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Abstract
Background: Although protein-protein interaction (PPI) networks have been explored by
various experimental methods, the maps so built are still limited in coverage and accuracy. To
further expand the PPI network and to extract more accurate information from existing maps,
studies have been carried out to integrate various types of functional relationship data. A
frequently updated database of computationally analyzed potential PPIs to provide biological
researchers with rapid and easy access to analyze original data as a biological network is still
lacking.

Results: By applying a probabilistic model, we integrated 27 heterogeneous genomic, proteomic
and functional annotation datasets to predict PPI networks in human. In addition to previously
studied data types, we show that phenotypic distances and genetic interactions can also be
integrated to predict PPIs. We further built an easy-to-use, updatable integrated PPI database,
the Integrated Network Database (IntNetDB) online, to provide automatic prediction and
visualization of PPI network among genes of interest. The networks can be visualized in SVG
(Scalable Vector Graphics) format for zooming in or out. IntNetDB also provides a tool to
extract topologically highly connected network neighborhoods from a specific network for
further exploration and research. Using the MCODE (Molecular Complex Detections)
algorithm, 190 such neighborhoods were detected among all the predicted interactions. The
predicted PPIs can also be mapped to worm, fly and mouse interologs.

Conclusion: IntNetDB includes 180,010 predicted protein-protein interactions among 9,901
human proteins and represents a useful resource for the research community. Our study has
increased prediction coverage by five-fold. IntNetDB also provides easy-to-use network
visualization and analysis tools that allow biological researchers unfamiliar with computational
biology to access and analyze data over the internet. The web interface of IntNetDB is freely
accessible at http://hanlab.genetics.ac.cn/IntNetDB.htm. Visualization requires Mozilla version
1.8 (or higher) or Internet Explorer with installation of SVGviewer.
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Background
Protein-protein interactions (PPIs) underlie most biolog-
ical processes. Dissecting the PPI network for a particular
biological process may provide important clues into
molecular mechanisms of the process [1]. Recently, large-
scale experimental studies have generated many PPI data-
sets in different model organisms by yeast two-hybrid
(Y2H) screens [2-8] and by co-affinity purification (co-
AP) followed by mass spectrometry (MS) [9,10]. These
studies have provided opportunities to examine cellular
function at a network level.

There are two shortcomings of these data: (a) the coverage
is very low and far from complete, and (b) the accuracy of
each dataset is generally not very high and varies consid-
erably from dataset to dataset [11]. The unreliability and
incompleteness of PPI data complicates elucidation of
biological processes or cellular functions, and may poten-
tially misrepresent the topological features of the network
[12]. Many methods have been used to predict PPI net-
works [13]. These fit into three categories: sequence based
[14], high-throughput data-based, and a combination of
sequence and high-throughput data. The sequence-based
prediction methods include gene fusion, gene neighbor-
hood and phylogenic profiles [15], and predictions based
on protein/domain structure [16,17]. The high-through-
put data based methods predict PPIs from data generated
by high-throughput experiments, such as correlated
mRNA expression [11,18], correlated phenotype profiles
[19], shared protein interaction partners [20], shared
genetic interaction profiles [21,22], or similar subcellular
localizations [17]. The combination methods predict
interologs based on gene orthologs [23,24].

Recently machine learning methods have been intro-
duced to predict PPIs by combining genomic and experi-
mental features. Bayesian classifiers are probability-based
and competent in integrating large numbers of heteroge-
neous datasets [25-27]. Probabilistic decision trees and
random forest (a collection of decision trees) specialize in
classifying objects into different categories [28-31]. Logis-
tic regression is especially suited for assigning elements
into two opposing groups [32-35]. Support vector
machines (SVM) have been used to predict PPIs from a
limited number of attributes to binary outputs (interact
versus not interact), but has not been used for integrating
multiple evidences [36-43].

Among these machine learning approaches, Bayesian
probabilistic model has many unique advantages in pre-
dicting PPIs. It can handle heterogeneous data types, such
as numerical phenotype values, discrete survival fitness
values, vector microarray expression values, binary inter-
actome values or categorical Gene Ontology annotation
values. Heterogeneous data types can be transformed into

one uniform probabilistic score by calculating the likeli-
hood ratios. Each data source is automatically weighted
according to its confidence level. Missing data are tolera-
ble for integration. Furthermore, Bayesian model is a fast
simple algorithm, as it is probability-based and does not
require much time to standardize different data of differ-
ent sources or types. Most importantly, Bayesian model
has been proven by previous studies to be particularly
competent in predicting PPIs [31,32]. Lastly, the simple
integration scheme is very suitable for updating or includ-
ing future datasets.

To date the Bayesian model has mostly been applied to
yeast, and rarely to predict human PPI [27,44]. Rhodes et
al integrated 13 datasets of four different data types: phys-
ical interactions in model organism, co-expression,
domain-domain interactions and shared biological func-
tions [27]. However, other types of high-throughput data
then available were not examined. Since the publication
of this analysis many other high-throughput data have
been generated, some directly done on human proteins.
Furthermore, the ever-growing high-throughput data and
the data mining demand from the research community
require a more comprehensive, current and updatable
integration platform and database for integrating, storing,
visualizing and mining the data. Toward achieving these
goals, we examined the predictive power of new data types
and datasets, created an Integrated Network Database
(IntNetDB) and provided easy-to-use web-based visuali-
zation and data mining options.

We chose to adopt the Bayesian analysis method, because
of unique advantages in predicting PPIs [45], and because
of its proven effectiveness established by previous studies
[25-27]. From the first [25] to the latest study [27] using
this analysis framework, more accurate and more exten-
sive integrated PPI networks have been predicted. Here,
using ten-fold cross validation, we also demonstrated the
effectiveness of Bayesian analysis in predicting human
PPIs from 27 datasets of seven different data types.

To allow researchers easy and rapid use of our prediction
results, we assembled the data in a web-accessible Inte-
grated Network Database, and we provide a graphic-user-
interface for querying PPIs among a group of query pro-
teins/genes (Figure 1). We also provide an online tool for
creating customizable visualization of the network, and a
computational method to search for highly-connected
network modules, as these modules frequently corre-
spond to molecular machines [19]. We used the MCODE
algorithm with default settings to find network modules
based on network topology. The details about the algo-
rithm and the principles are in the original paper [46].
Furthermore, the design of the database and user interface
allows easy incorporation of new datasets.
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A brief description of the integration by the probabilistic modelFigure 1
A brief description of the integration by the probabilistic model. Seven heterogeneous dataset types are gathered and 
evaluated by the gold standard positive (GSP, all the annotated protein-protein interactions from HPRD) and gold standard 
negative (GSN, possible protein pairs between the proteins on the plasma membrane and those in the nucleus). The potential 
of forming a protein-protein interaction is scored as the likelihood ratio (LR) for protein pairs to be true positive interactions 
versus true negative interactions, according to the GSP and GSN. Each interaction is assigned a LR within a data type. When 
evidence arises from more than one datasets within a data type, the maximal LR among the datasets is used for a gene pair. 
Then the LRs given by different data types are integrated by the Naïve Bayes model, which generates the final prediction score 
for a potential PPI by multiplying all the LRs from the seven distinct data types. Lastly, the final integrated network with an 
acceptable confidence level for each interaction is presented.
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Construction and content
Gold standard for integration
Naïve Bayes classifiers require a gold standard positive
(GSP) and a gold standard negative (GSN) dataset. The
Human Protein Reference Database (HPRD) [47] is a pro-
tein-protein interaction database with 19,438 distinct
interactions among 5,983 proteins. It is manually curated
by expert biologists based on small-scale and focused
experiments described in the scientific literature. We
accepted it as high quality and used it as the GSP dataset.
We used the GSN dataset previously generated by Rhodes
et al [27], which includes all the possible pair-wise com-
binations between two sets of proteins that are assigned a
subcellular localization of the plasma membrane (1397
proteins) and the nucleus (2224 proteins), respectively,
by the Gene Ontology (GO) Consortium [48]. The GSN
includes a total of 3,106,928 interactions. The size and the
ratio of GSP and GSN are adequate for covering interac-
tions of low prediction probability and for predicting
human PPIs [27]. To measure the predictive power or con-
fidence level, we used the likelihood ratio (LR) of a gene
pair to be a true positive interaction versus a true negative.
This is calculated by Pr(E|GSP)/Pr(E|GSN), where the
Pr(E|GSP) is the probability of a certain evidence
observed within GSP set and Pr (E|GSN) is the probability
of a certain evidence observed within GSN set (Methods).

Physical protein-protein interactions
As PPIs are frequently conserved through evolution
[49,50], we gathered the high-throughput experimental
PPI data of the model organisms Saccharomyces cerevisiae
[2,3,9,10,51] (SC1-5, yeast interactome dataset 1–5
[2,3,9,10,51]), Caenorhabditis elegans [5] (CE), and Dro-
sophila melanogaster [4,6] (DM1 and DM2, fly interactome
dataset 1 and 2 [4,6]). We mapped interactome data from
these different model organisms to human through pro-
tein orthologs determined by best reciprocal BLASTP hit
(Methods). The confidence for each of the datasets was
evaluated. Whenever confidence level information is
available in the original study, we divided the dataset into
different groups according to their confidence levels (Fig-
ure 2A). The results indicate that interologs (ortholog
pair) derived by these methods generally have strong pre-
dictive power. Among them the S. cerevisiae interactome
dataset 4 [10] is the most predictive (LR = 1438.9). We
also evaluated the recently published human interactome
[7,8] (HS1 and HS2, human interactome dataset 1 [7] and
dataset 2 [8]) and calculated the LR for those two datasets
(LR1 = 11.1 and LR2 = 112.5). In brief, all the physical
interaction datasets examined can be incorporated in the
integration (Figure 2). The big differences in predictive
power of different datasets (even those generated by the
same method over the same proteome) point to the neces-
sity of data annotation and integration before utilizing the
data to derive biological hypotheses.

Phenotypic data from model organisms
Loss of function among interacting or functionally related
proteins tends to result in similar phenotypes [52-54].
Several large-scale phenotypic datasets are available for
model organisms [52-54]. RNAi phenotype data have
been used to predict PPIs for model organisms [19]. To
examine whether phenotype data from model organisms
are also predictive for human PPIs, we transferred pheno-
type data from model organisms to human by matching
the genes in model organisms to their corresponding
human orthologs. We then calculated the pair-wise phe-
notype similarity scores between genes. Considering the
various forms of the phenotypic data, we used different
measurements for phenotypic distance depending on the
form of phenotypic values. For the dataset with one value
for each gene under a single condition, we simply used the
absolute value of arithmetic difference between the phe-
notypic values [52]. For the dataset with discrete values
under multiple conditions, we used the cosine value
between the phenotypic values of a pair of genes [54]. For
the dataset with continuous value under multiple condi-
tions [53], the Pearson Correlation Coefficient (PCC) was
used. Then each phenotypic dataset was binned according
to the similarity score (phenotypic difference, cosine or
PCC) and the LRs were evaluated within each bin. A cor-
relation between phenotypic similarity and LR can be
observed even in the cross-species phenotypic datasets
(Figure 2B–D). Therefore phenotype data can also be inte-
grated to predict the PPI network.

Genetic interactions from model organisms
Synthetic genetic analysis (SGA) has been used in Saccha-
romyces cerevisiae [21,22] to globally map yeast genetic
interactions. A significant overlap between PPIs and
genetic interactions was recently demonstrated [55]. The
number of common neighbors between a pair of geneti-
cally interacting genes can be used to predict potential
PPIs [22]. We implemented such an analysis on binary
yeast genetic interaction datasets [21,22]. First, the genetic
interactions were mapped as human interologs. Then we
binned all the interactions by the number of the shared
neighbors, and the LRs were calculated for each bin (Fig-
ure 2E). We found that the more neighbors a pair of genet-
ically interacting genes share, the more likely a direct PPI
occurs between them. These genetic interaction data actu-
ally gave rise to very high confidence PPI predictions,
slightly lower than large-scale PPI mapping (Figure 2E).

Gene co-expression
Genes that exhibit mRNA co-expression tend to show pro-
tein interaction [56], especially for those in the same com-
plex or in the same biochemical reaction. Such correlated
genes might be regulated by the same transcriptional fac-
tor or a set of transcription factors. We examined three
high quality large-scale microarray datasets [57-59] to pre-
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Assessing the performance of each dataset in predicting the human protein-protein interactionsFigure 2
Assessing the performance of each dataset in predicting the human protein-protein interactions. A. Large-scale 
protein-protein interaction (PPI) datasets from model organisms and human. The datasets SC5 and DM1 are binned by their 
confidence level given by the original studies: LC, low confidence; HC, high confidence. B-D. Phenotypic datasets from model 
organisms. The fly genome-wide RNAi dataset is evaluated by the arithmetic difference in phenotypic values between a pair of 
genes (D). The phenotypic similarity of yeast genes upon knock-out is evaluated by cosine distance for the discrete values (C) 
and PCC for the continuous values (D). E. Yeast genetic interaction datasets. Yeast genetic interactions are grouped by the 
number of shared neighbors between a pair of genetically interacting genes. F. Large-scale human gene expression datasets. 
Gene pairs are binned by their Pearson Correlation Coefficient (PCC) between the expression profiles of the pair. The purple, 
yellow and blue curves are derived from three different expression datasets [57-59]. G. Domain-domain interaction (DDI) 
score. The DDI score of a domain pair is assigned to a pair of proteins containing the domains. If different scores exist between 
a pair of proteins arising from different interacting domain pairs, the maximum of the scores is assigned to the pair. The protein 
pairs are grouped according to their DDI scores. H. Smallest number of shared biological processes (SSBP) of yeast (SC), 
worm (CE), fruitfly (DM), mouse (MM) and human GO annotations. Gene pairs are binned by the smallest number of shared 
GO annotations between a pair of genes. Then the LR of being GSP versus GSN is calculated and plotted for gene pairs within 
each bin for each organism. I. Gene context analysis to predict PPIs. Three types of in silico prediction results are evaluated 
(gene fusion, gene co-occurrence and gene neighborhood).
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dict the human PPIs. One dataset consists of gene expres-
sion profiles during aging of the human brain, and the
other two consist of gene expression profiles across a vari-
ety of tissues or cell lines. For each dataset, gene pairs were
assigned into 20 bins of increasing pairwise expression
PCC values (Figure 2F). We observed a significant correla-
tion between expression PCC and the likelihood of form-
ing direct PPI (measured by LR) between a pair of genes
when the PCC is above 0.5, which may help to predict
human PPIs (Figure 2F).

Shared functional annotation
Proteins with the same biological function are more likely
to physically interact than those without. In addition, pro-
teins sharing a more specific annotation are more likely to
interact than those sharing a commoner less specific
annotation. The Gene Ontology Consortium [48] has
assigned 4,416 GO annotations to 14,801 human genes
(proteins). To quantify the similarity between gene anno-
tations, we identified the smallest shared biological proc-
ess (SSBP) between a pair of genes [27]. The SSBP is
calculated by three steps: (1) find all the GO terms shared
by each pair of genes, (2) find the number of other genes
also sharing these GO terms, (3) get the GO term with the
smallest gene count. In agreement with expectation, the
smaller the SSBP count, the more likely the proteins are to
directly interact (Figure 2G). We also examined the GO
annotations of four model organisms (Saccharomyces cere-
visiae, Caenorhabditis elegans, Drosophila melanogaster and
Mus musculus). When genes from the four model organ-
isms were mapped to human orthologs, the SSBP still has
good predictive power to predict human PPIs (Figure 2G).

Domain-domain interaction (DDI)
Many protein-protein interactions are mediated by
domain-domain interactions. If two domains can physi-
cally interact, proteins containing these two domains are
also likely to interact. DDI predictions have been explored
before. We used the domain-domain interaction scores in
InterDom, which are derived largely from structural infor-
mation [16]. After transferring the scores to each pair of
proteins that contain the interacting domains, we
observed a weak but still clear correlation of the domain
interaction score with LR (Figure 2H).

Gene context analysis
Gene context refers to in silico PPI predictions based on
genome sequences [11]. Three types of gene context infor-
mation have been used to predict protein-protein interac-
tions: a) gene fusion/fission, which finds that interacting
proteins in one species are more likely to be fused into
one single protein in another species; b) gene co-occur-
rence which finds that interacting proteins are more likely
to be found both present or both absent in an organism
with a fully sequenced genome; c) gene neighborhood

which finds that functionally coupled genes (interacting
proteins or proteins in a complex) are more likely to be
located in the same operon or gene cluster in a genome.
Gene context analysis has been previously performed by
von Mering et al, [11] to generate in silico PPIs for Saccha-
romyces cerevisiae. We mapped these interactions to
human through interologs and found that all three types
of in silico PPI predictions are suitable for predicting
human PPIs (Figure 2I).

Integration by probabilistic model
We chose the Naïve Bayes classifier model because it inte-
grates all the independent evidences simply by multiply-
ing the LRs of diverse evidences [25]. Such expediency will
facilitate integration of more datasets in the future. Using
such an integration scheme, many weak evidences from
several data types can be accumulated to predict interac-
tions with increased confidence. We assume that different
data types are conditionally independent, because they
are derived from different experimental technologies that
aim to measure different biological features of genes/pro-
teins or protein pairs, or are from unrelated annotations.
We categorized the 27 datasets into seven different types
(Figure 1) to satisfy the requirement of conditional inde-
pendency by the Naïve Bayes classifier. The LR contrib-
uted by each dataset toward the predicted confidence
score of a gene pair (Figure 1) was set to the LR observed
for the corresponding dataset bin where the gene pair was
found (Figure 2). Then the maximal LR among all the
datasets of the same data type was chosen to represent the
LR contributed by the particular data type toward the pre-
diction score. Finally the ratios determined by different
data types were multiplied to represent the combined LR
[25,27]. Base 2 logarithmic form of LRs (LLRs) was used
to calculate the final score.

Cross validation of the integration results
To evaluate the overall performance of the prediction, we
did a ten-fold cross-validation. First we randomly divided
both the GSP and GSN datasets into ten separate equal
sets. Then we used nine of the ten sets as the training set
to calculate the LRs and the remaining set as the test set to
identify the positives and negatives. We ran this process
ten times so that each of the ten sets was a test set and the
remaining nine constituted the training set. Finally we
summed up the number of true positives (TP), false posi-
tives (FP), true negatives (TN) and false negatives (FN) to
get the sensitivity (TP/(TP+FN)) and TP/FP ratios under
different LLR cutoffs (from 1 to 16). The TP/FP ratios are
apparently correlated with LLR cutoffs (Figure 3A). They
decrease with the increase in prediction sensitivity, indi-
cating a tradeoff between the accuracy and sensitivity of
predictions (Figure 3B). We set a LLR cutoff of 6.0 as the
minimal requirement for a predicted PPI to be entered
into IntNetDB, and 7.0 as the default prediction level
Page 6 of 13
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because the TP/FP ratio is greater than 1 at this resolution.
That is, at a LLR>7.0 we can get 56% of true positive pro-
tein-protein interactions within the 180,010 predicted
protein-protein interactions among 9,901 proteins (Fig-
ure 3A).

Improvements over the previous integration analysis for 
human PPI predictions
To obtain PPI predictions of higher quality and coverage,
we used the latest HPRD dataset as the GSP dataset. HPRD
now contains more than 10,000 newly annotated PPIs
since the previous analysis of Rhodes et al. We integrated
three more types of data (phenotype, genetic interactions
and gene context) than used previously. For the interac-
tome data type, we added three recently published inter-
actome datasets [7,8,51], among which two are yeast two-
hybrid screens using human proteins. For each new data
type we have demonstrated the predictive power. We inte-
grated two genetic interaction datasets, three gene context
datasets [21,22] and three recently published phenotypic
datasets of model organisms [52-54] (Table 1). The three
more data types and the 14 extra datasets (more than dou-
ble those in the previous analysis) integrated here make
our analysis more information-rich, and also enabled us
to predict 141,631 additional potential PPIs (4.7-fold
increase in coverage) within a similar range of TP/FP ratio
[27]. To facilitate use for researchers who are not familiar

with network biology or bioinformatics, we have also
implemented an easy-to-use and flexible data download,
network visualization and analysis options online.

Utility
Protein-protein interaction search
IntNetDB provides a web-accessible query interface for
users to search for potential PPIs among a list of query
genes (Figure 4A). Query genes can be entered batch-wise
using a variety of gene identifiers (NCBI Entrez GeneID,
GeneSymbol, or GeneBank accession number) for differ-
ent organisms (C. elegans, D. melanogaster, M. musculus,
and H. sapiens). As yeast PPIs have been predicted compre-
hensively with various methods, we choose not to redo
yeast PPI predictions with interolog information from
other organisms, but rather refer readers to DIP, BIND and
GRID PPI databases for this purpose [60-62], which are
more comprehensive for yeast proteins. The purpose of
this study was to generate a completely up-to-date PPI pre-
diction database for higher organisms, information which
is still lacking and greatly needed. For organisms other
than human, no high quality PPI datasets are available to
be used as a GSP (gold standard positive). Mapping by
predicted interologs is the best that can be reached cur-
rently. The lack of a GSP also means it is not possible to
estimate the accuracy of the predicted interologs. There-
fore, instead of presenting model organism PPI as rigor-

TP/FP ratios (true positive versus false positive) at different LLR cutoffs or sensitivity by 10-fold cross-validationFigure 3
TP/FP ratios (true positive versus false positive) at different LLR cutoffs or sensitivity by 10-fold cross-valida-
tion. The TP/FP ratios and the sensitivity (TP/(TP+FN)) are calculated for different LLR (log2LR) cutoffs. Each dot on the 
curves represents an average of ten cross-validations at a particular LLR cutoff. A. TP/FP ratios versus LLR cutoffs. A resolution 
of 44% false positives (TP/FP>1) corresponds to a LLR cutoff of 7.0 and 180,010 predicted interactions. Predicted interactions 
of higher confidence (larger TP/FP ratios) can be obtained by selecting LLR cutoffs higher than 7.0. B. TP/FP versus sensitivity. 
The TP/FP ratios indicate the accuracy at a certain resolution, while the sensitivity defines the ability of a test to detect true 
positives. Hence a tradeoff exists between accuracy and sensitivity of a prediction.
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ous data mining conclusions, we provide information on
worm, fly and mouse solely for reference and convenience
of researchers. Other resources, such as Homologene [63]
COG [64] and Inparanoid [65] may provide more precise
ortholog information than what we provide here through
reciprocal best hit method.

IntNetDB also provides information on LLR cutoffs. Users
can obtain more reliable PPIs by selecting larger cutoff val-
ues, than the default value of 7.0. If users need as many
predicted PPIs as possible for analysis, then the predicted
PPIs with LLR>6.0 are also accessible from the website.
Lower LLR includes more protein-protein interactions and
proteins but of lower confidence. Confidence levels (per-
centage of expected true positive) of the predicted PPIs at
different LLR cutoffs are also provided (Figure 3A inset).
From the seven integrated heterogeneous data types cur-
rently available, users can select the exact data types that
they want to access. A list of the PPIs under the user-
defined LLR cutoff with data type information are gener-
ated after a gene list is submitted. The default gene list uses
p53 and its interacting partners in human as an example.
A tab-delimited text file of PPIs can be downloaded
directly from the query result page (Figure 4B).

Network visualization
Network visualization provides a more informative way
than a simple textual list for exploration of a network.
IntNetDB provides an online visualization tool for pro-

tein-protein interaction networks called 'intView'. A PPI
network is represented as an undirected graph by intView,
where nodes represent proteins and edges correspond to
potential PPIs. Figure 4C shows the network layout of
TP53 and its partners. Users can click the nodes or edges
to see more information about them (Figure 4C inset).
When an edge is clicked, a pop-up panel will display
which data type(s) support the functional interaction
between the two nodes. Different data types are denoted
by different colors, and the width of the edge representing
a data type is proportional to the LR value derived from
that data type (Figure 4C inset). Online visualization is
displayed with a scalable vector graphics (SVG) file. Post-
script file and Cytoscape-compatible GML file can also be
generated for download.

Extracting highly connected modules
Densely interconnected neighborhoods or clusters in a
network frequently correspond to functional modules
[46,66]. IntNetDB provides a tool to extract and reveal
such neighborhoods or clusters in the network of query
genes. For this IntNetDB uses the MCODE algorithm [46],
which was created by Bader et al. for predicting yeast pro-
tein complexes and implemented by Lee et al for automat-
ically searching protein complexes in any organism [67].
The resulting modules can be visualized by clicking on the
'Network cluster' button on the web page. All the extracted
clusters in IntNetDB are visualized in Cytoscape [68] (Fig-
ure 4D). For cross examination and fine control, the users

Table 1: Improvements over the previous integration analysis for human PPI predictions

Rhodes et al. This study

Gold standard positive 
(HPRD version)

Aug, 2004 Sep, 2005 (About 10000 more interactions)

Number of data types 
integrated

4 (PPI, GO, Microarray, DDI) 7 (PPI, GO, Microarray, DDI, Phenotypic, Genetic, Gene 
context)

Number of datasets 
integrated

13 27

Info from model organism Only the PPI is applied All the possible large scale data from model organism
Datasets for each data type Gene expression 5 3

PPI dataset 4 yeast, 1 worm and 1 fly 5 yeast, 1 worm, 2 fly and 2 Human
GO dataset Human yeast, worm, fly, mouse and human
Phenotypic None 2 yeast and 1 fly datasets
Genetic interaction None 2 yeast datasets
DDI interactions Interpro annotation Domain-domain interaction score dataset
Gene context None 3 yeast datasets

Method to validate the 
results

One simple test using the old 
HPRD as training set and the 
updated HPRD as test set

10-fold cross-validation

Size of integrated network 
under TP/FP ratio of 1

38,379 interactions among 5,791 
proteins

180,010 interactions among 9,901 proteins

Data query One time spread sheet download Online query options with selectable data types and 
confidence level; data can be downloaded through 
spreadsheet or network graphs.

Network visualization and 
analysis

Only support one single gene's 
search and none for download or 
analysis

Network cluster extraction, visualization, drill-down and 
download options
Page 8 of 13
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Overview of IntNetDBFigure 4
Overview of IntNetDB. A. The IntNetDB web interface. The default example is the network among human p53 (encoded 
by the TP53 gene) and its potential interaction partners. B. IntNetDB search results. For these query genes, the network graph 
view shows all predicted PPIs and the data types supporting each PPI, where '-' and '+' signs stand for 'absent' and 'present', 
respectively. A present call corresponds to LLR>0 for the data type shown. C. Visualization of the predicted PPI network. A 
hyperlink on the node and edge, when clicked, leads to more detailed information of the node or interaction (insets). D. 
Graphical representation of highly connected subgraphs. The subgraphs are extracted from the entire network by the MCODE 
algorithm. The two enlarged subgraphs correspond to the troponin-related complex and the proteasome complex. The color 
of an edge denotes the evidence type supporting the predicted PPI. 'Multiple evidences' are said to support a predicted interac-
tion when more than one data type has LLR>1 (LR>2) for that edge. The color of a node is assigned according to the GO term 
of the gene.
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are referred to a probabilistic model-based cluster-finding
algorithm implemented in NetworkBlast [69].

An advantage of extracting such densely connected neigh-
borhoods is that new functions can be assigned to a gene,
or potential functions can be assigned to a gene of
unknown function based on the functions of other genes
in the same cluster [19]. As an example take the Troponin
complex, a key protein complex regulating sarcomeric
muscle contraction that is composed of three subunits,
Tn-I, Tn-C and Tn-T. The Tn-I subunit inhibits actomyosin
ATPase, while the Tn-T binds Tn-C and has high affinity
for tropomyosin. With the release of intracellular calcium,
Tn-C subunit binds calcium and the conformation of the
troponin complex changes accordingly to overcome inhi-
bition of actomyosin ATPase activity [70]. In the predicted
human troponin complex, TNNI3 (coding for Tn-I subu-
nit) directly interacts with CASQ1, a protein that binds
and putatively stores calcium ions in the sarcoplasmic
reticulum. This finding suggests that the Troponin com-
plex may also regulate muscle contractions through direct
association with intracellular calcium stores. The network
modules also show the Tronponin complex tightly con-
nected with structural proteins (MYH6, MYL3, MYL7,
MYBPC3), suggesting that they may also function in the
sarcomeric muscle contraction (Figure 4D inset).

Another example of an extracted functional module is the
proteasome complex involved in ATP/ubiquitin-depend-
ent peptide cleavage (Figure 4D inset). The proteasome is
a multicatalytic proteinase complex comprised of many
subunits. In the extracted network module a hypothetical
protein, FLJ11848, is predicted to tightly interact with
many subunits of the proteasome. Interestingly, FLJ11848
contains six WD40 domains, which are frequently found
in adaptor or regulatory proteins. This observation sug-
gests that FLJ11848 might have an important role in regu-
lating the activity of the proteasome. This prediction has
been validated by recent work demonstrating that
FLJ11848 functions as a negative regulator of the proteas-
ome by controlling the assembly/disassembly of the pro-
teasome [71].

Data and GUI updating scheme
To keep IntNetDB up to date, we will keep tracking newly
published large-scale genomic and proteomic datasets,
evaluate the performance of them for PPI prediction, and
use them to update the IntNetDB. The addition of new
datasets should increase the comprehensiveness of the
human interactome. To allow for future extension, and to
avoid the burden of updating the user interface each time
new data are added, GUI items are dynamically generated
from database entries to reflect the current data types
available in IntNetDB

Conclusion
We have integrated and evaluated potential PPIs from dif-
ferent up-to-date genomic and proteomic features. We
have provided a user-friendly query and visualization
platform which can be easily extended in the future when
more data become available. The product of this effort,
IntNetDB, will facilitate network and functional analysis.

Methods
Gold standard
The Human Protein Reference Database (HPRD) [47] is a
manually annotated protein-protein interaction database
with 19,438 distinct interactions among 5,983 proteins.
As it is derived from the literature of high quality experi-
mental results, we used it as the gold standard positive
(GSP) dataset. We used the gold standard negative (GSN)
dataset previously generated by Rhodes et al [27], which
includes all possible pair-wise combinations between two
sets of proteins that are assigned a subcellular localization
of the plasma membrane (1,397 proteins) and the
nucleus (2,224 proteins), respectively, by the Gene Ontol-
ogy (GO) Consortium. The whole GSN set includes a total
of 3,106,928 protein pairs. Ideally the GSP and GSN
should have no overlapping interactions. Of the 19,438
protein pairs in the positive gold-standard, 4,863 protein
pairs are both of known subcellular localization. Of these
4,863 protein pairs, there are 330 overlapping interac-
tions (representing a fraction of 7% = 330/4,863). This is
very small compared to the randomly expected size of the
intersection (representing a fraction of 38% = 1856/
4,863), which was computed by assigning the protein
with the shuffled subcellular localization in the GSN set.
Although the gold-standard sets are imperfect, they still
can provide good approximations for PPI prediction.

Datasets
HPRD dataset [47] was downloaded on November 13,
2005. GO annotations were downloaded from NCBI on
March 10, 2005. The three recently published interactome
datasets [7,8,51], the two genetic interaction datasets
[21,22], the three gene context datasets [11] and the three
recently published phenotypic datasets of the model
organisms [52-54] were downloaded from the journal or
authors' websites.

Naïve Bayes model
We used the Naïve Bayes method described in Jansen et al.
and Rhodes et al. [25,27]. We defined as positive when
two proteins interact and as negative when they do not.
Considering the total number of positive pairs within all
the possible protein pairs, the prior odds of finding a pos-
itive pair is:

Oprior = P positive

P negative

( )

( )
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where P(positive) is the possibility of getting an interact-
ing pair of proteins in all the possible interactions while
P(negative) stands for the possibility of getting a pair of
non-interacting proteins. In contrast, the posterior odds
are the odds of getting a positive when we consider the
given evidence:

where the evidence is a data type used to infer PPI between
the proteins. The terms 'prior' and 'posterior' refer to the
condition before and after considering the information
provided by the N evidences. Then the likelihood ratio (L)
is defined as:

which relates prior and posterior odds according to the
Bayes rule:

Oposterior = L(evidence1...evidenceN)*Oprior.

When N evidences are derived independently, the Bayes
rule can be simplified to Naïve Bayes rule and L can be
simplified as:

The Likelihood ratio (L) of evidence can be calculated
from the positive and negative hits by binning all the evi-
dences into discrete intervals. Then the integrated L can be
multiplied from all the independent evidences.

Orthologs
Human orthologs in mouse, fly, worm and yeast were
identified as the best reciprocal BlastP hits with e-value
cutoff of 10-6 based on RefSeq protein sequences down-
loaded on December 9, 2004.

Availability and requirements
The web interface of IntNetDB is freely accessible at http:/
/hanlab.genetics.ac.cn/IntNetDB.htm. The graphical lay-
outs are based on SVG, which requires Mozilla version 1.8
and up or installation of SVGviewer for Internet Explorer.
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