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Abstract
Background: The estimation of the difference between two evolutionary distances within a triplet
of homologs is a common operation that is used for example to determine which of two sequences
is closer to a third one. The most accurate method is currently maximum likelihood over the entire
triplet. However, this approach is relatively time consuming.

Results: We show that an alternative estimator, based on pairwise estimates and therefore much
faster to compute, has almost the same statistical power as the maximum likelihood estimator. We
also provide a numerical approximation for its variance, which could otherwise only be estimated
through an expensive re-sampling approach such as bootstrapping. An extensive simulation
demonstrates that the approximation delivers precise confidence intervals. To illustrate the
possible applications of these results, we show how they improve the detection of asymmetric
evolution, and the identification of the closest relative to a given sequence in a group of homologs.

Conclusion: The results presented in this paper constitute a basis for large-scale protein cross-
comparisons of pairwise evolutionary distances.

Background
The estimation of evolutionary distances between biolog-
ical sequences is at the basis of many bioinformatics prob-
lems: it plays a particularly important role in phylogenetic
tree inference [1,2] and in an increasing number of com-
parative genomics analyses over large sets of genes or pro-
teins (e.g. [3-5]). The most accurate way of estimating
evolutionary distances is currently maximum likelihood,
but the procedure is so time-consuming that is hardly
practical when dealing with large datasets. In such cases,
complexity is often tackled by working on the basis of
individual pairs, such as in distance tree methods or in the
"all-against-all" at the beginning of many comparative
genomics analyses. However, by estimating an evolution-

ary distance for each pair individually, no knowledge
about the covariance of distance estimates with common
evolution can be directly obtained. Thus, when compar-
ing pairwise distances among related sequences, for
instance to infer which of two homologs is closer to a
third one, confidence intervals cannot be derived directly
from the pairwise estimates.

The present article investigates this fundamental problem
of estimating the difference between two distances in a tri-
plet of homologs (Fig. 1). We compare the standard mul-
tivariate maximum likelihood approach with a much
faster estimator based on pairwise distances, and present
a formula to estimate its variance. As two examples of
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applications, we show how our results improve the detec-
tion of asymmetric evolution and the identification of the
closest relative in a group of homologs. But first, we
briefly review the Markovian model of evolution and
maximum likelihood estimation of distances.

PAM model of sequence evolution
The evolutionary distance between two biological
sequences is generally based on the assumption of a first-
order Markovian process of amino acid evolution. This
implies two biological assumptions, common to all
standard models of evolution: no memory and position-
independence. The substitutional processes are described
in the form of substitution matrices, defining mutation
probabilities from each character to every other character
for a given evolutionary distance. These matrices are either
parametrical models of sequence evolution or empirically
based substitution matrices. Parametrical models are
often employed for nucleotide substitution (e.g. Jukes-
Cantor [6] or Hasegawa-Kishino-Yano [7]), while empiri-
cal matrices (based on counted substitutions of large sets
of sequence alignments) are widely used for peptide
replacements in proteins. Pioneered by Dayhoff in the
1970s [8], these models have been improved with more
sequence data becoming available in the 1990s (e.g. the
updated Dayhoff matrices by Gonnet-Cohen-Benner [9]
or Jones-Taylor-Thornton (JTT) [10]). Codon substitu-
tions have been described by parametrical (e.g. [11]) as
well as empirical (e.g. [12]) matrices.

Because of the additivity of distances computed under the
Markovian model of sequence evolution. substitution
matrices for a wide range of evolutionary distances can be
derived from a single substitution matrix M(d0) through
the equation M(d0)x = M(xd0), which is a special form of
the Chapman-Kolmogorov equation for Markov chains. It
is common and computationally more efficient to formu-
late this process in terms of a rate matrix Q from which the
probability matrices for distance d are derived as M(d) =
edQ. We normally measure d in PAM units [8], which com-
pletely defines Q.

Maximum likelihood estimation

Evolutionary distances are best estimated by maximum
likelihood (ML). In case of a pair of sequences, the ML
estimation is well known and practical (see Methods part).
When more sequences are under consideration, the com-
plexity of distance estimation by ML increases very
steeply, mainly because it requires a multiple sequence
alignment (MSA) and the inference of the phylogenetic
tree topology, two difficult procedures for which the opti-
mal solution can currently only be computed in exponen-
tial time with respect to the number of sequences. A
common strategy for tackling this problem is to work on
the basis of pairs, such as in distance tree methods. In this
article, we focus on the specific problem of estimating, in

a triplet of homologs X,Y,Z (Fig. 1). the difference Δ
between two distances dXY and dXZ. In such case, the mul-

tidimensional ML approach over the triplet is still practi-

cal. We call the estimator of Δ obtained by this method

triplet. Alternatively, Δ can be estimated by a simple alge-

braic relation over pairwise distances over X, Y, Z esti-
mated individually. We call this alternative estimator

pairwise. Details about the computation of triplet and

pairwise are provided in the Methods section.

Results and discussion

In the present section, we compare the estimators triplet

and pairwise, and introduce a numerical approximation to

estimate the variance of pairwise, and show that it gives

accurate confidence intervals. Finally, we describe two
applications of the results.

Comparison between the two estimators

In terms of computational complexity, the two estimators

differ significantly. Given m sequences of length n, triplet

requires the separate treatment of each O(m3) triplet, and
considering that an optimal 3-way alignment by dynamic
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Unrooted tree topology of all triplets of homologsFigure 1
Unrooted tree topology of all triplets of homologs. 
Sequences X, Y and Z originating from O. The problem 
addressed here is the estimation of the difference Δ = dXY - 
dXZ = dOY - dOZ
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programming (DP) is O(n3), the time complexity is

O(m3n3). In contrast, all pairwise can be computed on the

basis of O(m2) pairs of sequences aligned by DP in O(n2),
yielding a time complexity of O(n2m2). Typically, when-
ever an analysis involves more than a few thousand pro-
teins, millions of triplets have to be considered and

pairwise is the only practical approach of the two. In terms

of accuracy, both estimators are asymptotically unbiased:

in the case of triplet, it is a property of the ML estimator,

while in the case of pairwise, it is the consequence of the

linearity of the expected value (see Methods). We com-
pared the two estimators by simulation over a large
number of triplets (length: 300 AA), generated randomly
according to the PAM model of evolution with different
distances dOX, dOY, dOZ (Fig. 1). In each experiment, both

estimators were converging toward the correct value for
the difference, which confirms that the asymptotic behav-
ior is a reasonable assumption for protein sequences of
typical length. In terms of statistical power; surprisingly,

the observed variance of the estimates obtained by pair-

wise was on average less than 1% larger than the observed

variance of the ML estimator over the triplet, suggesting

that pairwise, although much faster to compute, is on aver-

age almost as accurate as triplet.

The variance of triplet can be computed exactly (see Meth-

ods section). But there is no direct estimator of the vari-

ance of pairwise, since it results from an algebraic relation

over pairwise distances estimated individually, whose
covariances are therefore unknown. There are indirect
ways of estimating that variance, through the sampling
distribution when doing simulation such as the one men-
tioned above, or bootstrapping when handling real data.
However, such procedures are very time consuming. To
overcome this problem, we devised a numerical approxi-

mation of σ2( pairwise) as function of the pairwise distance

estimates.

Numerical approximation of σ2( pairwise)

In essence, the numerical approximation described here
was obtained through regression over a large number of
samples. We settled for this approach after discovering
that the analytical solution to this problem, even when
using a simpler model of evolution (all amino-acid muta-
tions with equal probability). requires solving a polyno-
mial of degree 23. The details of this investigation are
reported in the Appendix. In view of this inherent complex-
ity, the regression cannot be exact, but it turns out to be a
surprisingly precise numerical approximation for compar-
isons that involve proteins that have an evolutionary dis-
tance smaller than 250 PAM units, which corresponds to
percentage sequence identity greater or equal to 19.68%.
We generated random triplets in the following way: a ran-
dom-length (uniform 100..500) sequence was chosen as
the origin O. Three random PAM distances (uniform
1..125) were selected for dOX, dOY and dOZ. The sequence O

was mutated according to these distances to obtain X,Y
and Z, our triplet. We generated about 30,000 triplets for
three types of scoring matrix: updated Dayhoff matrices
[9], DNA for coding genes and JTT [10]. The DNA scoring
matrices were computed from a very large set of entire
coding gene alignments from mammals. It is used in the
OMA project [4] to align entire coding genes and is based
on a 4-symbol alphabet. For each triplet, we computed
pairwise distance estimates and their variances as input

for the approximation. Given that pairwise is almost as

powerful as triplet, we computed and used σ2 ( triplet) as

reference value for σ2( pairwise).

We examined a large number of regressions and one
approximation stood out of the rest due to its efficiency,
low average error and other minor indications. Table 1
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Table 1: Coefficient of the approximation of σ2( pairwise)

Type
XY + XZ σ2( XY) + σ2( XZ) σ2( YZ) σ2( XY) σ2( XZ) error dim

Day -1.3090 1.0435 0.6895 -0.3339 0.1590 0.087 2.13
DNA -1.2449 1.0933 0.6591 -0.3026 0.1181 0.098 2.13
JTT -1.2921 1.0978 0.6741 -0.3065 0.1144 0.080 2.10

Coefficients of the regression on the logarithms for the three types of scoring matrices. The error column shows the mean error, which by virtue 
of being a regression on logarithms is very close to the relative error.

Δ̂

d̂ d̂ d̂ d̂ d̂YZ
2 d̂ d̂ d̂
Page 3 of 11
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:529 http://www.biomedcentral.com/1471-2105/7/529
shows the coefficients of the approximation for the three
types of scoring matrices.

For example, the approximation for DNA variances is

Readers familiar with numerical analysis will find an anal-
ogy between the approximation presented here and stand-
ard approximations for transcendental functions. For
example, it is customary to approximate exp(x) through a
quotient of polynomials p(x)/q(x), for some limited range
of x.

The relative error is in all the three cases less than 10%.
Furthermore, since we normally use the square root of the
variance, the relative error is in such cases half of the indi-
cated. The last column indicates the dimension of the
approximation which should be 2 in perfect conditions,
and is indeed quite close.

The fact that very different matrices have very similar coef-
ficients, the low error and the almost correct dimensional-
ity reassures us of the quality of the approximation.

To test the accuracy/applicability of the approximation, as
well as the other two methods to obtain the variance, we
compared the 95 and 99% confidence level obtained
using the appropriate number of standard deviations to
the actual percentage of correct decisions obtained in a
simulation over 400, 000 protein triplets generated as
described above. The results are shown in Table 2.

As expected, the ML estimator over the entire triplet (first
row) yields a precise variance estimate. On the other
hand, we see that assuming independence for the estima-
tion of the variance (last row) leads to very inaccurate con-

fidence intervals. Estimating the variance of pairwise by

bootstrapping (10,000 re-samples) gives good confidence
intervals, but the procedure is even more computationally

intensive than triplet, and therefore of little practical use

in the present context. Using 2( pairwise) in conjunction

with the variance of the ML estimator works remarkably
well (third and fourth row). And surprisingly, applying
the numerical approximation (fourth row) happened to
give slightly more accurate results than the exact triplet
variance (third row).

Finally, we compared the different estimators on real bio-
logical sequences, using data obtained from the OMA
orthologs project [4], Triplets of orthologous sequences
from various eukaryotes were randomly selected and
aligned using the multiple sequence alignment package
from Darwin [13]. All positions containing gaps were
excluded, and variances were then estimated on the
ungapped triplets using the various estimators (Fig. 2).
The variance estimates from the approximation formula
deviate very little from the results obtained by the two
more expensive methods – for simulated as well as empir-
ical alignments. Additionally, the plots illustrate the high
correspondence between the results from the ML estima-
tion and the bootstrapping, and show that the estimator
based on an assumption of independence often yields
overestimates of the variance. The difference between sim-
ulated and empirical data probably arises from the limita-
tions of the Markovian model of evolution. Worth
noticing is that the agreement of our estimator with boot-
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Table 2: Verification of accuracy of confidence intervals

k = 1.960 k = 2.576

| triplet - Δ| > k·σ( triplet)
0.95129 ± 0.00067 0.99062 ± 0.00030

| pairwise - Δ| > k·σbootstrap( pairwise)
0.9511 ± 0.0020 0.99001 ± 0.00091

| pairwise - Δ| > k·σ( triplet)
0.94641 ± 0.00070 0.98896 ± 0.00032

| pairwise - Δ| > k· ( pairwise)
0.94808 ± 0.00069 0.98953 ± 0.00032

| pairwise - Δ| > k·σind( pairwise)
0.98137 ± 0.00042 0.99774 ± 0.00015

Comparison among the different methods to estimate the variance of the two estimators triplet and pairwise, resulting from a simulation using 
updated Dayhoff matrices over 400,000 proteins triplets, except for the bootstrapping method, based on 40,000 samples. The first column tests the 
95% confidence interval, the second the 99% confidence interval.
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strapping is comparable to the one of the ML variance esti-
mator: this implies that our approximation has a similar
robustness when applied to real data.

Applications

In the following, we provide two examples of applications
that benefit from the increase in statistical power of the

estimator pairwise enabled by the approximation: detec-

tion of asymmetric evolution and identification of the
closest relative in a set of homologs. Furthermore, in [14],
we show how our result can be used in the context of par-
alogy detection.

We first define three indicator functions that will be used
in these comparisons. They decide whether the pair of

Δ̂

Scatter plots comparing the variance estimatorsFigure 2

Scatter plots comparing the variance estimators. The upper-left plot shows the strong agreement between σ2( triplet) 

and our approximation σ2( pairwise). From the upper-right and the lower-left plots, it can be seen that both have similar corre-

lation with ( pairwise). Finally, the lower-right plot confirms that variance estimation under the assumption of inde-

pendence can yield a large overestimation of the correct variance.
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proteins X, Y is significantly closer than X, Z at the confi-
dence level expressed by the number of standard devia-
tions k. The first and second ones both use the estimator

pairwise, but the first definition uses as variance of the esti-

mate the upper bound that is obtained by assuming inde-

pendence of XY and XZ (see Methods), whereas the

second use the approximation 2( pairwise) of the vari-

ance. The third indicator function uses the estimator tri-

plet.

Asymmetric evolution
After a gene duplication, the two copies can evolve inde-
pendently. It has been suggested that in many cases, one
duplicate maintains the ancestral function while the other
is free to evolve and acquire novel functionality [15]. This
scenario implies that the protein with conserved function-
ality will undergo less sequence evolution than the one
exploring new functionalities.

Detecting this asymmetric evolution after duplication is
an important factor not only for function prediction or
orthologs assignment, but also for bringing new insights
in our understanding of genome evolution in general (e.g.
[16-19]).

In order to identify cases of asymmetric evolution, one
typically considers three sequences – the two duplicates (Y
and Z)and an out-group (X). Several methods have been
developed to test the significance of the unequal lengths
of the branches leading from the common ancestor to the
two duplicated sequences. Tests on simulated and real
data from Arabidopsis thaliana for two of such methods
have suggested very low statistical power to detect asym-
metric evolution of duplicates [20].

The closer indicator function can be used to detect asym-
metric evolution. With dXY being the distance from the
out-group to the closer of the two duplicates and dXZ the
distance to the other one, closer (X, Y, Z, k) decides if the
two duplicated proteins have evolved at significantly dif-

ferent rates. The parameter k can be chosen to reflect the
confidence level, e.g. 1.96 for the 95% level.

We tested the method using all three variants of closer (k =
1.96) on a protein set from a recent publication about
whole genome duplication in S. cerevisiae [21]. From a set
of 450 genes pairs that arose by whole genome duplica-
tion, they report 115 cases of one paralog evolving at least
50% faster than the other paralog. The position of the
ancestral gene was determined by an out-group gene from
K. waltii. Additionally, a set of 76 gene pairs is given where
at least one of the S. cerevisiae genes evolved at least 50%
faster than the K. waltii homolog.

The results are summarized in Fig. 3. We first discuss the
differences among three variants of closer. As expected, the
over estimation of the variance of the estimator in closerind

considerably reduces the cases of asymmetry detected in
comparison with closerapp. As for closerappand closertriplet,

they agree on 400 of 450 cases, with 21 cases only
reported by closer app and 29 only by closer triplet. This dis-

crepancy results from the error introduced by the approx-

imation for the estimation of the variance of pairwise, but

mostly from the inherent differences in the predictions of

the two estimators pairwise and triplet.
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Detection of asymmetric evolutionFigure 3
Detection of asymmetric evolution. Detection of Asym-
metric Evolution. Comparison between the results of Kellis 
et al. and the three variants of closer, with k = 1.96. The cir-
cles separate cases of significant asymmetry (inside) from 
insignificant asymmetry (outside). For instance, there were 
92 cases where all three variants of closer reported significant 
asymmetry, while the method of Kellis et al. did not detect 
significant asymmetry.

using closerapp

using closerind

using closertriplet

Kellis et al.
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If we now compare the predictions of Kellis and col-
leagues with our results, it appears that in 98 out of 115
cases, their prediction of asymmetric evolution could be
confirmed by closerapp, while with the remaining 17 pairs,
our method did not support the asymmetry prediction. It
is remarkable, however, that all these 17 pairs belong to
the group of the 76 pairs with a fast evolving K. waltii
homolog. It seems likely that the uncertainty in placing
the origin of the triplet (arising from a longer branch to
the out-group) causes rate-based methods as used in [21]
to report asymmetric divergence despite the unclear situa-
tion. As opposed to that, the distance-based methods pre-
sented here, by incorporating the variance of the estimates
explicitly, take the uncertainty about the point of origin
into account, and therefore give more conservative predic-
tions in these cases.

Furthermore, closerapp found 134 additional cases of asym-
metry among the remaining 335 gene pairs in the data set.
Together with the 98 cases above, this results in 51.6% of
all genes arising from the genome duplication event. This
is clearly more than the 5% that could be expected from
random chance and agrees with previous studies were sig-
nificant amounts of asymmetrically evolving duplicates
have been reported (e.g. [22,23]).

Closest homolog without phylogenetic reconstruction
The identification of the closest relative of a protein (or
gene) in a set of homologs traditionally requires the
reconstruction of the corresponding phylogenetic tree.
However, building gene trees remains a time consuming
and error-prone task, thus methods based on pairwise
evolutionary distance estimates are attractive. In this sec-
tion, we show that using the variance approximation pre-
sented above can boost the statistical power of PAM
distance comparisons to determine the closest homolog.

In simple contexts, or when accuracy is not a concern, the
problem of identifying the closest relative can be solved
reasonably well by coarse approaches, such as the top
blast hit, or even the sequence with highest percentage
identity. As the number of proteins grows larger and the
number of homologs with similar distances increase,
these methods show their limits. Indeed, it has been pre-
viously shown that the top blast hit is often not the closest
relative [24]. At least two ideas lead to better results: the
use of evolutionary distance estimates such as PAM dis-
tances, and accounting for confidence intervals, so that
whenever there is not enough information to reliably dis-
criminate among several distances, all of them are kept,
presumably for further analysis.

Since the comparison of the methods requires precise and
unbiased knowledge of the closest homolog, we use sim-
ulated data generated in the same way as in the section

above, according to the PAM model. Families of
homologs were created through mutation and duplica-
tion following random phylogenetic trees (Fig. 4) with the
following properties: (i) each branch has a random muta-
tion rate from a uniform distribution between 0 and 1, (ii)
duplication occurs only along the leftmost branch, at ran-
dom intervals, on average about every 6 PAM units, (iii)
the generation is performed in 60 steps and results in trees
with an average number of leaves of 13.04 (σ = 3.1). The
very asymmetric duplication process is used to explore
efficiently the parameter space, both in terms of distance
magnitude to the closest homolog as in the number of
homologs with similar distances.

For each protein X belonging to such a family, the closest
homolog predictions using the following three criteria
were compared to the actual closest homolog. The first
one computes the subset of homologous sequences H that
align with X with score higher than a particular fraction of
the top score.

The second method computes the set of closest homologs,
without using our variance approximation, formally

Set2 = {Y ∈ H | ∃/ Z ∈ H, Z ≠ Y, closerind(X, Z, Y, k2)}

The third method computes the set of closest homologs
using our approximation, formally

Set3 = {Y ∈ H | ∃/ Y ∈ H, Z ≠ Y, closerapp(X, Z, Y, k3)}

The cut-off parameters k1, k2, k3 can be set according to the
desired level of confidence. At k = 0, only the top score,
respectively the shortest expected distance, is returned.
Higher k values correspond to more conservative predic-
tions, with increasing number of closest homolog candi-
dates. For the evaluation of the methods, we vary k1
between 0 and 0.25, while k2, k3 are varied between 0 and
3. Note that only k3 corresponds to the number of stand-
ard deviations from the expected value.

The resulting curves are presented in Fig. 5. At low cut-off
values, all three methods perform similarly, but as k
increases, the method using closerapp gives better results.

Conclusion
Computing the difference of two evolutionary distances
that are not independent is a common operation in an
increasing number of bioinformatics analyses. We pre-
sented and compared two estimators for the difference of
two evolutionary distances in a triplet of homologs, one
estimator based on pairwise distance estimates and the

Set Y H Score X Y k Score X Z
Z H

1 11= ∈ ≥ − ⋅
∈

{ | ( , ) ( ) max( ( , ))}
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maximum likelihood estimator. Surprisingly, the estima-
tor based on pairwise distance is almost as powerful as the
ML estimator. But in terms of time complexity, it scales
much better than the ML estimator and is therefore better
suited at large-scale analyses. However, since its variance
is not easy to estimate, we introduced a numerical approx-
imation that allows the computation of accurate confi-
dence intervals. Finally, we showed how these results can
be used to test for asymmetrical evolution, and to identify
the closest relative of a sequence in a group of homologs
without phylogenetic reconstruction. As of future work,
we plan to extend these results to models of evolution
allowing rate variations, as well as insertion-deletions.

Methods
PAM distance estimator for a pair
The likelihood of an alignment A at an evolutionary dis-
tance d is defined [25-27] as

with x and y being aligned characters (e.g. amino acids,
bases, but no deletions), and f(x) the background fre-
quency of the character x. Maximizing L(A | d) in terms of

d gives the ML estimator  of the evolutionary distance.
This is usually done numerically using the Newton-Raph-

son method. The variance of the ML estimator  can be
computed from the second derivative of the log-likeli-
hood:

L A d f x M d

f x e

x yx y A

dQ

x yx y A

( | ) ( ) ( )

( )

,[ , ]

,[ , ]

=

= ⎡
⎣

⎤
⎦

∈

∈

∏
∏

d̂

d̂

σ 2
2

2

1

( )
( | )

d
L A d

d
= − ∂

∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

Tree randomly generated for closest homolog simulationFigure 4
Tree randomly generated for closest homolog simulation. Example of a random tree (see text for description of the 
procedure) used to compare the different methods to infer the closest homolog to each leaf. Distances indicated are in PAM 
units.
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Notice that the variance is obtained for free as it is already
computed in Newton's iteration.

PAM distance estimator for a triplet
Estimator based on pairwise distances

One can estimate Δ by performing pairwise alignments
between X and Y, and between X and Z. The ML method
for pairs of homologs, which was described above, com-

putes the estimates XY and XZ. By subtracting the first

from the second, an estimator for the difference is
obtained:

pairwise = XY - XZ

Since the two pairwise distance estimators are asymptoti-
cally unbiased and normally distributed, and considering
the linearity of the expected value and the fact that the dif-
ference of two normally distributed variables is also nor-

mally distributed, the pairwise estimator pairwise is also

asymptotically unbiased and normally distributed, with
variance

As described above, we obtain σ2( XY) and σ2( XZ) from

the ML distance estimation, but the process does not say
anything about their covariance. If the two distances are
independent, which is only the case if dOX = 0, the covari-

ance is zero and the variance ( pairwise) = σ2( XY) +

σ2( XZ) can be computed. In all other cases, XY and XZ

covary and the variance of their difference is smaller than
the sum of their variances. Therefore, we only have an
upper bound for the variance of our estimator:

Note that previous work on covariance estimation (e.g.
[7,28]) do not apply here, because they require 3-way
sequence alignments and are constrained to parametric
models of evolution such as Jukes-Cantor and its general-
izations.

Estimator based on triplet
Alternatively, we can estimate Δ by subtracting estimates
of the distances dOY and dOZ

triplet = OY - OZ

The estimates OY and OZ can be obtained by maximum

likelihood over the multiple sequence alignment of X, Y,
Z [25], in a manner analogous to the ML estimation for a
pair. The likelihood L of a multiple sequence alignment
(MSA) is the product, over all positions of the MSA, of the
probability of observing characters x, y, z at distance dOX,

dOY, dOZ of the origin, where such a probability is obtained

by marginalizing over every character o at the origin:

where C is the set of characters – the 20 amino-acids in the
present case, and f(o) the background frequency of the
character o. Consequently, the log-likelihood function l is

The log-likelihood is maximum where its gradient disap-
pears:

There again, the problem can be solved efficiently by
Newton's iteration
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where (∇2l)-1 is the inverse of the Hessian (derivable in the
same fashion as the gradient, not shown here). The
inverse of the Hessian also yields the variance-covariance

matrix of the estimates OX, OY, OZ when multiplied

by -1. A final use of the Hessian is to check that its com-
plement is positive definite, a condition necessary to
ensure that the solution found is indeed a maximum and
not a minimum or a saddle point. Therefore, we obtain

the variance of triplet from the variance-covariance

matrix:
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Appendix
Complexity of the analytical solution of k-states model for 
triplets
In the following, we show that the analytical solution of
the maximum-likelihood estimator for the distances of a
triplet is very complex, even for a simplified model of
mutation. The k-state model [29] is an idealized situation
where each position has k possible states and the transi-
tion probabilities are all identical and only depend on the
time t. For k = 4 this is equivalent to the Jukes-Cantor
model [6]. Whatever is the initial state, the probability of
a mutation after time t is given by

where r is

so that t is measured in PAM units. (Measuring in PAM
units is proportional to any other measure, and it means
that at t = 1 one percent of the characters are changed, i.e.
p(1) = 1/100.) and that all transitions are equally likely,
and only depend on the PAM distance. Under this model,
the log-likelihood can be expressed in terms of the counts
of matches/mismatches of the triplet (X, Y, Z), i.e. Nxxx is
the number of positions where all the characters are iden-
tical, Nxxz is the number of positions where X and Y coin-
cide but Z differs, etc.

where px is the probability of mutating from the origin to
X and similarly for py and pz. Taking partial derivatives of
the likelihood with respect to px, py and pz gives a system of
3 rational polynomial equations (all the logarithms dis-
appear) in 3 unknowns and 6 parameters. Such a system
of equations has a solution that will be an algebraic func-
tion of the parameters (a root of a polynomial, where the
coefficients of the polynomial involve the parameters).
Despite its simple appearance, this system of equations is
beyond the capabilities of current computer algebra sys-
tems to resolve. And this is not a complete surprise, as the
algebraic numbers/functions involved are at least of
degree 23. The special case where two of the branches
have the same length, has been solved exactly in [30], they
find that their solution is an algebraic function of degree
11. This unfortunately is not applicable as we are inter-
ested in the cases where the branches away from the origin
are of different lengths.

We have computed the exact solution for concrete values
of the parameters, in particular Nxxx = 10, Nxxz = 5, Nxyx = 4,
Nxyy = 3, Nxyz = 2, k = 3 using Maple and the value of px is a
root of the irreducible polynomial
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This means that the general solution will be an algebraic
function of degree 23 or higher, it cannot be lower. If an
instantiation of the polynomial with values gives this irre-
ducible polynomial, then the general polynomial must be
irreducible of degree 23 or higher (some terms could have
simplified in the instantiation). This makes the usefulness
of an exact solution inexistent. it is more difficult to solve
the polynomial and select the right root than to maximize
the likelihood and/or solve the system of equations by
numerical methods.
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