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Abstract
Background: A key problem of drug development is to decide which compounds to evaluate further in
expensive clinical trials (Phase I- III). This decision is primarily based on the primary targets and mechanisms of
action of the chemical compounds under consideration. Whole-genome expression measurements have shown
to be useful for this process but current approaches suffer from requiring either a large number of mutant
experiments or a detailed understanding of the regulatory networks.

Results: We have designed an algorithm, CutTree that when applied to whole-genome expression datasets
identifies the primary affected genes (PAGs) of a chemical compound by separating them from downstream,
indirectly affected genes. Unlike previous methods requiring whole-genome deletion libraries or a complete map
of gene network architecture, CutTree identifies PAGs from a limited set of experimental perturbations without
requiring any prior information about the underlying pathways. The principle for CutTree is to iteratively filter
out PAGs from other recurrently active genes (RAGs) that are not PAGs. The in silico validation predicted that
CutTree should be able to identify 3–4 out of 5 known PAGs (~70%). In accordance, when we applied CutTree
to whole-genome expression profiles from 17 genetic perturbations in the presence of galactose in Yeast,
CutTree identified four out of five known primary galactose targets (80%). Using an exhaustive search strategy to
detect these PAGs would not have been feasible (>1012 combinations).

Conclusion: In combination with genetic perturbation techniques like short interfering RNA (siRNA) followed
by whole-genome expression measurements, CutTree sets the stage for compound target identification in less
well-characterized but more disease-relevant mammalian cell systems.

Background
Identifying the primary targets of chemical compounds
determines the selection of compounds suitable for drug
development. It is cost effective to improve the accuracy of
compound selection since it is a central bottleneck for
pharmaceutical companies [1,2]. Furthermore, to reveal

the mechanisms of action and toxic side effects of a drug,
the primary affected genes (PAGs) must be identified (Fig.
1a). To distinguish the PAGs from indirectly affected
genes is a recognized and difficult problem. Currently
used methods for PAG identification have limitations.
With haploid-insufficiency profiling [3,4], a library of
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A schematic showing the problem of finding PAGs, existing methods to solve the problem, and the principle of our solutionFigure 1
A schematic showing the problem of finding PAGs, existing methods to solve the problem, and the principle of our solution. (a) 
A compound alters the expression of PAGs in a cell. The change in gene expression then propagates to other genes through 
the gene network, but genome wide expression analysis only shows a number of expression changes. Thus PAGs cannot be 
distinguished from their secondary effects from the micro-array data. The CutTree algorithm ranks the genes according to 
micro-array experiments and identifies the PAGs. (b) To find drug targets, different strategies can be used. With a network 
identification method (left), the structure and dynamics of the underlying cellular network is identified, and the targets of a 
compound can be calculated. A random search (middle) can be performed by extending the expression library until the knock-
out genes coincides with the targets. CutTree (right) infers multiple targets using a small number of experiments.
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Comparing CutTree with a random searchFigure 2
Comparing CutTree with a random search. (a) The structure of the gene network affects the performance of CutTree. A 
more treelike structure improves its performance. A low depth indicates a shallow tree with many branches; a higher depth 
indicates a tree with few branches and long paths. Simulation data from 13 in silico gene networks with different structures, 
each being affected by a single PAG. Mean values from 50 experiments are shown (see Methods). (b) In silico simulations of the 
mean number of experiments required to find one PAG among various numbers of differentially expressed genes. For one 
PAG and a few genes, CutTree performs approximately equal to a random search but performs substantially better as the 
number of genes increases. For two PAGs, CutTree clearly outperforms a random search. (c) Schematic of gene networks 
with the PAG at the top.
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CutTree performanceFigure 3
CutTree performance. CutTree outperforms other search methods in gene network simulations, both in the number of 
experiments needed to find the PAGs and in the number of PAGs found. (a) Average number of experiments needed to find 
different numbers of PAGs. Average values from 50 in silico simulations; the random search bars are the expected values. (b) 
Comparison between CutTree and the Network identification method. The two Network identification results correspond to 
90% and 50% coverage, that is the fraction of identified.
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strains with heterozygous deletions is treated with a com-
pound, and those exhibiting growth sensitivity are
assumed to be the strains in which the PAGs are deleted.
However, the targets must be known deletions and the
compound's effect must be reflected by changes in
growth. In association analysis, a mutant is assumed to
have the PAG deleted if its expression profile is associated
with the expression pattern induced by the compound [5].

This strategy is referred to as a random search (Fig. 1b,
middle) since the profiles in the libraries are created ran-
domly without choosing specific experiments in the
search for PAGs. Gardner et al. succeeded to identify PAGs
using an approach (Fig. 1b, left) that however requires a
detailed knowledge of the cell network architecture [6],
thus denoted as a network identification strategy. Here we
design and validate an algorithm, CutTree, which inte-

CutTree analysis of data on the Yeast galactose responseFigure 4
CutTree analysis of data on the Yeast galactose response. CutTree analysis of data on the Yeast galactose response from 
Ideker et al, which showed that in wild-type S. cerevisiae, expose to galactose alters the expression of 952 genes. GAL2 encodes 
a transporter that brings galactose into the cell. GAL1, GAL7, and GAL10 encode proteins involved in the conversion of intracel-
lular galactose, and GAL3, GAL4, and GAL80 encode proteins that control the transcription of other GAL genes and each other. 
When galactose is present, Gal3 binds to Gal80, releasing the repression of Gal4 and starting the transcription of enzymatic 
and transporter genes. Application of CutTree to the data generated a PAG hierarchy. In the top three levels of the hierarchy, 
four of five genes identified by CutTree are known PAGs.
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grates selective experimental perturbations and gene
expression measurements, in order to identify PAGs with-
out requiring deletion libraries or knowledge of cellular
pathways and network structures (Fig. 1b, right). Valida-
tion of CutTree showed it capable of identifying four out
of the five primary targets of galactose from 952 differen-
tially expressed genes in Yeast generated from only 17 dif-
ferent gene expression profiles.

Results
We have designed and validated CutTree in silico and com-
pared CutTree with established methods, primarily the
network identification method used by Gardner et al.,
since the network identification strategy outperforms
library based techniques [5]. CutTree defined PAGs with
increasing accuracy as the depth of the network tree
increased; for example, it defined one PAG in a six-level
network in fewer than four experiments (Fig. 2a). A bio-
logical network's diameter is proportional to the depth of
the tree and is larger than two, regardless of the size of the
network [7-9]. It is therefore expected that CutTree should
outperform an exhaustive search (based on repeated ran-
dom perturbations) in identifying PAGs in a biological
network. This was confirmed by the in silico experiments,
demonstrating that the performance of an exhaustive
search strategy does not improve with the depth of the tree
(Fig. 2a).

To identify a single PAG the performance was not differ-
ent between CutTree and an exhaustive search. However,
CutTree clearly outperformed an exhaustive search strat-
egy to identify two or five PAGs (Fig. 2b and 3a). The
number of genes that are differentially expressed when the
compound is applied to the wild type affected the per-
formance of both methods. A large number of differen-
tially expressed genes means a large search space and
requires more experiments to find the PAGs (Fig. 2b).

We then compared CutTree with the network identifica-
tion method developed by Gardner et al [5]. Only when
90% of the network architecture was known, the network
identification method could define PAGs with an accuracy
which could not be distinguished (P < 2.2 × 10 -11, Stu-
dent t-test) from that of CutTree (Fig. 3b). However, when
50% of the network connections were known CutTree
outperformed the network identification method. In con-
clusion, the in silico experiments clearly demonstrated that
CutTree outperforms an exhaustive search strategy (Fig.
1b, middle). The network identification approach (Fig.
1b, left) can only have a similar performance as CutTree
when there is a close to perfect understanding (90%) of
the underlying biology. Finally, we tested whether these
results from CutTree were robust against noise in the data.
We found that the noise level had to be larger than 50 %

(noise level > 0.5, see Methods for implementation) in
order to substantially reduce the performance of CutTree.

To experimentally validate CutTree, we applied the algo-
rithm to a whole-genome expression dataset consisting of
samples from the eight-gene galactose-response pathway
in Yeast (Saccharomyces cerevisiae) presented by Ideker et al
[10]. This is an appropriate experimental test of the algo-
rithm because GAL1, GAL2, GAL7, and GAL10 are known
PAGs for galactose. Galactose induces an ATP-dependent
complex consisting of three proteins, Gal3, Gal4 and
Gal80 [11]. The binding of Gal4 protein to the complex
activates four different genes, GAL1, GAL2, GAL7 and
GAL10. Moreover, the GAL5 gene has been suggested to
be regulated by the Gal4 protein [12]. Since there are no
corresponding measurements of the Gal3-Gal4-Gal80
protein complex in the micro-array experiments [10] we
considered these five genes to be PAGs. It has hitherto
been unclear whether galactose activation of the Gal4 pro-
tein also could activate other genes. Incubating the wild
type Yeast with galactose yields more than 900 differen-
tially expressed genes (Fig. 4). To apply CutTree, we trans-
formed the dataset produced by simultaneous application
of galactose under 17 different conditions. (6000 tran-
script measurements under 17 conditions) into 6000
genes under nine conditions (see Methods).

CutTree identified four out of five PAGs in the galactose-
response pathway (Fig. 4, left). Note that this excellent
performance is almost identical to the predicted accuracy
of 70% from the in silico experiments (Fig. 3b). Given the
large number of possible combinations of five PAGs in a
set of 952 differentially expressed genes (1012), an exhaus-
tive experimental library search would not have been fea-
sible. Interestingly, not all of the five PAGs are
differentially expressed when galactose is applied demon-
strating that PAGs could not be identified from inspection
of the amount of fold change. In particular, the deleted
genes are not as a rule, classified as PAGs by CutTree. For
example, knockouts of the GAL3, GAL4, and GAL80
genes, are correctly not labeled as PAGs by CutTree. Thus,
neither the fold change nor the knockouts are sufficient to
reveal the identity of the PAGs (Fig. 1a). Note that CutTree
identified YLR460C, a previously unidentified PAG for
galactose but did not detect GAL5 which have been sug-
gested to be a PAG. This could reflect more complex regu-
lation of the PAGs by Gal4, such as an unknown
intermediate step between Gal4 and GAL5, possible
involving Ylr460c. GAL5 has in contrast to GAL1, GAL2,
GAL7, GAL10, not been verified as specifically regulated
by Gal4[13]. Furthermore YLR460C is a stress-response
gene [14] suggesting that under conditions of stress Gal4
could also regulate this gene. GCY1 (ranked 4) might also
be partly controlled by Gal4 [15,16] and could therefore
Page 6 of 11
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be a PAG. These suggestions are amenable for further
experimental validation.

Discussion
We have designed an algorithm, CutTree, which identifies
the mechanisms of action of chemical compounds. Cut-
Tree could speed up the drug development pipeline, alle-
viating the current bottleneck in which the mechanism of
action and side effects of current drug candidates are as a
rule uncharacterized [2]. Our strategy was to first validate
the algorithm using in silico experiments and subse-
quently to test CutTree on public Yeast data. The rational
behind our in silico evaluation is that for chemical com-
pounds there is yet no clear procedure on how to directly
infer mechanism of action from experimental data. It is
therefore essential to independently validate and bench-
mark any algorithm, including CutTree, which specifies
an experimental design and data-analysis. Consequently,
the in silico data is particularly useful since the correct
mechanism of action is inherently known by construction
of the experiment. Hence, the in silico evaluation ensures
a proper estimation of the expected success rate and data
requirement for inference of mechanism of action before
applying the technique in the analysis and design of bio-
logical experiments. Our in silico analysis demonstrated
that CutTree can identify PAGs better than a random
search method (Fig. 2a), in particular in the case of several
PAGs (Fig. 3a). Furthermore, our analysis predicted a 70%
success rate when there are five unknown PAGs (Fig. 3b).

Interestingly, this prediction came in close agreement
with the experimental validation where CutTree identified
four out of five (80%) of the primary targets of galactose
in Yeast using data from 952 differentially expressed genes
generated from 17 different perturbations. We may ask
how many of the suggested candidates in the list gener-
ated by CutTree we would have to consider in order to
identify those five PAGs? The estimated 70 % success rate
from the in silico estimation informs us that if we consider
the top 8 candidates, then we can expect 5.6 true PAGs.
This procedure would ensure 100 % (5/5) recall, 62.5 %
(5/8) precision, thereby a false positive rate of 37.5 % (3/
8). Since there is always a trade-off between precision and
recall which depends on the priorities of the experimenter
there is also a rationale for choosing the top five candi-
dates from the CutTree list with an estimated 3.5 true
PAGs, hence a recall of 60 % (3/5) and 60 % (3/5) preci-
sion. Now, as the validation using the experimental data
demonstrates, choosing the top five candidates, gives 80
% (4/5) and 80 % (4/5) precision. The efficient perform-
ance of the CutTree algorithm relies on the fact that Cut-
Tree utilizes a simultaneous application of the chemical
compound and a genetic perturbation such as a knockout.
Therefore, CutTree does not depend on the availability of
a priori knowledge, which are currently available only for

Yeast (e.g. [17]). Thus, CutTree is complementary to other
methods [5] which require large knockout libraries. Even
though CutTree does not require prior knowledge, infor-
mation about putative pathways in which the compound
could target facilitates the choice of the suggested initial
genetic perturbation in the CutTree algorithm.

A complementary approach to CutTree is to first identify
the underlying regulatory network and from the interac-
tion map calculate the PAGs (Fig. 1b). Such a network
strategy has a similar performance as CutTree provided
that close to 90 % of the interactions in the network have
been identified (Figure 2c). In Gardner et al. a network
strategy was designed and experimentally tested on E-coli
for a previously well characterized small network of nine
genes constituting the SOS pathway. However, the appli-
cability of such a network-based approach has hitherto
been hampered by the difficulty to identify regulatory net-
works even in simpler organisms including E-coli and
Yeast [7,15]. To perform an estimate of the usefulness of a
network based strategy depends on to what extent regula-
tory networks have been characterized as of today.
Clearly, any estimation of our current understanding
heavily depends on the individual researcher's assump-
tions. For example, given that less than 60 % [18] of the
open reading frames (ORFs) have been characterized,
how large fraction of the Yeast network has thereby been
identified? One scenario is that we have complete knowl-
edge of all the interactions between those characterized
open reading frames (ORF). From this follows that 64 %
of the interactions are unknown, since the interactions
between the ORFs only account for 36 % of the total
number of interactions. This can be interpreted as an opti-
mistic estimate since most likely there are interactions
between ORF that have not yet been characterized. For
example, we would only know 18 % of the Yeast network
if 50 % of the interactions between the ORFs were known.
On the other hand, the estimates used are slightly biased
on the negative side since we may have correlation-based
information on the interactions between characterized
ORFs and uncharacterized ORFs as well as mutual interac-
tion between uncharacterized ORFs. Taking all these
approximations together, we believe it is reasonable to
argue that no more than about 50 % of all the interactions
in Yeast are known. Considering the fact that the Yeast reg-
ulatory network probably is the best characterized regula-
tory network as of today, CutTree should serve as a useful
tool for detection of PAGs in Yeast and other organisms,
let alone mammalian cells, in the nearest foreseeable
future. However, in the last couple of years there has been
a rapid progress on algorithms and their application to
experimental data for identifying cellular networks,
mainly targeting E-coli and Yeast [7,19-22].
Page 7 of 11
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Indeed, a recent study [23] has demonstrated the success
of a slightly modified network-based approach, here
denoted as a mode-of-action by network identification
(MNI), where the regulatory interactions in Yeast are esti-
mated from a large knockout compendium. The MNI
algorithm correctly enrich for known targets and associ-
ated pathways in the majority of compounds that were
examined. However, there are a number of differences
between CutTree and MNI suggesting different domains
of applications for the two algorithms depending on the
amount of available prior biological knowledge; (i) The
MNI requires large libraries of expression profiles from
treated cells in order to train the network model. For Yeast
MNI used 515 different expression profiles which were
available. (ii) In addition, the MNI requires a large
amount of prior knowledge. The MNI network model is
based on principal component regression, thus reducing
the network model of genes into a network model of
metagenes since 515 expression profiles are not sufficient
to identify a network model of genes. Note that number
of ORFs is more than 10 times larger than the number of
gene expression profiles. The PAGs, which were calculated
from the compound action on the metagenes, were pro-
jected back to the genes. This step is essentially underde-
termined and the MNI approach therefore requires a
library of pathways and relevant GO classification in
order to interpret the ranking of the metagenes. A prelim-
inary analysis showed that the MNI algorithm could not
detect any of the galactose PAGs in the top 50 putative
PAGs derived from the Yeast gene expression library. The
additional GO classification method used in [23] did not
produce any significant pathways.

In contrast, CutTree does not require a library of expres-
sion profiles or a well-annotated system with pathways.
Hence, CutTree is adapted to precisely characterize the
mechanisms of action of drugs and chemical compounds
in systems where less prior knowledge is available but the
disease relevance might be larger than compared to better
described systems such as E-coli and Yeast. Furthermore,
CutTree provides the experimentalist with a novel experi-
mental design protocol for how to perform a sequential
and simultaneous application of a compound and a
genetic perturbation, such as a knockout, in order to
obtain the most useful information.

Conclusion
CutTree is complementary to the network identification
strategy, including the MNI algorithm. CutTree therefore
sets the stage for compound target identification in less
well-characterized but more disease-relevant mammalian
systems where novel genetic perturbation technologies
such as sRNAi are making rapid progress. Further biologi-
cal experiments will tell whether CutTree is broadly appli-
cable for drug evaluation using prokaryotic and

eukaryotic cell lines and, more importantly, whether Cut-
Tree proves to be useful in the analysis of compound
mode of action in mammalian cells.

Methods
The underlying idea of the CutTree algorithm is to itera-
tively define primary affected genes (PAGs) by identifying
recurrently active genes (RAGs) – genes whose expression
changes most frequently over several whole-genome
expression measurements. CutTree provides an experi-
mental design in which the algorithm specifies which
genes should be perturbed in the next round of experi-
ments, for a given set of micro-array measurements. In
addition, CutTree analyzes the data and produces a candi-
date list of PAGs. Based on this, CutTree either halts or
suggests another genetic perturbation. Importantly, the
chemical compound introduces an unknown perturba-
tion to the system and the additional simultaneous well
defined genetic perturbation (knockout/siRNA) per-
formed by the experimenter as suggested by CutTree,
makes it possible to distinguish the effect of the com-
pound after only a small number of experiments. This is
different from current approaches to the mode-of-action
problem, where only one genetic perturbation (knockout/
siRNA) is used in the absence of the compound (e.g. as in
datasets like Hughes et al.) The efficient performance of
CutTree depends on the simultaneous application of the
compound with a selective genetic perturbation, such as a
knockout or an siRNA perturbation [17,24]. In each itera-
tion we allow the knockout/siRNA perturbation target the
top RAG. A termination criterion defines and ranks the
top candidate PAGs (Fig. 1b, right). This strategy assumes
that PAGs are the same genes independently of the second
perturbation and that PAGs are at the highest level in the
network hierarchy, since the compound constitutes an
external perturbation of the root of the tree (Fig. 2c). Cut-
Tree iteratively calculates the probability that a gene is a
PAG, based on the information obtained by perturbing
genome-wide expression. A well-defined stop criterion
halts the iteration. We use a Dirichlet distribution with
hyper-parameters α1 and α0 to represent the probability
that each gene is a PAG. This is a natural formulation as
we have taken a probabilistic approach. The parameters
encode a frequency formulation since they are based on
the number of times we observe a PAG or nonPAG. The
expected value of the distribution follows

The CutTree algorithm
1. Choose n, the number of genes to use in the stop crite-
rion.

α
α α

1

1 0+
.
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Choose m, the number of times the stop criterion shall
remain unchanged.

STOP = 0.

For each gene i

α1i = α0i = 1 (uniform distribution).

2. If we have a priori knowledge that a gene is likely to be/
not be a PAG.

Update α1 and α0 for all genes accordingly. Here we use 1.
Another way would be to set α1i = number of times i
observed as a PAG/number of times i observed as a non-
PAG.

If gene i is likely to be a PAG, increase α1i by 1.

If gene i is not likely to be a PAG, increase α0i by 1.

3. While STOP = 0:

Calculate the expectation values (peaks) of the Dirichlet
distributions:

Choose the gene with the largest peak value as the knock-
out. If multiples genes have the largest peak value, choose
one at random as the target for the next knockout.

Perform genome-wide expression profiling to compare
the knockout with the knockout in the presence of the
compound.

Calculate expression changes.

For each gene i:

If expression changed, increase α1i by 1.

If expression did not change, increase α0i by 1.

Rank genes according to their peaks.

If the n highest genes = the n highest genes from the last m
iterations

STOP = 1.

4. End

Note that CutTree does not specify how to perform the
differential gene expression analysis since this is general
problem within micro-array statistics. Parameters in the
algorithm: In the in silico experiments, we used n = 6 and
m = 4. PAGs are considered to be identified if they are
among the top 10 most significant genes after the algo-
rithm halted. This increases the number of false positives
but also makes it more likely that we find the PAGs. Thus,
we prefer to select for false positives instead of removing
PAGs from the candidate list, increasing the false negative
rate. These parameters are flexible depending on the
behavior of the stop criterion and the approximate
number of expected PAGs, which in turn depends on the
particular experimental application.

Simulated random gene networks
The Mathematica 5.0 (Wolfram Research) package was
used for all simulations. The simulated networks were
modeled as linear networks. For a network with n nodes
we describe xi as the concentration of RNA from gene i and
the dynamics follows

where wij are the weights indicating how much gene j
affects gene i. This gives an equation system with the con-
centration vector x of length n, the n × n weight matrix A
and a vector b of length n containing the perturbations,
the elements of b different from 0 represent the targets of
the compound:

Initial values for the simulations were set randomly, and
the simulation proceeded until a steady state was reached.
When a gene was knocked out, the gene was kept in the
matrix but all the connections to that gene were removed
and the expression set to zero.

As a rule, the network structure was generated randomly,
thus allowing for loops and other network motifs. The
out-degree of the network connectivity followed a power
law [25]: the probability that a randomly chosen node
from the network had d outgoing interactions is P(d) = d-

2.3. In the simulations, 200 nodes (n) were used in the net-
works, and the node weights (wij) varied between -3 and
3 with a flat distribution. All simulation data are mean
values from at least 50 experiments. In evaluating the
effects of different network structures (Fig X), small net-
works (13 genes and one PAG) were created. The struc-
tures varied from the PAG being connected to all other
genes (shallow tree with many branches and short paths)
to the PAG being connected to a few genes (deeper tree

peaki =
+

α
α α

1

1 0

i

i i
.

dx

dt
w xi

ij j
j

n
=

=
∑

1

,

dx

dt
Ax b= + .
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with fewer branches and longer paths). To evaluate the
effects of noise, we used an additive noise model such as
noisy_xi = xi + xi * noise level, where 0<noise level<1.

In the network identification method (Fig. 1b, left) of
Gardner et al. the identified network can be represented by
a connectivity matrix A. PAGs are found by applying the
perturbation to the network (unknown vector p) and
measuring gene expression (measured vector x). We have
the equation system

x = Ap,

which can be solved.

For comparisons with the Network identification method,
we generated random linear networks and performed the
simulations as described above. The network was then
mutated by randomly removing nodes and inserting ran-
dom false nodes to reach certain coverage of the original
network. The PAGs were then calculated with the Gardner
method using the matrix from the mutated network.

Training data calculations
The data from Ideker et al. were recalculated to non-loga-
rithmic values. They are also relative to the reference wild-
type + galactose (wt + gal) of the form:

The data were rearranged to fit the CutTree algorithm:

A fold change of two was used as cutoff to classify a gene
as differentially expressed or not. This was the only dataset
we could identify that contained a dual application of a
compound (galactose) and a genetic perturbation (knock-
out).
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