning genes that lack expression
data to modules based on the presence of significant
motifs in their promoters.

Local correlations

We assume that genes that are co-regulated by common
transcription factors display strong correlation in their
expression profiles. Some transcription factors, however,
may bind only under certain conditions. Indeed, many
genes from S. cerevisae demonstrate expression correlation
only during parts of the cell cycle (see Figure 2). For these
genes it is not possible to obtain clusters reflecting this
property by using expression similarity over the entire
expression profile. However, by introducing time win-
dows and allowing for cluster overlaps, it is possible to
group genes into clusters with tightly correlated local
expression. The advantage of local expression correlations
was earlier identified by Gasch et al. [7], who used a fuzzy
k-means clustering to allow for multiple cluster assign-

ments of some genes. Their method however was not
designed to infer temporal properties of co-regulation.
Time window analysis of expression profiles was then
introduced by Lagreid et al. [21]. The authors used expres-
sion analysis and machine learning methods to predict
gene function (specifically GO biological process annota-
tion of genes).

The notion of local analysis of expression profiles leads to
a modified approach to profile clustering. We consider
groups of genes that show very high correlation through-
out a part of the expression profile. Specifically, we take
into account all possible time spans of a given length (in
our case ranging from 4 to 8 consecutive time points) and
using a simple clustering algorithm (see Methods) we
obtain all groups of genes with expression profiles corre-
lated in any time window.

Merging expression and motif data

Once we compute all sets of locally co-expressed genes we
relate that information to motif data. For each cluster, we
create a decision table as shown in Figure 3 with genes
from the cluster labeled IN and all other genes labeled
OUT. In these tables, rows correspond to genes and col-
umns correspond to binding site motifs. If a motif is
present in the promoter of a gene, then we place a value of
1 in the proper row and column (otherwise the values are
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Binding sites

3 R Decision
Gene e E g § § % (cluster
T« » = of genes)
RPL1SBA ©0 1 0 1 0 1 IN
RPS18A 0 1,0 1 0 1 IN
RPL16B 1 1 0 1 0 1 ouT
RPL26A 0 1,0 1 0 1 ouT
RPS24A 0 1 0 1 0 1 IN
RPL30 0 1.0 1 0 1 IN
RPL14A O (1 0 1 0 1 IN
SST2 o 1 0 1 0 1 ouT
DRS2 0O 0 0 1 0 1 IN
GIT1 o 1. 0 1 0 O ouT
CLN3 0O 0o 0 1 1 A1 ouT
RPO21 1 0 0 0 1 A1 ouT
BIT89 o 1 0 0 0 1 ouT
Figure 3

Sample decision table. Sample decision table taken from
[4]: genes are represented as rows with the cluster member-
ship marked in the last column as a decision class attribute.

set to 0). The last column is the decision class, containing
the value I N if the respective gene is a member of the con-
sidered cluster (or OUT otherwise).

Rule induction

As a learning model for describing putative regulatory
binding site modules, we develop implication rules of the
following form:

RAP1 A SWI5 A MCM1' —12Z:10709) sy 197y

The left-hand side (LHS) of the rule requires a set of motifs
to be present in the upstream regulatory region of a gene.
The right-hand side (RHS) predicts that the expression of
that gene over some data points (e.g. from second to
tenth) will be similar (e.g. with correlation coefficient >
0.9) to the expression profile of the cluster representative
(e.g. YLR197W). We say that a gene matches the left-hand
side of the rule if its promoter contains all the motifs
enlisted in that rule. Similarly, we state that a gene
matches the right-hand side of the rule if its expression
profile in the proper time window is correlated with the
expression of the cluster representative with a coefficient
greater than the given threshold.
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We cannot claim that the rules we derive fully describe the
complex nature of gene regulation. Rather, we aim at pro-
viding a simple model linking the available types of data,
which oftentimes are marred by considerable levels of
noise. Therefore, instead of interpreting the rules in the
strict sense (i.e. the left-hand side matching the right-hand
side exactly, with genes containing the specified motifs in
their promoters forming the corresponding expression
profile cluster), we look for rules satisfying two criteria we
have introduced previously [4]:

e generality, i.e. each rule covers at least 5 genes,

e accuracy, i.e. of all the genes matching the left-hand side
of the rule, at least 2/3 of them match the right-hand side
of the same rule.

For the task of rule induction, we use an exact algorithm
based on suffix trees (see Methods).

Rule generalization

We are interested in finding out whether the rules
obtained from the procedure described in the previous
section can be used to generate sound hypotheses on co-
regulation of genes of unknown expression, i.e. could the
information contained in the rules be extended to genes
not included in the expression dataset? We investigate this
question by searching for the previously identified bind-
ing site modules in the promoters of genes with unknown
expression, and as a result create larger sets of putatively
co-regulated genes. We can then evaluate these extended
gene sets and compare with previous results.

Results

We have tested our methodology on a cell cycle expres-
sion data set from S. cerevisae (see Data Material). Using a
range of time windows (from 4 to 8 time points) and cor-
relation thresholds (from 0.6 to 0.9) we obtained 3446
rules describing 337 unique binding site modules (several
rules specifying the same binding site module were
obtained from different time windows). These rules
describe the regulation of approximately 1500 genes of
the S. cerevisae genome. Even though our input dataset
corresponds to the best-understood biological process of
one of the most extensively described species, the knowl-
edge of underlying biological processes is far from suffi-
cient to enable direct evaluation of our rules. Indeed one
would be hard pressed to find many reported examples of
the effects of a particular combination of TFs on a given
gene measured under specific conditions in the cell.
Instead, we limit our evaluation to genomic-scale type
comparisons with the available experimentally-derived
datasets on gene regulation in S. cerevisae. We provide an
extensive analysis of the statistical significance of our
results in comparison with published studies concerning
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S. cerevisae cell cycle datasets. We also present two exam-
ples showing how rules obtained for particular time seg-
ments of the cell cycle can provide a more specific
description of regulation: rules that could not be discov-
ered without current improvements.

To assess the statistical significance of our results, we use
the scoring procedure introduced in our earlier work [4].
We test putatively co-regulated groups of genes for over-
representation of annotations from Gene Ontology [22]
and the actual binding of transcription factors in S. cere-
visae [23] (details of the scoring methodology are
described in the following sections). To allow for a more
direct and complete comparison with the results of other
methods [4,24-26] we compute our scores for the groups
of putatively co-regulated genes they provide. This was
also done in an attempt to put all the available results on
the same footing with respect to changes in GO annota-
tions over time and with respect to the available experi-
mental binding data. Although all authors use very similar
methods of measuring statistical significance, we fully
realize that the above may not be the only way to make
such comparisons [27].

In the case of our own approach, evaluation with experi-
mental binding data surprisingly produces better results
for groups supplemented with genes not included in the
expression dataset. We investigate this phenomenon fur-
ther by using a second type of evaluation, a pairwise co-
regulation coefficient (PCC). PCC is characterized by a
different dependency on cluster size than the p-value
based scores and thus provides an alternative way to eval-

Table I: Evaluation with Gene Ontology
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uate results. The outcome of this evaluation procedure is
presented in a separate section.

Evaluation with Gene Ontology

Genes sharing a common function are very often co-regu-
lated. Many authors use the publicly available informa-
tion on genes sharing function to assess their predictions
of co-regulation [4,6,24-26]. Although very indirect, this
may serve as a crude estimate of the biological significance
of the rules we derive. Following this line of reasoning we
use Gene Ontology [22], a human-curated set of biologi-
cal terms (referenced to as GO terms) to annotate the
function of genes. The terms are organized into three hier-
archies (molecular function, cellular component and bio-
logical process) describing biological roles at different
levels of detail.

In this work we employ the scoring procedure from Hvid-
sten et al. [4] introduced by Cho et al. [28]. This procedure
treats all sets of genes sharing common Gene Ontology
annotations as sets of co-regulated genes. To this end we
consider all GO terms at all levels in each hierarchy and
treat all genes annotated with that term and its descend-
ants as sharing annotation (see Methods for details).

Gene Ontology scores for our sets of rules (one set for
each expression correlation threshold) are summarized in
Table 1 and are compared with scores for previously pub-
lished studies.

Evaluation with experimental binding data
In the case of S. cerevisae, there is a much more direct way
to evaluate results than using Gene Ontology. Harbison et

Study Molec. function Biol. Process Cell. comp.
Previously published studies
Segal et al. [26], Cell Cycle, 17 0.353 0.353 0.471
modules
Segal et al. [25], 48 modules 0.250 0.417 0.312
Beer et al. [24] 49 modules 0.426 0.617 0.583
Hvidsten et al. [4] Cell cycle 109 0.308 0.462 0.410
rules
Present method
corr. 0.6, 1316 rules 0.335 (0.349) 0.479 (0.510) 0.422 (0.406)
corr. 0.7, 807 rules 0.522 (0.395) 0.657 (0.532) 0.621 (0.551)
corr. 0.75, 643 rules 0.453 (0.443) 0.526 (0.471) 0.711 (0.480)
corr. 0.8, 487 rules 0.427 (0.361) 0.491 (0.304) 0.719 (0.476)

Comparison of the Gene Ontology-based scores with other studies. For each method, the presented number represents the fraction of significant
gene groups among all gene groups provided by that method (significance is defined as Bonferroni corrected p-value being below 0.01). For the
present method, the results that score higher than all other studies are shown in bold. Correlation thresholds used in the clustering procedure are
shown in the left column. Numbers in parentheses denote scores obtained for all genes (i.e. both genes with and without expression profiles).
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al. [23] published the results of ChIP-Chip experiments
measuring p-values of the binding of 352 transcription
factors to 6229 intergenic regions. For evaluation we con-
sider genes with promoters that are bound by the same
transcription factor as co-regulated by that TF (see Meth-
ods for details).

Table 2 presents the fractions of gene groups scored as sig-
nificant. It is especially intriguing how greatly the scores
are improved by the addition of genes without assigned
expression profiles. The latter is generally not the case
when evaluations are performed with GO. For compari-
son, in Table 2 we include the scores of other studies com-
puted in the same manner.

One has to keep in mind that although ChIP-Chip data
currently represents the most direct measurements of tran-
scriptional regulation on a genomic scale, it is only a sta-
tistical measure of the TFs binding to promoter regions
under some specific conditions. In reality, transcriptional
regulation is a time-dependant process, with TFs dynami-
cally binding and unbinding to DNA, and cannot be accu-
rately described by a single "snapshot" as in ChIP-Chip
data. Nonetheless we accept this simplification since no
better data currently exist. It would be very interesting to
include time-series ChIP-Chip data in our analysis once
they become available.

Pairwise Co-regulation Coefficient (PCC)

Since our scoring is based on statistical significance of
gene group overlap, it can be argued that the increase in
the scores of generalized rules can be attributed to the
increase in gene group size rather than to a better quality
of rules. To investigate this, we need a different scoring
methodology providing additional insight into rule qual-
ity for large groups of genes. To this aim we employ the

Table 2: Evaluation with experimental binding data
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pairwise co-regulation coefficient (PCC). For a given set of
gene groups the PCC measures the fraction of gene pairs
from the same group that are actually co-regulated
(according to data from Harbison et al. [23], p < 0.01).
Here, we choose to restrict our analysis to the experimen-
tal binding data as it provides a much more direct way of
evaluating co-regulation than the GO annotation enrich-
ment.

A PCC value can then be interpreted as follows: Assuming
that we choose a random pair of genes annotated as co-
regulated according to some prediction method (i.e.
assigned to the same group of "putatively co-regulated"
genes), what are the chances that they are actually co-reg-
ulated (i.e. have an experimentally verified common reg-
ulator)? Moreover, the PCC value has the nice property
that all TFs that bind to at least two genes in the same
module contribute to the score, and hence all possible
subgroups of co-regulated genes are accounted for in one
value.

Since the number of pairs increases proportionally to the
square of the number of genes it is less likely for a large
group to obtain a high PCC score than for a small one.
This is due to the fact that the introduction of a new gene
which is not co-regulated with the others to a group of size
n will introduce n erroneous pairs that have to be
accounted for in the score.

The results of this type of analysis and comparison with
other studies are summarized in Table 3. To provide refer-
ence values for our results we have computed the PCC
scores also for random sets of genes. We sampled 3 fami-
lies of random gene sets generated to reflect the size and
number of sets in the real data with the following results:

Previous studies

binding score

Segal et al. [26] Cell Cycle, 17 modules
Segal et al. [25] 48 modules
Beer at al. [24] 49 modules
Hvidsten et al. [4] Cell cycle 109 rules

0.588
0.271
0.286
0.538

Present method

binding score

corr. 0.6, 1316 rules
corr. 0.7, 807 rules
corr. 0.75, 643 rules
corr. 0.8, 487 rules

0.445 (0.776)
0.643 (0.844)
0.605 (0.850)
0.700 (0.879)

Comparison of binding scores (data from Harbison et al. [23]). For each method, the presented number represents the fraction of significant gene
groups among all gene groups provided by that method (significance is defined as Bonferroni corrected p-value being below 0.01). For the present
method, the results that score higher than all other studies are shown in bold. Correlation thresholds used in the present clustering procedure are
shown in the left column. Numbers in parentheses denote scores obtained for all genes (i.e. both genes with or without expression profiles).
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Table 3: PCC evaluation
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Previous studies PCC

Segal et al. [26] Cell Cycle, 17 modules 0.365
Segal et al. [25] 48 modules 0.152

Beer et al. [24] 49 modules 0.182
Hvidsten et al. [4] Cell cycle 0.353
Present method PCC

corr. 0.6, 1316 rules
corr. 0.7, 807 rules
corr. 0.75, 643 rules
corr. 0.8, 487 rules

0.359 (0.383)
0.458 (0.452)
0.496 (0.479)
0.545 (0.505)

Comparison of pairwise co-regulation coefficient for rules obtained in this study with gene groups from other studies (values for generalized rules
are shown in brackets). Correlation thresholds used in our clustering procedure are shown in the left column.

e random sets of genes sharing common binding motifs
(but not necessarily co-expressed) (PCC = 0.171, st.dev =
0.062),

¢ random sets of co-expressed genes (not necessarily shar-
ing common binding motifs) (PCC = 0.109, st.dev. =
0.020),

¢ totally random sets of genes (PCC = 0.020, st.dev. =
0.019).

The PCC scores for our approach show that the increase in
the size of the groups caused by the generalization of rules
does not result in a notable change in the quality of the
rules. Although this indicates that the surprising increase
in p-value significance (Table 2) is largely due an increase
in the number of genes for which the statistical test is con-
ducted, the PCC scores indicate that generalization indeed
can be used as a tool for predicting co-regulation of genes
with unknown expression.

Predictive strength

To quantify the predictive value of the system of rules as a
whole, we have to measure the quality of the rules for all
genes. Towards this aim we use the experimental binding
data and compute the p-values of all rules as in the previ-
ous section. As a result of this procedure we obtain p-val-
ues for all the genes covered by the rules. Since the results
of different studies cover different sets of genes, we have
decided to present the data as a plot (see Figure 4), with
the Y-axis representing p-values, and the X-axis all the
genes sorted by the best p-value. We use the logarithmic
scale in Y to emphasize the region around the significance
threshold (0.01). The results for each method are repre-
sented by a line with each point (x, y) representing the
number of genes (x) covered by the rules with a p-value of
y or lower (i.e. more significant). If a gene is assigned to

one rule only, the respective p-value can be interpreted as
a predictive strength of the method for this particular
gene. Because our method describes regulation in terms of
overlapping modules it is more difficult, compared to the
other approaches, to associate each gene with only one p-
value. To demonstrate the full potential of the method we
construct the plot in Fig. 4 using p-values of the best scor-
ing rules for each gene. As a control we also show a similar
plot using the p-values of the worst scoring rules (Fig. 5).

Given a set of rules, an attempt can be made at predicting
regulation patterns for other genes in the system, in partic-
ular the ones for which no expression data are available. A
simple procedure to follow is to select the rules matching
the gene in question. Since our rules are labeled with
binding site modules and expression profiles, they pro-
vide a hypothetical regulatory circuitry for that gene. A
similar approach could be applied to results of other stud-
ies; however, not all of them mark their groups of puta-
tively co-regulated genes with motifs and expression
profiles.

We can see from the plot in Figure 4 that although our
methodology (using rule generalization) does not have
the highest coverage of all studies in general, it clearly per-
forms best in the area of significant p-values (i.e. it covers
more than 1200 genes with p-value < 0.01 whereas other
methods cover less than 600 with the same p-value). It is
important to note that if we do not include the genes with
unknown expression in the analysis, the predictive value
of our rules is reduced to a limited set of genes, compara-
ble in size to those obtained with other methods (~300
genes with p-value < 0.01).

Since our method provides significantly more gene groups
(i.e. rules) that other methods do, it may be argued that
the real reason behind the high coverage we obtain is the
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Predictive strength of different methods
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Predictive strength. Predictive strength. Comparison of the predictive strength of our method with other approaches. Each
study is represented by a line. Along the x-axis genes are ordered by their respective p-values and these p-values are shown on
the y-axis (log scale). Genes that are not characterized by a given method are omitted from the plot.

large number of overlapping rules and the fact that we
select the best rule for each gene. To this end we compare
our results with two additional plots (in Figure 5):

e Scores for the set of generalized rules, calculated by tak-
ing the worst rule instead of the best rule for each gene. As
we can see from the figure, even if we deliberately choose
the worst rule for all genes, we can still annotate over 600
genes with rules that are significant.

e Scores for the set of generalized rules calculated by tak-
ing the best rule for each gene after randomly permuting
all gene labels. This test clearly shows that even if we con-
sider a large number of overlapping rules and select the
best rules for each gene, we should not expect many genes
to be covered by significant rules by chance.

Specific examples
In addition to genome wide analysis, it is interesting to
take a look at some specific examples of rules, to examine
if the information they provide is indeed biologically
meaningful. In this paragraph we examine two putative
binding modules.

The first combination of motifs, REB1, SWI5 and SCB,
can be found overall in 19 rules, all of which are based on
time windows comprising the 9th and 10th data points.
Based on the original publication of the expression pro-
files [29] we can map these points to the M1/G phase
boundary which is exactly the active time of the SWI5 fac-
tor (according to Saccharomyces Genome Database). It is
interesting that this combination of motifs was not iden-
tified by our previous study [4]. Such identification was
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Predictive strength - randomized controls
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Predictive strength — control experiments. Predictive strength — control experiments. Comparison of the predictive
strength of our method with control data. Each calculation is represented by a line. Along the x-axis genes are ordered by their
respective p-values and these p-values are shown on the y-axis (log scale). Genes not characterized are omitted from the plot.

not really possible, since the expression profile similarity
is strong enough only in the part around the 10th time
point (see Figure 6). This particular combination of
motifs is also strongly supported by a highly significant p-
value of 4 - 10-¢ for the ChIP-Chip data.

Another interesting example combines motifs MCM1,
SWI5 and ECB. This binding module is also not found in
the previous study, where only combinations of MCM1'
with SWI5 are reported. Again the reason behind missing
this combination in the earlier work is the local nature of
the expression correlation that cannot be identified in a
global analysis (see Figure 7). However, applying local
clustering identifies this module as significant in 71 rules,
all of which are based only on time windows starting at
the 2nd, 3rd or 4th time point. This is reasonable, since
the ECB motif denotes early cell-cycle box. The module is
also highly significant in terms of binding evaluation: p =
1.49-108.

The two examples presented here show that our approach
based on local expression similarity can retrieve signifi-
cant binding site modules that cannot be found by other
methods based on global similarity. Furthermore, these
modules were not only shown to be statistically signifi-
cant (i.e. p < 10-% using experimental binding data), but
also biologically significant (i.e. verified by published
experiments).

Discussion and conclusion

Recently, several studies have investigated the combinato-
rial nature of gene regulation. By analyzing expression
coherence of genes containing pairs of binding site motifs
in their promoters, Pilpel et al. [3] demonstrated that
combination of binding sites provides a key to under-
standing regulation. Several later studies [24-26]
employed the methodology of Bayesian networks to
investigate the structure of regulatory combinations in S.
cerevisae using expression data and promoter sequences.
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Case Study |. Case Study |. Expression profiles for genes
targeted by REBI, SWI5 and SCB. It can be seen that, despite
weak global correlation, expression profiles correlate locally
around time point no. |0, corresponding exactly to the M1/G
transition phase boundary — the activation time of SWIS.
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Case Study 2. Case Study 2. Expression profiles for genes
targeted by MCM|I, SWI5 and ECB. Despite no global corre-
lation of expression profiles, the clustering detects the
increasing trend in expression over timepoints 3—10, which
can be attributed to activity of the ECB-binding protein.

The aim of those studies was to identify a partition of the
S. cerevisae genome into non-overlapping clusters of puta-
tively co-regulated genes. Segal et al. [26] proposed using
Bayesian models, where genes were assigned to clusters
based on the presence of sets of motifs in their promoters.
The authors employed the expectation maximization
(EM) learning procedure to build a model that best
matched the data. During optimization, both gene and
motif sets were changed until convergence. As a result the
authors obtained a rich probabilistic model describing
combinatorial regulation. Beer and Tavazoie [24] took a
slightly different approach by fixing the clustering and
learning a Bayesian network to predict expression profiles.
Again, a very complex model taking into account motif
placement and orientation was obtained. However, by fix-
ing the clustering (and removing clusters too small for
accurate prediction) the authors decreased the number of
model parameters which lead to better convergence of the
learning process.

Previously [4] we have proposed a change to this para-
digm. The idea was to induce rules connecting groups of
binding sites (so-called binding site modules) with possi-
bly overlapping clusters of genes characterized by similar
expression profiles. The method aimed at finding general
rules predicting similarity in expression from the occur-
rence of sequence motifs. Groups of putatively co-regu-
lated genes could then be obtained by selecting genes
matching the left-hand-side of the rules. We have shown
that this less complex strategy obtained groups of genes
that scored comparably well in relation to previous stud-

ies, both in terms of ontology annotations and binding
verification. In the current study we present two signifi-
cant improvements of the above approach: using local
expression similarity in clustering of time series data and
extending the framework to include genes for which no
expression profile data have been reported.

We have also attempted a comprehensive comparison of
all of the above mentioned computational methods to
assess their biological significance. This is not an easy task
since no definitive source of genome-wide data on true co-
regulation exists. Beer et al. [24] evaluated their ability to
predict genes belonging to expression clusters using the
classical training-test set division of the genes in a cross
validation setting. However, there is of course no guaran-
tee that these clusters correspond to truly co-regulated
genes. Furthermore, the studies we compare applied dif-
ferent clustering methods resulting in different cluster-
ings. Consequently, there is no consistent way of deciding
whether a prediction is correct across different studies,
and hence it seems inappropriate to use the ability to pre-
dict expression as an evaluation criterion here. Instead, we
argue that a better approach for evaluating the predicted
co-regulated genes is to apply external data/knowledge
not used to induce the models themselves.

Using experimental binding data and Gene Ontology
annotations, we demonstrate improvements in both qual-
ity (Tables 1, 2, 3) and coverage (Figure 4) when using
local similarity of expression profiles. Furthermore, we
showed that expanding the modules to include genes

Page 10 of 14

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:505

without known expression profiles did not reduce the
quality of the rules and thus we conclude that the
approach indeed is capable of generalizing to these genes.

Obviously, also the evaluation data used in this study may
be associated with some disadvantages. The ChIP-Chip
data is inevitably linked to a specific biological context,
and thus different contexts/cellular states would result in
different binding data and consequently different evalua-
tion scores in our study. The use of functional categories
to search for binding site motifs [8] may also provide an
unfortunate bias when evaluating different methods using
Gene Ontology. However, to the best of our knowledge,
these are the most appropriate data sets for evaluation that
exist. And by comparing different studies using the same
evaluation method and the same data, any unfortunate
bias should at least be the same for all the methods. On
the one hand, the relatively large range of performance
observed for the methods we have compared indicates
that the problem of finding binding site modules is far
from solved. On the other hand, it is also an indication
that at least some non-trivial correlations between TF
binding and sequence motifs or between functional anno-
tation and sequence motifs are being picked up by our
approach. Finally, the use of different data in terms of
experimental data (TF binding), and human-curated
knowledge (Gene Ontology) strengthens our confidence
in the biological significance of the presented evaluations.

Similar methodology, i.e. IF-THEN rules connecting TF
modules with expression profiles, was used in a recently
published study of Pham et al. [30]. However, one differ-
ence is that we do not use Chromatin-Immunoprecipita-
tion data [23,31] for rule inference but only as an
independent standard for method evaluation. This means
that our method is also applicable to organisms for which
no genome-wide ChIP-Chip results are available. The
underlying difference in approach also prevents us from
direct comparisons with the results of that study. It should
be mentioned here that although the rule induction
method is applicable to all types of expression datasets,
the particular time window improvement evaluated in
this study obviously requires time profile expression data.
However, the idea of measuring expression similarity over
subsets of conditions could still be fruitful in non-time
profile expression data by using so-called bi-clustering to
identify subsets of conditions [32].

Results of all the performed analyses (i.e. using both sta-
tistical significance and pairwise co-regulation coefficient
calculations) support the conclusion that local correlation
of expression time profiles combined with sequence motif
information leads to more accurate predictions of binding
site modules than was possible with other methods. It is
also clear, provided that enough data are available to

http://www.biomedcentral.com/1471-2105/7/505

develop the initial modules, that the method generalizes
well over the genes for which no expression data are avail-
able.

Methods

Gene clustering using local similarity of expression

For clustering the expression profiles, we have adopted
the procedure successfully employed in our earlier work
[4]. However, two modifications were necessary:

* We have changed the distance function from Euclidean
distance to Pearson correlation, since it is better suited for
comparison of partial expression profiles.

e Since we are calculating the clustering for all possible
time windows of sizes 4-8, we cannot afford to compute
the clusters centered on every possible gene. Instead we
iteratively exclude genes already assigned to a cluster from
further processing. Although this makes the clustering
potentially sensitive to the ordering of the genes, it is a
necessary sacrifice to reduce the number of decision tables
from which the rules are induced. Moreover, experiments
with randomly reshuffled data have convinced us that,
although different ordering of genes provides slightly dif-
ferent clusterings, it has no significant impact on the rules
we obtain from the entire procedure.

The gene clustering algorithm allows for adjustable size
and position of time windows, as well as adjustable corre-
lation thresholds. Once those parameters are set, the algo-
rithm starts with all genes and repeatedly

a) selects the first unassigned gene as a representative for
the new cluster,

b) assigns all genes fulfilling the two criteria below to the
newly created cluster:

(i) the Pearson correlation coefficient calculated with
respect to the representative gene is above the selected
threshold

(ii) comparison is restricted to the time window of the
specified size and starting point.

Rule induction

The procedure of rule induction is based on our previous
approach [4] and modified as described below. Given a
cluster of genes with expression correlated over a period of
time we view the induction of rules as an instance of the
classic decision problem. The set of all genes in the system
constitutes the universe where the decision class corre-
sponds to the membership in the cluster, and where the
gene attributes are formed by a Boolean vector containing
information on the presence or absence of each motif in
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the promoter. Given a decision table of this kind we can
ask if there exists a combination of motifs allowing us to
discern between the genes in the cluster and all other
genes. Finding such combinations is NP-complete [33], so
in Hvidsten et al. [4] we have employed the Rosetta soft-
ware [34] based on the rough-set paradigm [35,36], which
uses some well-established heuristics to obtain a set of
locally optimal results. The set of rules inferred by the
Rosetta system is then filtered in order to retain only the
rules that are both general enough (i.e. cover more than 5
genes) and sufficiently accurate (i.e. at least 2/3 of the
genes matching the LHS of the rule must be present in the
cluster).

In the case of the S. cerevisae genome, it was first observed
by Lee et al. [31] that the number of transcription factor
binding sites present in one promoter is on average very
low (in our dataset it is approximately 6). We therefore
assume that the number of motifs to be considered for
each cluster is small enough to successfully employ an
exhaustive search yielding all possible results. Since we
ignore the ordering and the number of motifs in the pro-
moter, we consider all TF motifs to be symbols of a finite
alphabet and treat binding site modules as words over this
alphabet. For each gene set considered we construct a suf-
fix tree including all words (sets of motifs) occurring in
the promoters of genes in the set. We can quickly annotate
each branch of that tree with the number of occurrences
of the corresponding word. With this technique, we can
safely avoid visiting the tree branches with coverage lower
than required and eliminate unnecessary computations.
By using an exact and exhaustive algorithm instead of a
heuristic, we have obtained a broader set of modules with
better quality. The development of the software dedicated
for this task significantly increased the efficiency of rule
induction.

Data material

S. cerevisae cell cycle expression time series data were taken
from Cho et al. [29]. The dataset contains expression pro-
files of 6601 genes at 17 time points, of which 2501 were
selected for our analysis according to the following crite-
ria:

e no missing values were allowed at any of the time
points,

e divergently transcribed genes were excluded (i.e. two
genes sharing the same promoter region).

Motif dataset was taken from Hughes et al. [8]. It consists
of the occurrences of 47 binding site motifs in 5652 pro-
moters found by the AlignACE motif finding program.

http://www.biomedcentral.com/1471-2105/7/505

For evaluation with experimentally observed binding we
used data from ChIP-Chip experiments published by Har-
bison et al. [23]. It contains evidence of binding for 352
transcription factors at 6229 intergenic regions. We take
only binding occurrences reporting a p-value < 0.01 [23].
We have also performed the same evaluation using an ear-
lier dataset [31] (with very similar results) and the results
can be found on our supplementary materials website.

For Gene Ontology evaluation, we used the newest (as of
April 2005) GO-DAG and annotations: GO version 1.419
and annotations Revision: 1.1109. All above-mentioned
GO data can be downloaded from [37].

Measuring statistical significance

To measure the statistical significance of our rules we use
Bonferroni corrected p-values. Let us assume that we have
arule R and a family of gene sets # constituting our ref-
erence (i.e. sets of genes bound by the same transcription
factors or sets of genes sharing common annotations in
Gene Ontology). For every rule R, we consider its overlap
with all setsf € F i.e. the set of genes from f matching the
left-hand-side (LHS) of R. Then the p-value we calculate
for the rule R and the set f is the probability of obtaining
such overlap by chance, which can be computed from the
hyper-geometric distribution:

kY N-k
min(k,n) i n—i
p(x,N,n,k) = Z )
i=x N
n

where x is the size of the overlap, N is the number of all
genes, n is the number of genes matching the left-hand
side of the rule R and k = [f].

For each rule we calculate a p-value against many sets (i.e.
annotations, transcription factors). Since we only require
that each rule has a low p-value for one of the sets, we
apply the Bonferroni correction, which is a standard pro-
cedure to account for testing multiple hypotheses. We
state that a rule R covering n out of N genes is statistically
significant against ¥ if it has a Bonferroni corrected p-
value of less than 0.01, i.e.

reFp(x(R, f),N,n,| f [)*[F]< 0.01,

where x(R, f) calculates the number of genes from the set
f covered by the left-hand side of the rule R. The Bonfer-
roni correction only accounts for the multiple hypotheses
tested for each individual rule. One could in addition
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include a similar correction for the fact that we induce a
relativity large number of rules. However, here we opt for
reporting the fraction of significant rules, which in all
cases is much larger than what would be expected by
chance (i.e. at the significance level 0.01 one would expect
only 1% of the rules to be significant by chance).

In the case of Gene Ontology evaluation, for each rule we
consider each part of the ontology separately (molecular
function, cellular component, and biological process),
and define ¥ as all annotations in that part of the ontol-
ogy. In the case of ChIP-Chip data, we first consider all the
TFs bound to any of the genes matching the rule, and then
define F as all the sets of genes bound by each of those
transcription factors. For Gene Ontology, we copied all
annotations made for any gene matching the rule
upwards to all more general nodes in the ontology. We
then considered ¥ to be all sets of genes annotated by
any of these nodes.

Supplementary data

Supplementary information for this article (full set of
rules, additional charts and tables) can be found on our
website [38]. We have also made a web interface for que-
rying rules induced from the S. cerevisae cell-cycle.
Through this interface one can search for rules including
any particular gene or binding site.
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