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Abstract
Background: Although prognostic biomarkers specific for particular cancers have been
discovered, microarray analysis of gene expression profiles, supported by integrative analysis
algorithms, helps to identify common factors in molecular oncology. Similarities of Ordered Gene
Lists (SOGL) is a recently proposed approach to meta-analysis suitable for identifying features
shared by two data sets. Here we extend the idea of SOGL to the detection of significant
prognostic marker genes from microarrays of multiple data sets. Three data sets for leukemia and
the other six for different solid tumors are used to demonstrate our method, using established
statistical techniques.

Results: We describe a set of significantly similar ordered gene lists, representing outcome
comparisons for distinct types of cancer. This kind of similarity could improve the diagnostic
accuracies of individual studies when SOGL is incorporated into the support vector machine
algorithm. In particular, we investigate the similarities among three ordered gene lists pertaining to
mesothelioma survival, prostate recurrence and glioma survival. The similarity-driving genes are
related to the outcomes of patients with lung cancer with a hazard ratio of 4.47 (p = 0.035). Many
of these genes are involved in breakdown of EMC proteins regulating angiogenesis, and may be used
for further research on prognostic markers and molecular targets of gene therapy for cancers.

Conclusion: The proposed method and its application show the potential of such meta-analyses
in clinical studies of gene expression profiles.

Background
Changes in gene expression levels could reflect clinically
distinct conditions. Genome-wide perspectives of gene
expression can now be obtained, and these can be com-
bined with other currently-used criteria to identify predic-
tors of clinical outcome for specific cancers [1-7]. Also,
distinct gene expression profiles can reportedly determine
molecular treatment responses, e.g. in cancer [8]. Thus it
is possible to discover biomarkers from gene expression
profiles that help to predict outcomes, and this empha-

sizes the need in biomedical research to combine results
from similar experiments in order to identify diagnostic or
prognostic disease markers.

Much recent research has confirmed that microarray
results are comparable among different laboratories, espe-
cially when a common platform and a set of procedures
are used [9-13]. Integrative analysis that evaluates cancer
transcriptome data in the context of data from other
sources has received attention recently (reviewed by
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Rhodes and Chinnaiyan [14]). An important emerging
argument concerns the uniformity of cancer metastases as
well as the evolution of malignancy in primary tumors
[15-17]. Grutzmann et al. ran meta-analysis on four stud-
ies for pancreatic cancer, and validated their identified sig-
natures using RT-PCR and immunohistochemistry [13].
In particular, Glinsky and colleagues innovatively pub-
lished a 11-gene signature that is displayed consistently in
stem cells self-renewal pathways, and this is a powerful
predictor for prognosis in 11 distinct types of cancer [17].
These results exemplify the clinical application of meta-
analysis signatures detected in different cancer stages or
types. Rhodes et al. [18] presented a comprehensive inves-
tigation of 40 data sets. They identified a robust signature
of a set of differentially expressed genes when cancer and
normal tissues were compared. A recent study [19] identi-
fied lists of differentially regulated genes that also signifi-
cantly overlap with genes regulated by the tumor
suppressors p16 and pRB. This work helps to translate
genome-wide expression analyses into clinically useful
cancer markers. Meta-analysis is a powerful tool for iden-
tification and validation marker genes in above studies
[13,18]. However, in these studies, meta-signatures are
identified on the basis of the individual genes used for
analysis. Segal et al. [20] divided genes into sets and
reported that certain sets show coherent behavior across a
diverse group of clinical conditions. Another recent publi-
cation compared gene expression in two conditions to
generate a gene list for each study, and then detected sig-
nificant Similarities of Ordered Gene Lists (SOGL) [21]
from different studies. The above two approaches extend
the determination of significance from single study analy-
sis to meta-analysis.

However, none of the above studies involving multiple
cancers mentions independent prediction, which is a key
bridge between molecular knowledge and clinical appli-
cation. In particular, the SOGL approach can detect simi-
larities between two gene lists, irrespective of significant
differences between them, because it does not rely on dif-
ferential gene expression in each single list having strong
effects, but rather on consistent changes across multiple
lists. SOGL is similar to other non-parameter statistical
tests, except that it uses different weighting schemes for
ranks. The ideal is to give higher weights to the genes
which expressed more differentially, and to sum all the
weighted orders to quantify the similarity. This approach
allows the significance of similarity to be decided during
meta-analysis and identifies the genes responsible for the
similarity. In contrast to previous methods, SOGL does
not depend on the definition of a particular "significance"
threshold for a single study. Thus it is superior to other
methods for detecting signatures in studies with weak
effects or small sample sizes.

However, the similarities among gene lists are not guaran-
teed to be transferable [21]. With the discovery of com-
mon cancer signatures, there is a need to extend the
method to several rather than two lists. Therefore, to
meta-analyze many microarray profiles together, and to
analyze the problem of outcome in highly noisy data, we
have developed and implemented the SOGL method in
this paper, extending it from the comparison of two gene
lists to the comparison of multiple gene lists, which is use-
ful for meta-analysis of microarray data. When the gene
lists show similarity, we ask whether the similarity-driving
genes improve the predictive power of a single study. To
this end, we implement SOGL in two ways. One is to com-
pare the accuracy of prediction by meta-analysis with that
of individual analysis, which has already been successfully
demonstrated for multiple cancer microarray data sets
[11]. The other is to compare the traditional classical high-
est t-score with SOGL in selecting variables for classifica-
tion, which has not been used in the context of cross-
validation and class prediction. Finally, we discuss the
predictive capacity of the similarity-driving genes detected
in three solid tumors, and prove its success on another
independent cancer data set.

Results
Our major aim was to identify biological mechanisms,
common to different kinds of cancer that involve genes
and gene expression changes inducing poor outcomes,
e.g. metastasis, recurrence and short-term survival. We
assumed that such mechanisms may be revealed by gene
expression profiles. We collected nine recently-published
microarray data sets related to clinical outcomes (for
details see Table 1). For meta-analysis, we developed
SOGL from a test for two gene lists to a test for multiple
gene lists, since the similarities among gene lists are not
guaranteed to be transferable. In this section, we first per-
formed a meta-analysis allowing common samples across
data sets to generate artificial similarity and to identify it
using SOGL. Then we turned to six data sets on solid
tumor for discovery of similarity and its contributing
genes. All the data sets were pre-processed independently
for background correction, normalization, summariza-
tion and quality assessment using an Affymetrix platform
pre-processing protocol. We adopted the methods for sta-
bilizing variance to normalize these raw profiling files on
an additive scale in the nine collected data sets, using the
R package compdiagTools.

Using SOGL on Leukemia studies
The data set described by Ross [22] used a relatively newly
designed microarray platform with 132 representative
cases from another data set with 327 cases [23]. Therefore
a significant similarity between the gene lists generated
from these two data sets were expected. Adding Another
data set on leukemia outcome, we applied SOGL to com-
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parison of more than two gene lists. Thus we performed
the meta-analysis allowing partially common samples to
generate an "artificial" similarity. However, finding a sim-
ilarity in gene lists between samples run on different plat-
forms is not our interest as many programs would find
this. The question we addressed here is to evaluate
whether our method improves the accuracy of prediction
from individual studies when there is significant similar-
ity.

First, we separately analyzed all the data sets for differen-
tial gene expression between the good and the poor out-
come groups. Differential expression was quantified using
fold change and z-statistic respectively, and the result was
used as the effect size for meta-analysis [24]. The later
measurement is a moderated t-score with a fudge factor
[25] and is expected to be more reliable. The significance
of differential expression of a gene between outcome
groups was estimated by comparison with the sizes of ran-
dom effects in perturbed data. None of the three studies
individually displayed strong evidence for differential
expression; but while individual studies failed to identify
signatures that might reliably distinguish between condi-
tions, meta-analysis succeeded. All data sets ordered the
genes, each beginning with the most markedly up-regu-
lated genes in the poor outcome group and ending with
the most markedly down-regulated ones. Matching of the
probe sets between Affymetrix Hgu95av2 and Hgu133a,
resulted in 10507 best-matched transcripts. These gene
expression profiles revealed significant similarity in the
outcome conditions of the three leukemia studies. Figure
1 shows the significance of this similarity. An empirical p-
value = 0.004 (permutation times B = 1000, each based on
permutation of gene ranks to estimate random similarity
scores) was detected for an optimal α* which focused
only on the first 150 genes in the orders. The significant
similarity (p-value = 0.002) could also be observed when
our method focused on the first 100 genes in the orders
using z-statistic as effect size.

This led us to expect that variable selection by SOGL
would improve the predictive capacity when the gene
orders are significantly similar. For each subset of sam-
ples, we kept the number of transcripts selected by the
highest t-scores exactly the same as the number of major
intersection transcripts identified by SOGL method, while
letting α = 0.015 to count the highest and lowest 750
items in the sets. The range of genes in common between
the sets reflects the degree of similarity. For the compari-
son of gene orders in the three leukemia outcomes, we
iterated 3-fold cross-validation together with support vec-
tor machine (SVM) algorithm D (= 500) times. The 75th
and 25th percentiles of the numbers of selected genes are
75 and 48. The median is 61. Any increase in sensitivity
will be accompanied by decrease in specificity, so to eval-
uate the predictive accuracy of the SOGL-selected genes
and that of the highest traditional t-score, we drew ROC
curves for both comparisons. Figure 2 shows the ROC
curves generated from the leukemia studies. The SOGL
curve follows the left-hand border and then the top bor-
der of the ROC space more closely, suggesting that the test
is more accurate. In contrast, the highest t-score curve
comes closer to the 45-degree diagonal of the ROC space,
implying a less accurate test. The area under the ROC
curve (AUC) is 0.73 (95% confidence interval (CI) 0.64–
0.76) for SOGL using z-statistic as effect size, while 0.69
(95% CI 0.63–0.71) for the highest t-score, indicating
SOGL tends toward more accurate than the highest t-score
if gene lists are significant similar. In the same way, we
observed no different AUC between the results of SOGL
using fold changed effect size and highest t-score, that was
0.64 (95% CI 0.64–0.68) for SOGL, 0.63 (95% CI 0.57–
0.69) for the highest t-score, suggesting that the improve-
ment of prediction by SOGL is limited to highly signifi-
cant similarity.

Study on different solid tumors
We then set out to determine the significant similarity
among gene lists of different tumor outcomes. We needed

Table 1: Clinical information about the microarray studies we collected

Studies samples with outcome notation

study ID cancer #sample N #good #poor ratio

A [3] breast 37 37 19 18 0.49
B [3] breast 52 52 34 18 0.35
L [27] lung 203 126 117 9 0.07
M [5] mesothelioma 31 17 8 9 0.47
P [38] prostate 102 21 13 8 0.38
G [65] glioma 42 18 8 10 0.44
L1 [64] T-cell leukemia 30 13 7 6 0.46
L1 [22] pediatric leukemia 132 93 71 12 0.13
L2 [23] pediatric leukemia 327 245 201 44 0.18
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confirmation first that the clinical diagnostic problem
addressed here in regard to different kinds of cancer
achieves similarity and improves the accuracy of predic-
tion. To address this problem, we investigated six gene

lists for comparing cancer outcomes, which are labeled A,
B, L, M, P and G in Table 1. Figure 3 shows that 21 of the
57 possible comparisons from these gene lists show sig-
nificant (p < 0.05) similarity for a pre-defined finite grid

Similarity scores for leukemia outcomeFigure 1
Similarity scores for leukemia outcome. The similarity of three gene orders for leukemia studies. In the plot, the red 
curve corresponds to estimated scores and the black curve to simulated random scores. These are kernel density estimates of 
the two-score distributions underlying the pAUC-score for optimal α*. The vertical red line denotes the observed similarity 
score. The bottom rugs mark the simulated values.
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of parameter choices α ∈ [0.3, 0.01] spanning the leading
400–1500 items in order. These comparisons include the
gene lists referring to:

• Recurrence of breast cancer and lymph node status of
breast cancer;

• The same two lists, and neuroendocrine of lung cancer;

• Survival of mesothelioma and glioma, and recurrence of
prostate;

• The above set of lists and the lymph node status of breast
cancer or neuroendocrine of lung cancer;

Comparison of methods using leukemia dataFigure 2
Comparison of methods using leukemia data. The ROC points for 500 prediction runs. Two points are generated for 
each time: the solid circle is the result from SOGL, and the diamond is the result from the same number of highest t-scores.
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Similar comparisons among 6 solid tumorsFigure 3
Similar comparisons among 6 solid tumors. 21 comparisons of gene lists show similar with separation between signal 
and noise. In the plot, α is given on the x axis and the pAUC-score for the randomized and alternative scores on the y axis. 
The pAUC test detects the difference between the distributions of alternative scores and random scores to select an opti-
mized α*, which reaches a highest value for each comparison. We iterate a sub-sample strategy C (= 500) times to obtain an 
estimation of the variability of the similarity score and the random score. Each time, by bootstrapping 80% the labels of 
patients, we obtain the alternative effect size (signals). And by shuffling these labels of patients, we calculate the background 
noise of the same size. The details of the similarities are given in Table 4.
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• and others.

All the above sets of gene lists achieved higher pAUC (par-
tial area under curve) scores [26] than most other compar-
isons. A pAUC-score evaluates the degree of overlap
between two distributions. Note that a higher pAUC-score
shows a greater likelihood that the estimated SOGL scores
exceed chance in our method, and a larger α indicates
more similarities at the higher ends of the gene lists. This
finding supports the emerging notion that when progno-
sis is poor, there are commonalities among distinct types
of cancer in the dysregulation of gene expression, imply-
ing that poor prognosis is sometimes independent of the
original cancer type. In contrast, this kind of similarity was
not so significant when more than 4 of the studies we col-
lected were compared, demonstrating that the similarities
spanning tumor tissues are limited.

The similarity among gene lists for glioma, prostate and 
mesothelioma outcomes
Comparison of the ordered gene lists generated from the
outcomes for glioma, prostate and mesothelioma typi-
cally shows significant similarity; and significance (B =
1000, p < 0.05) is found for all the pre-defined finite grids
of observed orderings [100, 1500]. It means that even for
the highest orderings (biggest α values), the numbers of
genes common to these three orders are not due to
chance. Figure 4 shows the significance of the similarity.
An empirical p-value = 0.024 is obtained for an optimal
α* focus on the highest 750 items in the order. To com-
pare the accuracy of prediction by using SOGL as variable
selection method to traditional highest-t-statistic, we iter-
ated 3-fold cross validation D (= 500) times. The resulting
75th and 25th percentiles of the number of selected tran-
scripts are 35 and 20. The median is 26. The superiority of
SOGL is observed when the three solid tumor studies are
integrated (for details see Figure 5). The area under the
ROC curve is 0.747 (95% CI 0.709–0.774) for SOGL,
0.665 (95% CI 0.634–0.702) for the highest t-score. This
proves that adopting SOGL for variable selection
improves the predictive capacity when the gene lists
involved are significantly similar. A similar improvement
was observed when we examined a range of observed
orderings [100, 1500].

We then turned to investigate the genes contributing to
this similarity that were relevant to the survival of mes-
othelioma and glioma and the recurrence of prostate can-
cer. Table 2 shows the ranks and the symbols of these
similarity-driving genes. The definition of "effect size" will
affect the SOGL results and the identified genes. The genes
identified by fold-change as effect size of SOGL yielded in
17 transcripts; 5 transcripts were reported if a moderated
t-score with a fudge factor (also called as z-statistic) [25]
was adopted as SOGL effect size. Four of these were iden-

tified by both approaches. Since our fold-change statistic
is based on variance-stabilized data, it should generate a
result similar to the t-statistic.

Nevertheless, the z-statistic puts less weight on variances
than a classical t-statistic. These genes contain a high pro-
portion of known prognostic marker genes and represent
biological processes involved in tumor progression and
metastasis. To evaluate over-representation of GO annota-
tions from gene lists that were calculated from specific
microarray (Affymetrix Hgu95av2), we ran hypergeomet-
ric tests to compute p-values. It evaluates the likelihood
that the corresponding number of annotations is occur-
ring in a random list of genes of the same size. Interest-
ingly, 4 of them are genes for the human extracellular
matrix (ECM)-receptor interaction pathway (hypergeo-
metric test p = 1e-6), namely COL4A1, COL1A2, COL5A2
and FN1. Moreover, 7 of our short-list of 13 genes encode
ECM proteins and regulators of ECM assembly, namely
FN1, BGN, POSTN, COL4A1, COL11A1, COL1A2 and
COL5A2. The other 5 genes have roles in angiogenesis:
ANXA2, CPE, MDK, IGFBP3, and 3 transcripts of PTGDS.
Although ANXA2 (annexin A2) is a substrate for a variety
of protein kinases, and plays an important role in plasmin
regulation and in cancer cell invasiveness and metastasis,
ANXA2P3 (annexin A2 pseudogene 3) is a novel marker
not being previously reported. We discuss these genes in
more detail in a later section.

Validation of similarity-driving genes in the outcomes of 
three cancers on lung cancer data
We have found that the neuroendocrine differentiation
was significantly similar to the three gene lists M, P and G
(comparison ID 4_9 in the Table 4 and Figure 3). And
Bhattacharjee et al. reported that the C2 neuroendocrine
differentiation was associated with good outcome [27].
We therefore tried to establish the utility of the 5-tran-
script signature for M-P-G similarity on the outcome of
patients with lung cancer. We expected that the 5-tran-
script signature was related to the lung cancer interpreted
as neuroendocrine if its change statistically relevants to
cancer development. On the other hand, we did not
expect a strong power to predict the outcomes, because
many non-C2 adenocarcinoma patients have short sur-
vival times. To this end, we divided the 125 lung cancer
patients into two outcome groups. We employed a robust
K-means classification method, Pam [28] calling R pack-
age cluster, to partitions (clusters) the data into 2 clusters
around medians using the 5-transcript signature. We then
used a Cox proportional hazards regression model (call-
ing the R package survival) to explore the relationship
between the pam-predicted conditions and clinical sur-
vival. The estimated hazard ratio defined by our 5-tran-
script signature was 4.47 (p = 0.035). As Figure 6 shows,
the median survival after therapy in the poor-prognosis
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subgroup was 26.7 months, compared to 71.5 months for
patients in the good-prognosis subgroup. The estimated
hazard ratio generated by the 17 transcripts was not signif-
icant (p = 0.25). It might due to the sub-optimal measure-

ment of fold-change for gene expression studies. Here we
relied on the remaining default settings of the R-package
cluster and survival, though other classifier arguments may
yield better results after sophisticated fine tuning. This

Similarity score for solid tumorsFigure 4
Similarity score for solid tumors. The similarities among three gene orders for different solid tumors. In the plot, the red 
curve corresponds to simulated observed scores and the black curve to simulated random scores. These are kernel density 
estimates of the two score distributions underlying the pAUC-score for optimal α*. The vertical red line denotes the observed 
similarity score. The bottom rugs mark the simulated values.
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result provides insights into the application of our micro-
array analysis in clinical settings and could help to iden-
tify novel targets for molecular pharmacodynamics.

We want to emphasize that we did not test the statistical
significance of the identified genes with the survival out-
comes by fitting the Cox proportional-hazards model to

each gene [29]. We believe it contains information that
the consensus change of these genes in a group, and this
information is of critical importance in elucidating the
complex genetic architecture of tumor progression, e.g.
certain biochemical path. In fact, two of the small set of
transcripts are insulin-like growth factor binding protein-
3 (IGFBP3), over-expression of which has already anno-

Comparison of methods using solid tumor dataFigure 5
Comparison of methods using solid tumor data. The ROC points for 500 prediction runs. Each time, the solid circle is 
the result from SOGL, and the diamond is the result from the same number of highest t-scores.
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tated as apoptosis promoter of cancer cells, activated by
p53 [30,31]. Moreover, it has recently been independently
detected by other studies in vivo or in vitro that the
increased expression of COL5A2 in colorectal cancer [32],

the increased expression of PTTG1 with correlation to
poor prognosis in glioma [33], and the down-regulation
of the PTGDS as an important variable in liver and blad-

Table 2: The similarity-driving genes found in the G, M, and P studies

gene rank(fold-change) rank(z-statistic)

Symbol probeID G M P G M P

IGFBP3 37319_at -11 -41 -11 -68 -53 -22
1586_at -35 -177 -52 -90 -128 -19

COL4A2 36659_at -27 -4 -111
COL4A1 39333_at -17 -11 -58
COL1A2 32306_g_at -23 -86 -1
PTGDS 38406_f_at 24 62 55

216_at 28 87 50 446 407 9
38407_r_at 34 196 52

ANXA2 769_s_at -28 -16 -57
ANXA2P3 31444_s_at -31 -17 -72
CPE 36606_at 23 147 137
FN1 31719_at -39 -61 -53
BGN 38126_at -34 -113 -41
MDK 577_at -85 -63 -37

38124_at -96 -50 -78
COL5A2 38420_at -80 -51 -151 -84 -227 -30
POSTN 1451_s_at -130 -52 -56
PTTG1 40412_at -69 -234 -86

A negative value indicates a relatively high expression level in the poor-outcome patients than in the good-outcome patients, and a positive value 
indicates a relatively low expression level in the poor-outcome patients.

Table 4: 21 Significantly similar comparisons of the ordered gene lists with the same labels used by the Figure 3

comparison ID studies α.opt # up #down #genes (0.03)

2_1 A B 0.06 162 154 43
2_2 A P 0.03 166 164 46
3_1 A B L 0.015 267 176 16
3_2 A B M 0.3 142 271 8
3_3 A B P 0.012 135 252 4
3_4 A B G 0.01 140 255 7
3_5 A L P 0.01 198 213 12
3_6 B M G 0.01 0 169 5
3_7 M P G 0.02 206 187 17
4_1 A B L M 0.3 350 296 4
4_2 A B L P 0.012 0 340 0
4_3 A B L G 0.01 0 235 0
4_4 A B M G 0.01 314 395 7
4_5 A B P G 0.01 448 243 3
4_6 A L M P 0.01 483 354 6
4_7 A L M G 0.01 483 354 6
4_8 A M P G 0.01 463 251 7
4_9 L M P G 0.01 232 396 6
5_1 A B L M G 0.01 0 481 3
5_2 A B M P G 0.01 666 419 2
5_3 A L M P G 0.01 466 424 2

The column "# up" records how many orders to count for up-regulated genes [66], and "# down" records how many orders to count for down-
regulated genes in poor outcomes.
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der cancer cell and in malignant progression forms of oral
tissue [34-36].

Discussion
Treatment of cancer patients is known to impact in several
ways on prognosis. For an identical tumor, prognosis may
be good if the condition has been diagnosed in good time

but hopeless otherwise. Also, the set of genes that show
significant changes of expression in one specific tumor
includes genes that are significant for prognosis. Genes
that are recognized statistically, especially in small data
sets, might be of little value for new patients. In contrast,
the genes that show consistent changes across all prognos-
tic gene-lists have key roles in cancer development and

Survival analysis of lung cancer patientsFigure 6
Survival analysis of lung cancer patients. Kaplan-Meier survival analysis of individual outcomes defined by 5 similarity-driv-
ing transcripts in the three solid tumors.
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progression. Therefore, to detect universal prognostic
markers, integrated analysis based on large patient groups
is required, and significance needs to be judged at the
meta-analysis stage. SOGL quantifies and tests the similar-
ities between two or more gene lists. The genes driving the
similarity are those with prominent ranks in all the lists
compared. Notwithstanding personal and other influ-
ences, these genes may genuinely indicate molecular alter-
ations common among neoplasias. Another serious
concern for bioinformatics researchers is the arbitrary or
over-fitted choice of statistical approach that yields far-
from-reliable gene sets. Information about clinical out-
comes is unstable and weak because the differences
among individuals might be large, and the challenge is to
overcome this problem. Our results show that the SOGL
method complements previous methods and is robust.
The marker genes identified on the basis of one effect size
concur with those based on another in our limited data.
Though without strongly superiority, SOGL is tend to be
more accurate than highest t-score for variable selection
by meta-analysis. Studies that in isolation do not provide
solid evidence for differential gene expression may
present striking similarities in their gene lists. Thus SOGL
can identify consensus signals from either strong or weak
effects, independently of the arbitrary threshold. Moreo-
ver, it would be of greater interest to apply SOGL to the
exploration of disease mechanisms based on these com-
monly changed genes in consensus. It is different from the
approaches targeting only the "best" marker, result of
SOGL might include genes that are so-called "redundant"
by certain "threshold" of significance or correlation in
individual study. Co-regulating genes in a biological path,
genes in a parallel path, and genes having epistatic actions
are in fact genes of critical importance in elucidating the
complex genetic architecture of a complex disease [37].
Thus SOGL might be used to uncover the hidden pattern
of genes on microarrays. Instead of distinctions of signifi-
cance or correlation, it focuses on the genes relevant to the
condition of interest that are consistently changed across
multiple studies.

Biologists usually compare independent studies address-
ing the same research question to confirm findings. It is
also possible to compare studies from slightly different
but related contexts in order to discover common mark-
ers. This is an attempt to revolutionize cancer data sets to
screen for common molecular features shared among phe-
notypically different types of cancer involving distinct
biological underpinnings, disease progression, diagnosis
and prognosis. We detected and confirmed that signifi-
cant similarities span several kinds of cancer. This result
supports the emerging notion that different types of
tumors for which prognosis is poor share common disor-
ders in the regulation of gene expression. This implies that

poor prognosis sometimes develops independently of
original cancer type.

A substantial literature suggests that the similarity-driving
genes are promising as tumor markers and as targets for
tumor therapy. The genes common to the top ends of the
lists for the outcomes of the three cancers studied here
include those originally used by Singh and Gordon [5,38]
for outcome prediction, such as IGFBP3. FN1 has also
been used in a real-time PCR-based multigene outcome
predictive model for lymphoma [39] and prostate cancer
[40]. Expression of POSTN is reportedly a bone metastasis
from breast cancer [41] and is proposed as a prognostic
marker in lung tumor invasion [42]. Dysregulation of
ANXA2 has been reported in human bone cancer metas-
tases [43] and is correlated with the clinical prognosis of
prostate cancer [44]. Additional supportive evidence of
the prognostic value of the genes in Table 2 from experi-
ment in vitro and in vivo has been cited in the last section
of result.

Our most striking finding, however, is the over-represen-
tation of genes detected from fold changes (MDK, CPE,
POSTN, COL4A1, COL11A1, COL1A2, COL5A2, IGFBP3,
FN1, ANXA2, BGN and PTGDS) and all 4 genes detected
from the z-statistic as effect size (PTTG1, COL5A2,
IGFBP3 and PTGDS) are associated with angiogenesis.
Angiogenesis leads to the formation of a large anastomo-
sing vascular network, allowing tumor growth, intravasa-
tion and the spread of metastases. MDK, which plays an
important role in the intercellular interactions involved in
angiogenesis, is reported to be strongly correlated with
poor prognosis in a large number of cases irrespective of
tissue type [45-50]. Another gene, CPE, is relatively down-
regulated in the three poor-outcome samples of carcinoid
tumors [51], and takes part in producing angiogenic fac-
tors upon the maturation of follicle stimulating hormone
[52]. Generally, the breakdown of ECM proteins, which
correlates with angiogenesis, is an essential step in cancer
invasion and metastasis [53]. We found that up-regula-
tion of 7 genes involved with the ECM is associated with
poor cancer outcomes. ECM-related genes that promoted
the strongest proliferation, including POSTN [54], BGN
[55] type I collagen [56] and type IV collagen [56], have
already been identified as cancer markers, and might be
molecular targets for gene therapy. In addition, BGN and
PTGDS have recently been reported in an in vitro angio-
genesis system [57]. The oncogenic potential of PTTG1
has been well characterized in mouse fibroblast (NIH3T3)
cells, in which it induces proliferation and promotes
tumor formation and angiogenesis [58]. It has been
reported as a prognostic marker for tumor invasiveness
and metastasis [59] and is suggested to be a potent human
oncogene [60]. These findings suggest that by inhibiting
angiogenesis, it may be possible to restrict the blood sup-
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ply to tumors and limit their ability to grow and metasta-
size. Our results support the anti-angiogenic hypothesis
concerning polymeric FN1 [40] and ANXA2 [54] and sug-
gest more candidate markers. Because the similarities
among multiple tumor tissues can not be identified by
speculation, we believe that further meta-analysis on
more data will aid further research on prognostic markers
of many cancers.

Conclusion
For a small clinical trial, it is important to summarize all
the evidence obtained and combine it with evidence from
other trials or laboratory studies. Meta-analysis enables
general conclusions to be drawn, develops support for
hypotheses, and produces an estimate of the overall
effects of a program, combining with the developed mul-
tiple statistical algorithm. This study suggests that our
meta-analysis of gene lists for different clinical or physio-
logical phenotypes provides a golden opportunity for
detecting biologically relevant gene dysregulations
between different phenotypes and possibly leading to
improved diagnostic accuracy, or generating insightful
molecular mechanisms to build the underlying bridges
between different phenotypes. To this end, SOGL is supe-
rior to other measurements of gene selection for meta-
analysis of clinical microarrays for handling study-to-
study differences. It focuses on the genes relevant to the
condition of interest that are consistently changed across
multiple studies, rather than on distinctions of signifi-
cance or correlation. Our study has assessed its potential
for identifying prognostic markers of multiple cancer
types from studies of different laboratories, especially for
studies with large inter-individual variations or small
sample size. The proposed method is a complementarity
and enlargement algorithm for research on gene expres-
sion.

In addition, our results suggest and confirm that a com-
mon molecular mechanism underlies the poor outcomes
of several kinds of cancer. The genes we detected have
important implications for our understanding of the
potential involvement of angiogenesis in the malignant
progression of primary tumors. It suggests that meta-anal-
ysis has considerable potential in clinical studies of gene
expression profiles, which is a focus of active research for
computer-assisted diagnosis. To ensure reproducibility of
our biological findings, larger numbers representing a
greater percentage of disease is required. It is expected that
further studies incorporating more data sets with larger
number of samples will identify universal prognostic
markers in cancer.

Methods
Transcript expression data and outcome
In transcriptional research, the raw data have to be cor-
rected for different conditions by normalization. We nor-
malized all raw profiling files on an additive scale by pre-
processing methods for stabilizing variance [61]. "An
additive scale" means transforming the intensities to a
scale where the variance is approximately independent of
the mean intensity. This can be achieved by calibrating for
sample-to-sample variations through shifting and scaling,
or by log-transforming the data. For simplicity, we
focused on the published microarray studies of cancer
outcomes based on Affymetrix chips, which have suffi-
cient data and have gained acceptance in recent years
because of the reliable annotation and identification and
the good hybridization characteristics of oligonucleotides
with wide-ranging expression levels [62]. Only the best-
matched transcripts [63] were used to compare studies
based on different chips.

The definitions of outcomes for all the studies we col-
lected strictly followed those of the original papers. To
evaluate the power of signature detection in transcript
expression and the accuracy of prediction by our adopted
method, we integrated all the relatively non-malignant
outcomes as "good". In contrast, the patients were
grouped as "poor" if they suffered shorter survival or if
there was recurrence within the observed time. The data
sets were:

• Leukemia C: The data came from research on adult T-
cell acute lymphoblastic leukemia (ALL) [64]. The good
prognosis group consisted of 7 patients in complete clini-
cal remission (CCR) and 2 patients who had not relapsed
within two years. The poor prognosis group consisted of 6
refractory patients and 12 who had relapsed within two
years.

• Leukemia Y: The data included 327 children suffering
leukemia [23]. Excluding the patients without outcome
information, The good group consisted of 201 CCR
patients, while the poor responder group consisted of 44
patients with different types of relapse.

• Leukemia R: 93 patients with prognostic information
from above study were examined the gene expression pro-
filing by Ross et al. using another microarray chip [22].
The good prognosis group consisted of 71 CCR patients.
The poor prognosis group consisted of 16 relapsed
patients and six 2nd AML patients.

• Mesothelioma: A prognostic study on mesothelioma, a
lethal neoplasia of the pleura [5]. The good responder
group consisted of 8 patients who survived more than sev-
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enteen months, while the 10 patients in the poor
responder group survived less than six months.

• Prostate: This comparison was constructed from 21
prostate tumor samples with respect to recurrence follow-
ing surgery [38]. The good prognosis group consisted of
13 patients who had shown no relapse for at least four
years, and the poor outcome groups consisted of 8 relapse
patients.

• Glioma: This comparison was based on the data of Shai
et al. [65]. The good prognosis group consisted of 8 pri-
mary (not secondary) glioblastoma multiforme (GBM)
patients of various pathological types and grades with a
survival time of more than three years, while the poor
responder group consisted of 10 malignant glioma
patients who survived less than one year.

• Breast 1: The data were taken from a prognostic study of
primary breast tumors by Huang et al. [3]. In total, 37
patients were included. The good prognosis group con-
sisted of 19 "low-risk" patients, and the poor responder
group consisted of 18 patients identified as "high-risk" by
their lymph-node status.

• Breast 2: These data were also described by Huang et al.
[3]. Here, however, the prognostic groups were defined
directly by clinical outcome. The good responder group
consisted of 34 patients who were recurrence-free over
three years, while the poor responder group consisted of
18 patients who suffered recurrent disease within the first
three years after surgery.

• Lung: The data included 126 adenocarcinoma (one sub-
type of lung cancer) cases without metastases reported by
Bhattacharjee et al. [27]. The lung cancer data set did not
define the outcome classification for each case. However,
the author reported that the neuroendocrine C2 adeno-
carcinoma were associated with a less favorable survival
outcome. Therefore the poor responder group consisted
of 9 neuroendocrine C2 adenocarcinoma patients, while

the good responder group consisted of all the other 117
adenocarcinoma patients.

Detecting similarities amongst ordered gene lists and their 
contributing genes

SOGL introduces a comparison between two states
[21,66]. Preferably, one state relates to a good outcome or
prognosis and the other to a bad outcome. Let D* be the
collection of studies. Applying a standard statistic to each

study, d ∈ D*, we can obtain a gene list  representing

the differences in expression between samples in the
poor- and good-outcome classes. The original similarity
score, Sn, is based on the number of overlapping genes in

the top n ranks deriving from k = 2 gene lists [21,66]. We
can assign a more general similarity score to a comparison
of several gene lists as Table 3 shows. Thus the extended
SOGL score is here defined as a summation of weighted
partial intersection sizes on k ends of ordered gene lists:

where decreasing weights (w) are used as: . In

this way, we strengthen the two ends of the integrated

transcript orders. By setting the parameter α, one can cali-
brate the weight to decide that how deeply these gene
orders are to be investigated.

To calibrate an adaptive α* to the gene lists of interest, we
partially (80%) resampled the class labels of patients in
the original raw data [21,66]. Class-balanced resampling
from the good- and poor-outcome groups estimates the
signal (alternative score), and class-shuffled resampling in
each study simulates background noise of the same size
(noise score). This resampling for estimation step was iter-
ated C (= 500) times. To evaluate the separation of these
two score distributions, we applied the pAUC-score [26]
resulting from a comparison of signal and noise. Fixing a
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Table 3: Illustration of the cardinality of the intersection On(GD)

n G1 G2 G3 On(G1,2,3)

1 a h k 0
2 k w z 0
3 h b h 1
4 m K b 2
5 t a t 2
6 w t i 3
... ... ... ... ...

Rows correspond to the orderings (n), columns to the different studies. Gd(n) denotes the n'th most strongly up-regulated transcript in study d that 
changes when poor-outcome is compared with good-outcome.
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maximally acceptable false positive rate w0, we measured
separability as the area under ROC(w) with w <w0 as

where w was the false positive rate, and ROC(w) was the
true positive rate. A high pAUC-score indicates good sep-
aration. Given a parameter αi, the separation of alternative
scores and noise scores indicates the similarity between
the leading genes in these gene orders. For a predefined
finite grid of parameters, then we can pick the value pro-
viding the best discrimination between signal and noise.
The significance was then evaluated for a given α. To this
end, we simulated the distribution of similarity score
under assumption of unrelated lists and generated B (=
1000) set of ternately random ranks to calculate the ran-
dom scores. Significance was evaluated by computing an
empirical p-value for the observed scores from the B ran-
dom scores.

The similarity-driving genes should be consistently repre-
sented among the leading items in the gene orders. One

can count a cutoff value n* such as  to

accounts for 95% of the score Sα*, given an identical α*.

Note that SOGL is the sum of the scores for the two ends.
Thus we identify the similarity scores for up- and down-
regulation, ignoring genes for which the isolated up- or
down-regulation yields scores no higher than the 99th
percentile of the random scores. The expected random
scores are given by B (= 1000) shuffled orderings. For
example, if a certain significance is due to the most
strongly down-regulated genes but not to the most
strongly up-regulated genes, we ignore the intersection of
up-regulated genes.

Estimating the accuracy of prediction
We expected that combined studies will predict the out-
come for single patients better than a single study can,
assuming that there is commonality in the dysregulation
of gene expression for certain malignant processes. To val-
idate this assumption, we calculated the number of cor-
rect predictions for each study via two steps. (1) All
patients from three similar studies were mixed into one
integrated data set to cross-validate the outer and inner
loops. This resulted in a vote matrix containing the
number of times each sample was assigned to each class
in the outer cross-validation loop. We counted the coinci-
dences between true class and consensus class for samples
study by study to obtain three tables. (2) The same cross-
validation was run on single data to obtain independent
tables for each study. For both steps, we repeated the

cross-validation with the same stratified strategy (class-
balanced folds [67]) and adopted the identified variable
selection method and the classification method. We
assume that we can combine data from different studies
into one replicated data set, if the gene lists are signifi-
cantly similar for a certain two-condition test.

We next compared SOGL with the traditional highest t-
score to select variables for prediction, carrying out the
same classification and patient clustering strategy before
meta-analysis. To avoid study-to-study bias or prevalence
of smaller sample sizes, we randomly employed class-bal-
anced [67] and study-balanced training sets. "Class-bal-
anced" means that we guarantee the combined training
set comprises approximately half poor-outcome and half
good-outcome patients. "Study-balance" means that we
guarantee the training set contains all the different
tumors, and keeps more or less the same proportion of
each. Patients not used in the combined training set were
used for validation. For SOGL variable selection, we
focused on a fixed number of orderings to calculate the
similarity score, and selected the intersection to account
for 95% of the score. The resulting variables were used to
predict the outcomes for patients in the associated valida-
tion set after tuning hyperparameters of SVM. After this
step, we recorded the number of selected genes, then
picked the same number of genes with the highest t-statis-
tic to estimate the accuracy of prediction in the validation
set. The above training/validation step was iterated D (=
500) times carrying SVM algorithm performing linear ker-
nel by R package e1071. To compare the two variable-
selection methods, we drew a Receiver Operating Charac-
teristic (ROC) curve from the correct error metrics gener-
ated from the D repeats of training/validation step for
each test. ROC is a plot of the true positive rate (TPR) on
the y axis against the false positive rate (FPR) on the x axis
for the different possible cut-off points of a diagnostic test.
Thus, for every observed FPR, we calculated the mean
value of the corresponding TPR to plot the point on the
ROC curve. Let u be the good prognostic for the true good-
outcome patients; ve the bad prognostic for the true good-
outcome patients; t be the good prognostic for the true
bad-outcome patients; and s be the bad prognostic for the
true bad-outcome patients. For the null hypothesis that all
patients are poor outcome, the sensitivity and specificity
are:

TPR(poor - outcome) = s/(s + t); FPR(poor - outcome) = v/(u +
v).

We measured the area under the ROC curves to evaluate
the difference between SOGL and t-scores.
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