BIVIC Bioinformatics moml.?@mral

Research article

Model-driven user interfaces for bioinformatics data resources:
regenerating the wheel as an alternative to reinventing it

Kevin Garwood!, Christopher Garwood!, Cornelia Hedeler!, Tony Griffiths!,
Neil Swainston?, Stephen G Oliver3 and Norman W Paton*!

Address: 'School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK, 2Manchester Centre for Integrated
Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester,131 Princess Street, Manchester M1 7DN, UK and 3Faculty of
Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK

Email: Kevin Garwood - garwood @cs.man.ac.uk; Christopher Garwood - cgarwood@cs.man.ac.uk; Cornelia Hedeler - chedeler@cs.man.ac.uk;
Tony Griffiths - griffitt@cs.man.ac.uk; Neil Swainston - neil.swainston@manchester.ac.uk; Stephen G Oliver - steve.oliver@manchester.ac.uk;
Norman W Paton* - npaton@manchester.ac.uk

* Corresponding author

Published: 14 December 2006 Received: 23 June 2006
BMC Bioinformatics 2006, 7:532 doi:10.1186/1471-2105-7-532 Accepted: |4 December 2006
This article is available from: http://www.biomedcentral.com/1471-2105/7/532

© 2006 Garwood et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The proliferation of data repositories in bioinformatics has resulted in the development of
numerous interfaces that allow scientists to browse, search and analyse the data that they contain.
Interfaces typically support repository access by means of web pages, but other means are also used, such
as desktop applications and command line tools. Interfaces often duplicate functionality amongst each
other, and this implies that associated development activities are repeated in different laboratories.
Interfaces developed by public laboratories are often created with limited developer resources. In such
environments, reducing the time spent on creating user interfaces allows for a better deployment of
resources for specialised tasks, such as data integration or analysis. Laboratories maintaining data
resources are challenged to reconcile requirements for software that is reliable, functional and flexible
with limitations on software development resources.

Results: This paper proposes a model-driven approach for the partial generation of user interfaces for
searching and browsing bioinformatics data repositories. Inspired by the Model Driven Architecture
(MDA) of the Object Management Group (OMG), we have developed a system that generates interfaces
designed for use with bioinformatics resources. This approach helps laboratory domain experts decrease
the amount of time they have to spend dealing with the repetitive aspects of user interface development.
As a result, the amount of time they can spend on gathering requirements and helping develop specialised
features increases. The resulting system is known as Pierre, and has been validated through its application
to use cases in the life sciences, including the PEDRoDB proteomics database and the e-Fungi data
warehouse.

Conclusion: MDAs focus on generating software from models that describe aspects of service
capabilities, and can be applied to support rapid development of repository interfaces in bioinformatics.
The Pierre MDA is capable of supporting common database access requirements with a variety of auto-
generated interfaces and across a variety of repositories. With Pierre, four kinds of interfaces are
generated: web, stand-alone application, text-menu, and command line. The kinds of repositories with
which Pierre interfaces have been used are relational, XML and object databases.

Page 1 of 14

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17169146
http://www.biomedcentral.com/1471-2105/7/532
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:532

Background

The discipline of bioinformatics makes use of varied data
resources that provide access to both experimental data
and the results of analyses over such data. There are many
hundred resources in the public domain [1]; individual
laboratories maintain their own collections by either
building on local data or collecting relevant results of spe-
cific studies.

Duplication of facilities occurs amongst interfaces to
many such repositories. Typical functionalities include
the ability to:

¢ browse top-level collections in a repository, such as list-
ing experiments recorded in a microarray database;

e evaluate simple parameterised searches over the con-
tents of repositories, such as using thresholds when run-
ning identification algorithms over mass spectrometric
data;

e use predicates applied to selected fields to construct
searches over repository collections, such as using resolu-
tion values to retrieve only certain structures from a pro-
tein database;

¢ and evaluate queries over repositories using query lan-
guages specific to those repositories.

Repositories do not often provide all capabilities, and
some repositories provide specialised interfaces, such as
data-specific graphical viewers. However, where capabili-
ties are similar amongst interfaces, these interfaces are
routinely constructed in a bespoke manner.

The central role of data repositories in bioinformatics
seems secure, given the ever-growing numbers of high-
throughput experimental techniques. Also, there will be a
need for laboratories to manage large and increasing
quantities of locally produced experimental data before
any associated analyses can be submitted for publication.
Furthermore, the bioinformatics community increasingly
encourages its members to produce data sets that may be
more easily exchanged within the community than has
previously been the case. To further this aim, various
organisations are developing standards using models that
describe the storage, structure and content of laboratory
data. The need to supply data that conform to such stand-
ards will increase the dependence of experimental labora-
tories on data repositories. Such repositories may be
accessed within the laboratory as well as by collaborators
or the wider research community.

Developing effective interfaces to bioinformatics
resources requires consideration of the limitations

http://www.biomedcentral.com/1471-2105/7/532

imposed by the working environments in which these
interfaces are created. Laboratories may second personnel
to maintain data repositories. These repositories often
begin as prototype services [1]. Laboratory personnel are
trained in their domain science but are rarely trained soft-
ware engineers. Moreover, repositories may be designed
for specific, short-term goals, but then may come to be
depended upon by a larger community that has different
goals, necessitating software evolution. Such develop-
ment activities are often of an ad hoc nature and yield
interfaces that are not robust, and are difficult to evolve or
maintain once the associated personnel have left.

The focus of this paper is the development of a systematic,
model-driven approach to the construction of user inter-
faces to bioinformatics repositories. With this approach,
many aspects of software infrastructure are specified using
declarative models, and executable programs are gener-
ated from such models. This approach adapts a design
paradigm called the Model Driven Architecture (MDA)
[2], which has had less exposure in bioinformatics than in
other domains.

The remainder of this paper describes the model-driven
approach to software development. We indicate how this
has been adopted in the development of a system called
Pierre, which uses models to construct and generate user
interfaces to bioinformatics resources.

Model Driven Software development

Spectrum of approaches

Software development methods can be characterised by
the relationship between a model and an application's
code base [3]. These methods are ordered, below, by the
increasing role of models in descriptions of software
behaviour.

® code-only: no models describing the system are devel-
oped. In this approach, the code is the only artefact that
results from a development cycle. Any design abstractions
used are expressed solely in the structure of code compo-
nents.

o code-visualisation: uses software tools that associate
graphical modeling notations with views of code bases.
Such tools allow programmers to manipulate notations
rather than code. For example, button elements could be
altered in size graphically, which has the effect of setting
dimension properties in the code.

e round-trip engineering (RTE): uses an abstract model of
the system to help guide development of the code base.
The model is manually implemented during the design
phase prior to the implementation. Designs that are cap-
tured in models can be enhanced by refinements in imple-

Page 2 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

mentation, and models should reflect such refinements.
In this approach, models must be synchronised with their
associated code bases, and the model serves as part of the
system-level documentation.

e model-centric: the models are developed in sufficient
detail to allow them to be used to derive the code base.
Developers refine the models through a series of transfor-
mation steps that ultimately yield program code.

o model-only: models are developed in sufficient detail to
allow code bases to be derived from them. Models are
refined through a series of transformation steps, resulting
in program code. This approach is employed when a
project's goal is to develop models for later use in creating
implementations.

User interfaces to bioinformatics resources are developed
in environments that typically do not easily facilitate these
approaches. Prototyping can identify short-term require-
ments for development, and the code written for these is
often not well-structured. Experimental environments
that evolve rapidly emphasise the exploration of new
techniques and not the support of software products.
Within such environments, prototyping is an activity that
works well. However, prototypes are often used as the end
product, rather than as a stage towards an end product. In
this event, requests for capability enhancement can result
in code bases that are difficult to maintain.

Code visualisation is a technique that provides a graphical
framework within which a code base is developed. How-
ever, this technique may be too limited to capture impor-
tant features of the design. For example, some
visualisation tools focus on allowing developers to build
user interfaces using predefined classes for features such as
buttons, scroll bars, and text fields. Developers provide
the detailed functionality of the applications by filling in
stubbed call-back methods associated with these features.
In such an approach, however, rather little of the func-
tionality of the application may be represented in the vis-
ualisation.

RTE assumes developers have enough skill, time, and dis-
cipline both to create models and to synchronise them
with code bases. This approach may also require develop-
ers to create an analysis model, a design model, and a
code base. RTE is unlikely to be sufficiently responsive for
use in rapidly changing contexts, such as bioinformatics
laboratory environments.

The model-only approach is used by standards bodies in
bioinformatics for the purpose of producing models that
describe data sets for a particular biological domain. Their
aim is to produce models that describe the data sets for

http://www.biomedcentral.com/1471-2105/7/532

some particular biological domain [4,5]. With this
approach, developers are delegated to creating and main-
taining data repositories and interfaces, both of which are
expected to be compliant with a model. However, this
approach leads to software applications that evolve inde-
pendently of community models.

The model-centric approach has a number of characteris-
tics that are well suited to environments in which bioin-
formatics tools are produced. Model-centric applications
are designed to accommodate change: model changes,
which are reflected in code changes. This process also
tends to be done automatically, which helps to reduce the
number of errors in code bases. Distinctions can be made
between modeling and developing, but with this
approach, modelers may find themselves engaging in
development activities. This allows laboratory personnel
to focus on making contributions based on domain
knowledge rather than attempting to perform software
engineering. When additional programming is required, it
can focus on customised features rather than on generic
ones. The model-centric form of development supports
rapid prototyping activities that allow end-users to vali-
date models. This validation is done by means of feedback
on automatically generated applications. The result of
using this approach is that time spent prototyping is
reduced and time spent adapting applications for produc-
tion environments in increased.

Model Driven Architectures

The model-centric approach is embodied by the Object
Management Group's Model-Driven Architecture (MDA)
[2]. The main aim of MDAs is to support software devel-
opment through the application of transformations to
various kinds of models. These models are listed below in
order of their decreasing level of abstraction.

e computation-independent model (CIM): represents con-
cepts from domain experts' perspectives. For example,
concepts such as Protein, Modification, or Gel may be
used by the CIM to describe proteomics schemata.

o platform-independent model (PIM): describes system
aspects that are independent of deployment activities.
PIMs describe tasks supported by software applications
but do not include implementation details. Examples of
PIM concepts include Editing, Searching and Browsing

e platform-specific model (PSM): describes implementation-
specific details of given deployment environments. An
example PSM could include details of how specific fea-
tures are supported in web applications.

The term platform can have various meanings, and can

include one or more system aspects such as operating sys-

Page 3 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

tem, network configuration or programming language.
More important than the definition of platform is the
notion that the PIM addresses application logic and sepa-
rates this from the PSM, which addresses implementation
details. A central idea of MDA is that transformations can
be applied to convert a CIM to a PIM and finally to a PSM.
The PSM is supposed to contain sufficient information
about domain concepts, software features and platform
details to facilitate the automatic generation of software
code [3].

Model-Based User Interface Development Environments
(MBUIDEs) [6] have been developed for user interface
development using techniques that are closely related to
OMG's MDA but that either do not follow OMG explicitly
or predate OMG. For example, the MIDAS project [7] pro-
posed a model-driven methodology for the development
of Web Information Systems (WISs), and Teallach [8] sup-
ported model-based user interface development for data-
bases. However, MBUIDEs have not been widely adopted
in practice, probably for a combination of reasons. These
reasons may include the following factors: (1) the collec-
tion of models used to develop comprehensive interfaces
is complex; (2) the emphasis of many proposals is task-
model centred, suiting only certain styles of interface; and
(3) models for describing user interface functionality have
often been poorly integrated with other models used as
part of the software development process. These issues are
addressed in this paper by adopting model-driven tech-
niques in a narrowly defined domain. In this way, models
are straightforward, tasks are drawn from a fixed set, and
data repositories are accessed through consistent inter-
faces.

A few projects have applied this paradigm specifically to
bioinformatics. For example, MEMOPS [9] presents a
framework for scientific data modeling and automated
software development. This framework was originally
developed to suit applications for NMR spectroscopy,
although its authors claim it is general enough to apply to
other domains. The focus of MEMOPS appears to be the
application of model-centric approaches to automatically
generating software that can read and write data expressed
in various formats. The framework promotes the idea of
client programs interacting with an application program
interface (API) rather than directly with a particular data
format.

This paper's focus is the use of the model-driven
approach, as supported by Pierre, for automatically gener-
ating interfaces for accessing data repositories. This fol-
lows on from earlier work by the authors on the Pedro
system [10]. Pedro generates data capture forms directly
from an XML Schema, which describes the structure of
data to be captured, and from additional configuration

http://www.biomedcentral.com/1471-2105/7/532

information provided by Data Modelers. Examples of
configuration information are context-specific help and
controlled vocabularies, both of which can be used to
guide data capture. However, Pierre adopts a model-cen-
tric approach more comprehensively than does Pedro.
Pierre supports an interactive design phase through which
PIMs are developed. These PIMs may, in turn, be associ-
ated with PSMs for both creating different styles of inter-
face and accessing different kinds of repository.

Methods

This section describes the scope, design, implementation
and use of Pierre. Success in applying MDAs has so far
depended on the following:

¢ use of declarative models for the identification of use-
case patterns that lend themselves to description;

¢ development of models that directly capture common
behaviours;

¢ design of effective interfaces between models and exist-
ing components;

¢ and provision of effective tools for model construction
and application generation.

In Pierre, we address these aspects by:

¢ Identifying four common access patterns to data reposi-
tories: browsing; simple searching using canned queries;
advanced searching using user-defined filtering based on
predicates; and expert searching based on direct use of
query languages. Individual interfaces can support any
combination of these categories of data access.

¢ Developing models specific to each data access category,
whereby application-specific interfaces are described
using a manageable number of modeling decisions.

¢ Designing an open architecture that allows Pierre appli-
cations to interface to existing data management systems,
security models and ontology services.

¢ Providing a service configuration tool that supports
both immediate review of interfaces and generation of
applications implementing different interfaces. The inter-
faces are supported by the underlying model.

An example of a Pierre deployment is the user interface to
the e-Fungi database, which contains sequence and func-
tional data from multiple fungal species. From the web
version of the e-Fungi deployment, Figure 1 illustrates the
Browse interface, which lists properties of the genomes in
the database, and allows users to navigate to obtain fur-

Page 4 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

ther details. Figures 2 and 3 illustrate the Simple Search
interface. Figure 2 shows how a list of canned queries is
made available, each of which is associated with a form
that collects the parameters for a search, as illustrated in
Figure 3. Figure 4 illustrates the Advanced Search inter-
face, in which a search is configured. This is done by iden-
tifying a collection over which the search is to take place
and the predicates that are to be used to filter the objects
in the collection. Figure 5 also shows the Advanced Search
interface, but this time for the stand-alone application.

Results

Pierre as a Model-Driven Architecture

The use of the Pierre system involves two phases: a rapid
prototyping phase and a deployment phase. Figure 6
shows how a service designer builds a service using the
Service Configuration Tool; the numbers in brackets are
explained below. The tool is driven by concepts provided
by a Computation-Independent Model (CIM) which is
expressed as an XML Schema [11] and a Platform Independ-
ent Model (PIM) which is expressed in XML. The CIM con-
tains domain concepts such as "protein", "gene",
"sample" and "experiment" that are relevant to the appli-
cation. The CIM typically describes the schema of the
database to which an interface is being provided. These
concepts can be associated with various form generation

Advanced
Search

Welcome Browse Simple

Search

e-Fungi
Browse
Report File Format: [hml ~| Change Format
Layout: [Muliple Pages x| Chenge Layout
Sort By: |genomeName ~| _Sort
Browse
genomeName numberOfChromosomes Links
Aspergillus fumnigatus 8 Chromosomes
Candida glabrata 13 Chromosomes
Debaryormyces hansenii 7 Chromosomes
Encephalitozoon cuniculi il Chromosomes
Eremothecium gossypii 7 Chromosomes
Kluyveromyces lactis 6 Chromosomes
Saccharomyces cerevisiae 17 Chromosomes
Schizosaccharomyces pombe 4 Chromosomes
Yarrowia lipolytica 6 Chromosomes

o
Figure |

The e-Fungi Browse interface using the web as the deploy-
ment platform. As e-Fungi supports analyses over multiple
fungal genomes, the display lists the genomes represented in
the database, with the option to obtain additional informa-
tion on their chromosomes.

http://www.biomedcentral.com/1471-2105/7/532

Welcome Simple

Search

Browse

Simple Search

Select the query feature you want to use.

Clusters with genome ;I
Composition of clusters
Ge ome
Mcl Cluster Summary for genome
Paralogs in clusters with genome =]

ome

Figure 2

The top-level e-Fungi simple search interface using the web
as the deployment platform — a list is provided of the availa-
ble queries.

properties described in the PIM. For example, the PIM
could describe whether a form field supported free-text
entries as well as selection based on existing values. It
could also describe properties of features such as canned
queries, queries that could be dynamically constructed by
users and a facility for submitting free-text queries.

These two models provide concepts that drive the opera-
tion of the tool (1). A Service Designer uses the Service Con-
figuration Tool to iteratively build a description of how the
dissemination service should behave (2). That is, the PIM
is created using the Service Configuration Tool. The
designer can then auto-generate a representative service to
show service users (3). This service communicates with a
fake data repository that returns random data. The service

Simple Advanced

Search

Welcome Browse

Search

e-Fungi

Simple Search

Fill in the form and press “Submit"

Genome

species

Existin ues
Submit

Figure 3

A specific simple search page that prompts the user for a
parameter for a specific search; the permitted values for the
entry can be retrieved from the database.

Page 5 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

Welcome Browse Simple Advanced
Search Search

e-Fungi

Advanced Search

Nurmber of fields to display on form: [x| Refresh

Build query using: [Transcribed »| Use

| viahility =ll= =|finviable Delete

[bpPosition =I- = Delete

|prnsmnn j|: Lﬂ Delete

[bpPosiion == =l Delete

[bpPosiion =l- = Delete

Clear Suq%ll

Figure 4

The e-Fungi advanced search interface using the web as the
deployment platform to search for essential genes.

is intended to provide enough information for service
users to evaluate the prototype (4) without requiring that
a finished data repository has already been developed.
The users convey their feedback back to the service
designer (5), who then modifies the definition of the serv-
ice. When the Service Users accept the prototype, the serv-
ice designer can use the configuration tool to generate a
definition of the service.

The deployment phase is shown in Figure 7. During or
after the service is prototyped, the Repository Designer cre-
ates a live data repository (1). Pierre has been used with
XML databases containing cell image metadata and pro-
teome experimental results, a relational database contain-
ing medical data, and the e-Fungi object database. The
Service Designer can use the Service Configuration Tool to
auto-generate a human readable description of what the

x
File Help
[Browse | SimpleSearch | Advanced Search |
Select] Transonned -] Add Edil Field Criterion... |
Viahility - H = - Hinviah\e \[Dslete
I 1l
Submit your query to thp data repositary.
Figure 5

The e-Fungi advanced search interface for the desktop appli-
cation, showing the same request as for Figure 3.

http://www.biomedcentral.com/1471-2105/7/532

service can do. This functional specification can aid the
Repository Designers in their task of creating a repository
that responds to the needs of the service users. When the
back-end of the service is completed, the Service Designers
can configure the service to substitute the fake repository
for the live one. They can then use the Service Configuration
Tool to automatically generate multiple deployment forms
(3) based on the same service definition (2).

In MDA terminology, each deployment is regarded as a
Platform-Specific Model (PSM). The approach advocates
expressing a PSM as a configurable model that can be used
to auto-generate code. However, in Pierre, properties of
the PSMs are fixed and reflected in code rather than in for-
mal models. This is done to make the Service Configuration
Tool simpler to use by the Service Designers.

The Service Configuration Tool supports the tasks
described above. Its top-level interface is illustrated in Fig-
ure 8, which indicates the different capabilities that the
Service Developer can configure. The use of the Service
Configuration Tool to design a Simple Search is illustrated
in Figure 9, and the design of an Advanced Search is illus-
trated in Figure 10.

Users will eventually endorse a prototype service, which
will become the initial production version, allowing the
Service Designer the option to enter the deployment
phase of development. The Service Configuration Tool
uses a description of the service to automatically generate
an Ant [12] script. This script is then run and multiple
deployment forms are automatically generated: web-
based, stand-alone, text menu and command line. Each
deployment interacts with the live data repository
through an API. This API can also be used by other soft-
ware clients that wish to use data provided by the service.
To support the integration of deployments in complex
sequences of tasks, the stand-alone application can also
be invoked as a component by other software clients. The
web deployment that is generated is a folder that is meant
to be placed in the web applications directory of a Tomcat
instance.

Pierre as an Open Architecture

In the MDA approach, generic program features are sup-
ported through model-driven activities and specialised
program features are supported by a collection of services
known as a Service Oriented Architecture (SOA). Develop-
ers customise an application by implementing one or
more service interfaces as software plugins. The types of
services that are supported represent aspects of the
domain use case that warrant customisation. These areas
were identified for data dissemination applications used
in bioinformatics:

Page 6 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

@ _________ > g___ (4)

http://www.biomedcentral.com/1471-2105/7/532

evaluate service

fake data Service
Computation reposfory I User
Independent
Model generate
(3) representative 5 rovide
example: service (5) edback
*proteomics id .
~genomics provide service
*metabolomics concepts A configure
(1) . service
— (2)
Platform Service Service
Independent Configuration Designer
Model Tool

example:
ssupport browse feature
ssupport canned queries
«allow free-text entries

(6)

generate definition of
accepted service

*select from existing values
+allow mark-up with ontologies
schoose from pre-defined

||

field values)
*support submit free-text queries

Figure 6

The rapid prototyping phase of Pierre. The principal components in the Pierre model-driven architecture. Round cornered
boxes represent models, rectangles represent software components, solid lines represent interactions between software com-
ponents and dashed lines represent human interactions with software.

e reports: display results of querying and browsing; default
representations are provided. Service Developers can aug-
ment standard representations for such things as new lay-
outs or specialist visualisations for specific kinds of data,
such as multiple sequence alignments.

o 'links: cross-references from Pierre reports to other
sources of information. A link may lead to an external
information source or may implicitly cause more refined
queries to be applied to the repository. Service Developers
can augment standard types of links with navigation
implementations. For example, the ability to navigate to a
web page may be adapted so that links evaluate follow-on
queries over the data repository.

e ontology services: ontologies or controlled vocabularies
associated with specific search fields in Simple and
Advanced Search. Ontologies may be maintained using
different technologies, and Service Developers can aug-
ment the ontology services provided by Pierre to obtain

terms from custom ontology servers or formats. Pierre's
Ontology Services are managed using the Pedro Ontology
Services Framework [13].

e security: mechanisms used by applications to control the
release of information. Service Developers can include
custom mechanisms for authenticating users and for
authorising specific tasks, such as the evaluating specific
queries.

¢ validation: supplied by most Pierre capabilities as simple
form field type-checking, as in Simple Search and
Advanced Search. Service Developers can augment the val-
idation provided to support custom checks, such as verify-
ing that keys comply with regular expressions or do not
appear in external databases.

e data repository: the most important point of extensibility.
All repositories are accessed by implementations of an
abstract repository interface illustrated in Figure 11.

Page 7 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

http://www.biomedcentral.com/1471-2105/7/532

use
Service P ’ | — Szrex;ice
Designer Web Application
(3) generate p ==t
interfaces . —
’ _,,V —
= load definition = : Standalone
= (2) ¥ T Application
= e o
efinition ire | el
Service) S S use i
Configuration |iye data™ . «-H5€ ., |
Tool repository ..
Text Menu Service
5 |- Application
(1)|create \ PP User
. Command Line
Repository Service Service
Designer User
4
Other Software Client
Figure 7

The deployment phase of Pierre. Arrows indicate steps used to auto-generate query interfaces. Dashed lines indicate commu-
nication between deployments and the data repository or communication between the deployments and the users.

File Deploy Include Service Aspecis

| General Information | Browse | Simple Search | Advanced Search | ExpertSearch | Database | Plugins
Title -Fungi
Description

Ix

Machine Description| Browse

Eaey [“ Browse

Style Sheet [‘. —

General Documents.

| add | Edit | Delete

‘ Help H Comments... ‘

‘ Test

Figure 8
Top-level interface to the Pierre Model Editor, showing tabs
for each of the principal kinds of user interface capability.

Repository Designers have developed deployments that
access relational databases (in particular, mySQL), XML
repositories (in particular, eXist) and object databases (in
particular, FastObjects) through extensions to the data
repository interface. Furthermore, a single data repository
service could access multiple data repositories, for exam-
ple through some form of distributed querying infrastruc-
ture, although Pierre itself does not directly support data
integration.

These aspects of extensibility are supported as service
classes within Pierre. Figure 12 shows how these services
augment the behaviour of a deployment during the course
of a query submission activity. Initially, a query form is
auto-generated by the Pierre Deployment. It may consult a
Security Service to determine what form features are appro-
priate to display for a given Service User (1). Before speci-
fying a query, the users may want to access Context Help
Information (2) which could describe the meaning of form
concepts. As they fill in the form, they may want to mark

Page 8 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

& Canned Query Feature Configuration Dialog x|

Name Gene orthology for genome
DescriptionReturn the relative frequency of genomes containing arthologous clusters for a particular genome. | = |

‘! Browse

Custom Help Link|

Queries
Genome

Query Results

Genome hame

Nurber of clusters with genome

Number of genomes per cluster

Number of clusters with that number of genomes
Relative frequency

add | Edit | Detete | copy | | e [epq | oeee [copy |
§

l Help | Comments...
oK Close
Figure 9

Editing a Simple Search form for the query in Figure 3 using
the Pierre Model Editor. The input and output of the query
are specified separately. Here, a field called "Relative fre-
quency" is added to the output to display frequency values
that are calculated as result of the query.

up some fields with terms provided by one or more Ontol-
ogy Services (3). When they submit the query, Validation
Services (4) are invoked to check for any errors.

When the query is correctly specified, the deployment
bundles the form values into an Abstract Query Object
(AQO) (5). The AQO holds a canned query and contains
data structures that correspond to concepts defined in the
PIM. The AQO is received by a Pierre Service, which uses a
published API to interact with auto-generated deploy-

& pierre Browser Configuration Tool =

File Deploy Include Service Aspecis

| General Information | Browse | Simple Search | Acvanced Search | Database |

Select record classes that end-users can use to construct their own query forms.
Meta Query Fields

‘ Add ‘ Edit | Delete
Query Contexts
Chromosome
Genorme
Protein
[Transcribed

| add | et | Delete
Custom Help Link] | Browse
‘ Help ‘ Cormments.

‘ Test

Figure 10

Editing the Advanced Search interface for e-Fungi using the
Pierre Model Editor. Classes that users are allowed to query
are added. The resulting interface is shown in Figures 4 and
5.

http://www.biomedcentral.com/1471-2105/7/532

Temacs@GARWOODLT Q@

File Edit Options Buffers Tools Classes IDE Java Senator Help
: interface DataRepository { -~
lic boolean authenticatelser [User user): —
Frring getTomeatServer Informacion();
SecurityService getSecurityService():
eFormat[] getSupportedReporcFileFormats();
TupleProvider[] getDataSetSummaries (String[] sortab
User use
Report getDataSetSummaryReport (TupleProvider
User)
Report getSchemalnformation (User
String[] getDataBases (User use
String getLanguageForDataBase (String dataBase,
User user):
der getFieldOperatorProvider (User user):
rameter[] pars =) throws Exception;
Report execute (QueryFeature quer e,
DeploymentForm deploymentForm,

execute (LinkCh) -
DeploymentForm deploymentForm,
User user);

tring[] getExistingValues(String rec

Report

w

User
void setWorkSpace (Workspace wo

-

{JDE Senator Abbrev)-——Li-—CO-—All-——[

——** DataRepositoryCode.java Thu Moy 15 11:08

Figure 11

The Data Repository interface that is implemented or
extended by Service Developers to provide access to different
kinds of data repository, or to support analyses over a spe-
cific repository. For example, a front-end application can pass
a free-text SQL query to the execute method having the
parameter "freeTextQuery". The implementation will then
apply this query to an underlying database and return the
results in a report.

ments as well as other custom deployments. The Pierre
Service forwards the AQO onto the Data Repository (6),
which executes the query and retrieves results from a data-
base management system. The Data Repository may con-
sult the Security Service (7) to determine what kinds of
results are appropriate to show a given Service User. The
repository assembles results into a Report (8) that is
returned and displayed to the user.

The Service User may access a link displayed in the Report
to request further information. Figure 13 shows how an
implementation of a Report service renders the results of
a search in tabular form. The link mechanism is repre-
sented by a Link Object, which may have different repre-
sentations for different deployments. For example, it may
present a hyperlink in the standalone or web deployment
but may present a menu number in the text menu appli-
cation. The Pierre Deployment will ask the Report if it knows
about a Link Object. If the link is not known to the Report,
it is assumed to be a link to an External Information Source
(9). For example, in the web deployment, a hyperlink
could refer to another web site. If the link is known to the
Report, the Pierre Deployment assumes the object represents
arequest to obtain more information from the Data Repos-

Page 9 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

http://www.biomedcentral.com/1471-2105/7/532

Ontology Service
I — Validation Service
(4

Custom Front End

S

(10)

f’lerre Front End

.AQO

Pierre Service

Report

Context Help
Information

Security Service

(7)

Data Repository

External
Information

©)

'

Figure 12

©Link Object

\ 4

Source

Roles of the extensible components in the architecture of Pierre. Arrows indicate steps for submitting a query. Context Help
Information and External Information Source represent documents that can be referenced by the query service. Spheres with
slots indicate interfaces that can be implemented by developers. The Pierre Service and AQO objects are part of the core

architecture and are not configurable by developers.

itory (10). The Link Object is forwarded to the Data Reposi-
tory via the Pierre Service. The Data Repository uses
parameters defined in the link to construct a follow-on
query, and then produces a Report in the same manner as
before.

The AQO and Pierre Service are used to foster communi-
cation between the Pierre Deployments and the Data
Repository. The remaining objects are all services that can
be customised by software developers. Pierre comes with
default implementations for all services, although the

implementation of the Data Repository typically requires
some coding effort to tailor it for a specific application. In
particular, the construction of a suitable top-level repre-
sentation of the contents of a repository for the Browse
interface normally requires some manual coding, and the
queries made available through the Simple Search inter-
face have to be implemented by the developer. By con-
trast, the default implementations of Advanced Search
and Expert Search can be expected to work with little con-
figuration. For example Pierre deployments supply Data
Repository components for the Advanced Query interface

Page 10 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

Report File Format: [rm =] | Channs Fomat
Layout: [Foge =] | Gisnge sy

Gene orthology for genome

relativeFrequency oid numberOfClusters numberQiGenomesPerCluster genome numberDIClusterswithNumberOfGenomes

0.00 44013 rull 3733 1 Candida 16
glabrata

0.023305¢ 38307 il 3733

C

dlabrata

81060800 null 3733 3 Candida 112
glabrata

4 Candida 512
olsorats
Candida 325
globrata

0.030002

0.137155103

0.09563353870881329 rull 3733 3 Candida 357
glstrats

0.175462 9553 nwll 3733 Candida 655

jlabrata

Figure 13
The result of the query from Figure 3.

that support translation from interactive representations
to query languages of the underlying database. Implemen-
tations of such translations have been developed for SQL,
JDOQL [14] and XPath [15].

Deployments

Pierre has been used to create interfaces for three kinds of
data repositories. Pierre documentation for the Service
Designer uses a tutorial model based on cancer patient
medical records, the data for which are stored in a MySQL
database. Documentation for Pierre addresses several
roles identified for the creation of a repository interface,
and this documentation is available online or with the
Pierre download. The second use case was to rework the
interface to PEDRoDB [16], which is a database of experi-
mental proteomics data captured using the model from
[17]. This model is represented in an XML Schema, and
has been implemented using the eXist [18] native XML
Database System. The third use case was to develop the
web interface to the e-Fungi data warehouse. This data
warehouse is used to support comparative analyses of fun-
gal species and is an evolution of the GIMS [19] database.
The e-Fungi use case has been implemented with an
object database using the JDO application programming
interface to FastObjects.

The results of applying the tool are encouraging. The suc-
cessful deployment of the tutorial database shows that a
system using an XML representation of the database can
be applied to work with relational databases. The auto-
generated web application used for PedroDB supports
greater functionality than that described in [16], and
shows that Pierre can be applied effectively over existing
databases. Here, also, Pierre is used directly with native
XML databases, which may become widely used for stor-
ing standardised data. The e-Fungi interface confirms the

http://www.biomedcentral.com/1471-2105/7/532

utility of this approach for a diversity of both domains
and data management technologies.

Discussion

The objective of the Pierre project is to use model-driven
development techniques to achieve several defined goals.
We want to support functionality requirements from mul-
tiple domains. We also want to reduce the amount of time
spent on common interface programming tasks in the
hope that the time saved allows resources to be better
deployed to the specifics of projects. Moreover, this
project facilitates the development of applications that are
robust enough to support the demands of a production
environment. This section reviews Pierre in the context of
these criteria and discusses related work.

Functionality

Pierre produces data access interfaces that have function-
alities comparable to those interfaces supported by many
public bioinformatics databases (e.g. [20,21]). This is not
surprising, as the features supported for model-driven
generation in Pierre are those identified by the authors as
representing important recurring themes. Pierre supports
the inclusion of interface functionalities that are neces-
sary, but not always sufficient, in many contexts. In prin-
ciple, Pierre could be used outside bioinformatics, but the
requirements supported have been gleaned from studying
user interfaces in bioinformatics, and we anticipate that
there will be significant functionality gaps if Pierre is
deployed in unrelated application areas.

Generic interfaces that support common behaviours can-
not compete with interfaces produced by well-resourced
specialised development activities, such as those associ-
ated with genome sequencing activities [22]. However, we
contend that there are serious limitations to the develop-
ment resources that many bioinformatics researchers are
able to commit to the construction of interfaces to poten-
tially important data resources; thus that Pierre addresses
a common need. In addition, if a site develops multiple
interfaces using Pierre, this will increase consistency
between the interfaces, thereby reducing complexity and
learning times for users.

Developer resources

The system design methodology supported by Pierre can
save time in at least five ways. First, it reduces the time
programmers spend manually coding prototypes. Second,
parallel development of the front and back ends of a
query service is facilitated by the decoupling of front-end
concerns from back-end concerns. Third, the requirement
to develop interfaces for common cases is removed. In
practice, creating a data access application involves
straightforward, but time-consuming, interface program-
ming, often in environments with steep learning curves.

Page 11 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

Fourth, the fact that Pierre can generate deployments that
use different delivery platforms removes the need to
develop and maintain code bases for multiple platforms.
Fifth, as less code is developed for a specific deployment,
the times both testing and fixing such code is reduced.

It is difficult to make general statements about how long
it takes to develop a deployment using Pierre. Most of our
current deployments were produced at the same time as
the associated repository services, significant components
from which can be reused in future deployments. How-
ever, we note that Pierre supports incremental develop-
ment, and that the time taken to develop a preliminary
deployment can be modest. For example, to create a
deployment over a relational database, the following
steps are required:

1. Create a CIM that represents some or all or part of the
schema of the database; a tool is provided for this pur-
pose.

2. Load the resulting CIM into the Service Configuration
Tool, and generate a default deployment.

The default deployment will include only Advanced
Search and Expert Search, but should be able to be created
in a small number of hours. This assumes that the data-
base already exists, the relevant software is installed, and
the developer is familiar with Pierre. Thereafter, the crea-
tion of a Browse interface involves a small amount of
design with the Service Configuration Tool, and the
implementation in Java of an interface provided with the
Repository Service. Depending on the complexity of the
Browsing to be supported, this task should take from a few
hours to a few days. The development of a query for Sim-
ple Search involves a small amount of design with the
Service Configuration Tool, and the implementation in
Java of the associated search in the context of the Reposi-
tory Service. Depending on the complexity of the Search
to be supported, this task should take from a few hours to
a few days. As such, having learned how to use the Pierre
system (which might be expected to take a week), a
deployment over an existing relational database, includ-
ing a top-level Browse interface, 10 queries in the Simple
Search, Advanced Search and Expert Search should be able
to be developed in a small number of weeks. Of course, a
typical development activity involves significant effort on
requirements capture, including iterative design steps.
However, the work required on the implementation of a
service comparable to the e-Fungi interface illustrated in
Figures 1 to 6 should involve weeks rather than months of
effort.

http://www.biomedcentral.com/1471-2105/7/532

Robustness

Pierre generates most of a deployment's executable code.
This allows for systematic testing of the code base to be
conducted, and revisions, which are suggested by multiple
deployment communities, to be incorporated in a struc-
tured way. Furthermore, developer effort associated with
a specific deployment is focused on certain tasks. This ena-
bles developers to take a systematic approach to testing of
both custom analysis features and repository capabilities.

Related work

The application of techniques from model-driven archi-
tectures has allowed Pierre to improve the efficiency of
interface development for bioinformatics resources. This
section focuses on comparing and contrasting Pierre with
other generic infrastructures used for developing bioinfor-
matics interfaces. Generic infrastructures are defined here
as those infrastructures that are not associated principally
with a single data repository or a single domain within
bioinformatics; we focus in particular on BioMart [23]
and SRS [24].

Like Pierre, BioMart supports development of customised
interfaces to bioinformatics databases, including the con-
struction of advanced search interfaces. The principal dif-
ference in ethos between Pierre and BioMart is that the
latter is designed for use over relational databases imple-
menting a variation of star schema models from data
warehouses. As such, BioMart encourages and exploits a
specific way of representing the data over which interfaces
are to be built, and thus may be less suitable than Pierre
for use with existing databases. Given a suitable schema,
BioMart provides many configuration options, which
cover aspects of security, report linking and output file for-
mats. Pierre provides fewer configuration options than
BioMart, but retains considerable flexibility through an
open architecture with many extensibility points. While
BioMart provides a flexible infrastructure for develop-
ment, it integrates the design of the repository and the
repository interface more closely than does Pierre. As
such, we assess Pierre as allowing repository designers
greater flexibility in their choices by separating interface
design and development from data management.

SRS is a well established infrastructure, principally
designed to support the development of navigational
interfaces to flat-file repositories, although other data
repositories can also be accessed using this infrastructure.
However, SRS continues to have a principal focus on
linked collections of file-based resources, which are
indexed to support efficient access and navigation. As a
result, SRS provides both management and integration
capabilities, and thus focuses more on enterprise-level
information management than does Pierre. In contrast,
Pierre's principal use is to construct interfaces to individ-

Page 12 of 14

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:532

ual data resources, often where these resources exist
already and where the effort in creating or maintaining
bespoke interfaces is felt to be problematic.

Conclusion

This paper has described an architecture that increases the
efficiency of development of interfaces to bioinformatics
data resources. This is done by identifying recurring
requirements that such interfaces must support, and by
adopting a model-driven architecture to support these
requirements. Developers use a Service Configuration
Tool as a means of manipulating the underlying model in
order to specify interface characteristics for specific kinds
of data. Development efficiency is also increased by sup-
porting an open architecture, whereby components may
be replaced or extended to augment default behaviours.

The overall approach has been implemented in a system
known as Pierre. This, in turn, has been used to construct
user interfaces to several bioinformatics data repositories
implemented using different kinds of database manage-
ment systems. The Pierre system, with its model-driven
approach, greatly reduces the amount of time spent on re-
addressing the routine aspects of interface development.
This enables domain experts to make meaningful contri-
butions to the development process based on their true
expertise.

Availability and requirements

The Pierre Project is described at: http://www.manches
ter.ac.uk/pierredownload. The Pierre code base is main-
tained on Source Forge and is distributed under the Aca-
demic Free License. The software has been tested on
Windows-based environments and currently depends on
JDK1.4 and Ant 6.0. The tutorial repository requires that
MySQL is installed. Automatically generated web applica-
tions work with an environment that uses Tomcat 5.0 and
Apache 2.0. The three example databases referred to in

this paper may be linked to from http://www.manches
ter.ac.uk/pierredownload.

Authors' contributions

KG is the main software architect for the Pierre Project and
initially drafted the paper. CG has been responsible for
creating the repository data model for the tutorial and
adapting the PedroDB query service to suit Pierre. He is
also responsible for end-user training, and development
of test plans for the project. He, together with SGO, proof-
read the draft developed by KG and NP. CH used Pierre to
develop the e-Fungi deployment. TG provided feedback
on an early version of Pierre. NS developed the generic
Data Repository service for relational databases. SGO
oversees the life science aspects of the projects that moti-
vated the development of Pierre and thus provided a
user's perspective. NP managed the project, helped to

http://www.biomedcentral.com/1471-2105/7/532

steer development of the architecture, and ensured the
paper targeted bioinformaticians. All authors have read
and approved the final manuscript.

Acknowledgements
This work has been funded by the BBSRC through the PEDRo, COGEME
and e-Fungi projects, and the DTI through its Beacon initiative.

References

I. Galperin M: The Molecular Biology Database Collection: 2005
update. Nucleic Acids Research 2005, 33:D5-24.

2. Miller J, Mukerji : Model Driven Architecture (MDA). Object
Management Group, Draft Specification ormsc/2001-07-01 [http:/
www.omg.org/mda]. July 9 2001

3. Brown AW: Model driven architecture: Principles and prac-
tice, Software Systems Model. Springer-Verlag 2004, 3:314-327.

4. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik], Salwinski L,
Ceol A, Moore S, Orchard §, Sarkans U, von Mering C, Roechert B,
Poux S, Jung E, Mersch H, Kersey P, Lappe M, Li Y, Zeng R, Rana D,
Nikolski M, Husi H, Brun C, Shanker K, Grant SG, Sander C, Bork P,
Zhu W, Pandey A, Brazma A, Jacq B, Vidal M, Sherman D, Legrain P,
Cesareni G, Xenarios |, Eisenberg D, Steipe B, Hogue C, Apweiler R:
The HUPO PSI's molecular interaction format - a commu-
nity standard for the representation of protein interaction
data [abstract]. Nauret Biotechnoogyl 2004, 22(2):177-83.

5. Spellman PT, Miller M, Stewart], Troup C, Sarkans U, Chervitz S,
Bernhart D, Sherlock G, Ball C, Lepage M, wiatek M, Marks WL, Gon-
calves |, Markel S, lordan D, Shojatalab M, Pizarro A, White], Hubley
R, Deutsch E, Senger M, Aronow BJ, Robinson A, Bassett D, Stoeck-
ert CJ Jr, Brazma A: Design and implementation of microarray
gene expression markup language (MAGE-ML). Genome Biol-
ogy 2002, 3:research0046.1-0046.9.

6. da Silva P: User Interface Declarative Models and Develop-
ment Environments: A Survey. Interactive Systems: Design, Speci-
fication, and Verification (7th International Workshop DSV-IS, Limerick,
Ireland, June, 2000), LNCS 1946 2000:207-226.

7. Marcos E, Céceres P, Vela B, Cavero |M: MIDAS/BD:A Methodo-
logical Framework for Web Database Design. ER 200/ Work-
shops, LNCS 2465 2002:227-238.

8. Griffiths T, Barclay J, Paton N, McKirdy Jo, Kennedy], Gray P, Cooper
R, Goble C, da Silva P: Teallach: A Model-Based User Interface
Development Environment for Object Databases. Interacting
with Computers 2001, 14(1):31-68.

9. Fogh R, Boucher W, Vranken WF, Pajon A, Stevens TJ, Bhat TN,
Westbrook J, lonides JMC, Laue ED: A framework for scientific
data modeling and automated software development. Bioin-
formatics 2005, 21(8):1678-1684.

10. Garwood KL, Taylor CF, Runte K, Brass A, Oliver SG, Paton NW:
Pedro: A Configurable Data Entry Tool for XML. Bioinformat-
ics 2004, 20(15):2463-2465.

1. Biron PV, Malhotra A: (2000) XML Schema part 2: Datatypes.
[http://www.w3.org/TR/xmlschema-2/].

12. Tilly J, Burke E: Ant, The Definitive Guide Sebastopol CA: O'Reilly; 2002.

13. Garwood KL, Lord PW, Parkinson H, Paton NV, Goble CA: Pedro
Ontology Services: A Framework for Rapid Ontology
Markup. In 2nd European Semantic Web Conference Edited by:
Gomez-Perez A, Euzenat AJ. Springer Verlag; 2005:578-591.

14. Jordan D, Russell C: Java Data Objects, O'Reilly. 2003.

I15. Clark], DeRose S: XML path language (XPath), version 1.0.
W3C Working Draft, August 1999. [http://www.w3.0rg/TR/
xpath].

16. Garwood KL, McLaughlin T, Garwood C, Joens S, Morrison N, Taylor
CF, Carroll K, Evans C, Whetton AD, Hart S, Stead D, Yin Z, Brown
AJP, Hesketh A, Chater K, Hansson L, Mewissen M, Ghazal P, Howard
J, Lilley KS, Gaskell S), Brass A, Hubbard §J, Oliver SG, Paton NWV:
PEDRo: A database for storing, searching and disseminating
experimental proteomics data. BMC Genomics 2004, 5(68):.

17. Taylor CF, Paton NW, Garwood KL, Kirby PD, Stead DA, Yin Z,
Deutsch EWV, Selway L, Walker J, Riba-Garcia |, Mohammed S, Deery
M), Howard JA, Dunkley T, Aebersold R, Kell DB, Lilley KS, Roep-
storff P, Yates JR Ill, Brass A, Brown AJP, Cash P, Gaskell S), Hubbard
S), Oliver SG: A systematic approach to modeling, capturing,

Page 13 of 14

(page number not for citation purposes)

http://www.manchester.ac.uk/pierredownload
http://www.manchester.ac.uk/pierredownload
http://www.manchester.ac.uk/pierredownload
http://www.manchester.ac.uk/pierredownload
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608247
http://www.omg.org/mda
http://www.omg.org/mda
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15613391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15613391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15073025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15073025
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610571

BMC Bioinformatics 2006, 7:532 http://www.biomedcentral.com/1471-2105/7/532

and disseminating proteomics experimental data. Nature Bio-
technology 2003, 21(3):247-254.

18. Meier W: eXist: An open source native XML database. In Web-
Services, and Database Systems, LNCS 2593 2003.

19. Cornell M, Paton NW, Hedeler C, Kirby P, Delneri D, Hayes A,
Oliver SG: GIMS: An Integrated Data Storage and Analysis
Environment for Genomic and Functional Data. Yeast 2003,
20(15):1291-1306.

20. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus:
NCBI gene expression and hybridisation array data reposi-
tory. Nucleic Acids Research 2002, 30:207-201.

21. Gollub J, Ball CA, Binkley G, Demeter], Finkelstein DB, Hebert JM,
Hernandez-Boussard T, Jin H, Kaloper M, Matese JC, Schroeder M,
Brown PO, Botstein D: The Stanford Microarray Database:
data access and quality assessment tools. Nucleic Acids Research
2003, 31:94-96.

22. Birney E, Andrews D, Caccamo M, Chen Y, Clarke L, Coates G, Cox
T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-
Suarez XM, Flicek P, Graf S, Hammond M, Herrero |, Howe K, lyer V,
Jekosch K, Kahari A, Kasprzyk A, Keefe D, Kokocinski F, Kulesha E,
London D, Longden |, Melsopp C, Meidl P, Overduin B, Parker A,
Proctor G, Prlic A, Rae M, Rios D, Redmond S, Schuster M, Sealy |,
Searle S, Severin J, Slater G, Smedley D, Smith], Stabenau A, Stalker
J, Trevanion S, Ureta-Vidal A, Vogel |, White S, Woodwark C, Hub-
bard T): Ensembl 2006. Nucleic Acids Research 2006, 34:D556-61.

23. Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A,
Huber W: Biomart and bioconductor: a powerful link
between biological databases and microarray data analysis.
Bioinformatics 2005, 2 1:3439-3440.

24. Zdobnov EM, Lopez R, Apweiler R, Etzold T: The EBI SRS server-
new features. Bioinformatics 2002, 18(8):1149-50.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 14 of 14

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14618567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14618567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16082012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16082012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176845
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Model Driven Software development
	Spectrum of approaches
	Model Driven Architectures

	Methods
	Results
	Pierre as a Model-Driven Architecture
	Pierre as an Open Architecture
	Deployments

	Discussion
	Functionality
	Developer resources
	Robustness
	Related work

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

