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Abstract

Background: Current approaches to parameter estimation are often inappropriate or
inconvenient for the modelling of complex biological systems. For systems described by
nonlinear equations, the conventional approach is to first numerically integrate the
model, and then, in a second a posteriori step, check for consistency with experimental
constraints. Hence, only single parameter sets can be considered at a time.
Consequently, it is impossible to conclude that the "best" solution was identified or that
no good solution exists, because parameter spaces typically cannot be explored in a
reasonable amount of time.

Results: We introduce a novel approach based on semidefinite programming to
directly identify consistent steady state concentrations for systems consisting of mass
action kinetics, i.e., polynomial equations and inequality constraints. The duality
properties of semidefinite programming allow to rigorously certify infeasibility for whole
regions of parameter space, thus enabling the simultaneous multi-dimensional analysis
of entire parameter sets.

Conclusion: Our algorithm reduces the computational effort of parameter estimation
by several orders of magnitude, as illustrated through conceptual sample problems. Of
particular relevance for systems biology, the approach can discriminate between
structurally different candidate models by proving inconsistency with the available data.

Background

Systems biology is a framework integrating diverse disci-
plines such as molecular biology and genetics with math-
ematical modelling and simulation, where computational
models assume an increasingly important role in recent
years. Simulations are an essential element for quantita-
tive understanding because the highly nonlinear behavior

of complex biological systems can sometimes be counter-
intuitive [1,2]. System identification, which comprises
both parameter estimation and structural network analy-
sis in biological systems, can be extremely difficult since
the governing principles and topological interactions are
often not known [3]. The flood of data from novel high-
throughput and genome-wide analyses further adds to the
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problem, and their diversity poses additional challenges
for consistency testing and integration. Exact values of
kinetic parameters (e.g., association or dissociation con-
stants for protein-protein interaction) are very difficult to
determine experimentally, because they are a function of
the heterogeneous spatial and developmental cellular
conditions.

Most approaches to mathematical modelling of biological
systems either avoid parametrization by focusing on static
steady-state models of reaction stoichiometry or topology
[4,5], approximate behavior and regulation through heu-
ristic-based approaches [6,7], or reduce the solution space
by applying enzyme kinetics such as in traditional
Michaelis-Menten or linlog kinetics, respectively [8,9].
While this enables the detailed modelling of time-
dependent processes [10], the underlying quasi steady-
state assumption a priori neglects the dynamics of enzyme
complexes. Thus, in many cases the use of mass-action
kinetics in the form of elementary reactions becomes nec-
essary, for instance when some of the enzyme kinetics do
not follow Michaelis-Menten [11], a steady-state of the
system cannot be assumed [12], transport functions have
to be described [13] or the network structure is uncertain
[14,15].

The systems of equations that arise in time-dependent
models based on chemo-physical kinetics of any kind are
usually hard to parameterize, since their components are
tightly coupled and there is limited information about the
time evolution of the concentrations of all the species.
Several approaches for efficient system identification have
been developed, ranging from reduction of system dimen-
sionality [16] to decoupling of the differential equations
[17]. The actual parametrization algorithm, here referred
to as the wrapping algorithm, is of particular importance
[18] and was for example highlighted in a comparison
between gradient-based methods and genetic and evolu-
tionary algorithms [19]. All of these approaches however
consider single, isolated points in the parameter space;
this can be very time-consuming due to the iterative
nature of the parametrization process [19] and further-
more cannot guarantee that the algorithm finds possible
solutions.

We present here a conceptually novel approach based on
techniques from numerical convex optimization, in par-
ticular semidefinite programming (SDP) [20], that can effi-
ciently partition the parameter space into feasible and
infeasible regions. Basically, our approach allows to ana-
lyze sets of mass action kinetics, i.e., ordinary differential
equations (ODEs) at steady state, under consideration of
additional algebraic equality and inequality constraints
(e.g., mass balances or formation rates). It is thus possible
to simultaneously consider all the available information
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during the parameter estimation itself, rather than check-
ing consistency a posteriori as in most current methods.

Previous applications used SDP either for rational experi-
mental design based on covariance analysis [21] or for the
derivation of barrier certificates by construction of surro-
gate models [22]. In contrast, the algorithm presented
here needs no problem reformulation but is based directly
on the original parameter estimation problem. By exploit-
ing convexity in the search for feasible steady state concen-
trations, our methods enable a multi-dimensional
perturbation analysis for sets of parameters. Our algo-
rithm therefore provides rigorous proofs for the classifica-
tion of the parameter space into feasible and infeasible
regions, thus reducing the number of points needed for
consideration by several orders of magnitude.

Methods

Steady state analysis

The natural starting point in the analysis of dynamical sys-
tems in biology is the determination of a steady state equi-
librium of the model, since it represents the reference
point for any kind of perturbation introduced to the sys-
tem. It is therefore of utmost importance that the species'
concentrations at an equilibrium point, which is hence-
forth synonymously referred to as steady state, are realistic
and validated against as much data as possible.

In the present study we consider models in the form of
mass action kinetics, hence all reaction rates are direct
functions of the concentrations y and the kinetic constants
k. At an equilibrium point, the corresponding system of n
ODE:s reduces to a set of polynomial equations
filk,ky)=0, i=1,..,n (1)

Besides the equations above, the state concentrations also
have to satisfy various kinds of constraints based on exper-
imental data, e.g., formation rates or overall mass bal-
ances. Since these will in practice inevitably include
certain errors, inequality constraints also arise naturally.
Consider for instance the general mass balance equations,
here described by a matrix M, which when multiplied
with the array of state variables y satisfy

M-y=b, MeRmxn (2)

where b € R™ is the total amount of each species. Hence,
Eqn. (2) represents overall mass balances while Eqn. (1)
comprises the mass action kinetics, i.e., the formation and
consumption rates of each single species. Since compo-
nents can exist both unbound or bound in a complex,
respectively, there are in general fewer mass balance equa-
tions than differential equations (n > m). An experimental
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error £ can be taken into account by relaxing the exact
mass balance equations to inequalities where

(1-8)b<M-y<(1+8-b. (3)

Thus, the parameter estimation problem can be rewritten
as a nonlinear optimization

min  fo(k,y)
Y

st. fi(ky)=0 (4)
8i(k,y)20,

that depends on the steady state concentrations y and the
set of kinetic parameters k. Here, f, (k, y) is an arbitrary
objective function, e.g., the overall model error, the equal-
ity constraints f; (k, y) represent the steady state condition
and g (k, y) is a set of inequality constraints, e.g., the mass
balances.

Semidefinite programming

In the following, we will introduce a reformulation of the
generalized parameter estimation problem (4) based on
semidefinite programming (SDP). SDP is a specific kind
of convex optimization problem [20,23,24], with very
appealing numerical properties. An SDP problem corre-
sponds to the optimization of a linear function subject to
a matrix inequality. The only prerequisite for the applica-
bility of the SDP is a quadratic (or polynomial) represen-
tation of the original set of equalities and inequalities (4),
which allows a reformulation/relaxation in terms of sym-
metric matrices. For clarity of exposition, we focus on the
case where the f; are quadratic and the g are linear,
although our methods extend to the fully polynomial
case; see [25] for details.

For the SDP relaxation we define new variables x, X in
terms of the original state variables y by:

1 1 47
x :[ :|e R™ X=x.aT = V| g Xty (5)
Y y w'

Based on these definitions, the original problem (4),
including both steady state equations and data consist-
ency inequalities, can be rewritten as:

min xTQObjx
X

s.t. xTQl-x =
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Here, the symmetric matrix Q,;; defines an objective func-
tion (e.g., the identity matrix), that selects a specific solu-
tion out of the possibly many equilibria. The symmetric
matrices Q; correspond to the set of ODEs at steady state
(Eqn. (1)) and the matrix L to linear inequality constraints
derived, for instance, from approximate mass-balance
equations (Eqn. (3)). Note, that in general the matrices Q;
are a function of the set of (generally unknown) rate
parameters k;, while L, which represents the mass bal-
ances, is not. The basic convex relaxation described in the
Appendix then yields the following SDP relaxation of (6):

min Tr - X
X (Qob} )

st.  Tr(Q; - X) =
T
Tr(e; -1 -X) =1 (7)
L-X ¢ >0
L-x-L >0
X >0,

where Tr is the trace operator, which adds up the diagonal
elements, and the inequality in the last line indicates that
the matrix X must be positive semidefinite, i.e., all its
eigenvalues should be greater than or equal to zero. The
vector e, is an all-zero vector, except for its first entry,
which equals one to enforce X;; = 1. The set of feasible
solutions, i.e., the set of matrices X that satisfy the con-
straints, is always a convex set. Recall that the matrix X as
defined in Eqn. (5) is by construction a rank one matrix.
This rank condition, however, is not guaranteed for the X
obtained from the optimization, and thus this property
has to be checked independently after a solution to the
SDP is computed. This is necessary because the relaxed
problem formulation (7) is less strict then the original
form (6), hence the set of feasible solutions becomes
larger. Note, that introduction of additional nonlinear
constraints helps to reduce the set of " false positive" solu-
tions, an aspect discussed in more detail in an additional
section below. Finally, in the particular case of Q= 0, the
problem reduces to whether or not the inequality can be
satisfied for some matrix X. In this case, the SDP is referred
to as a feasibility problem, where we are interested in prov-
ing the mere existence of solutions rather than finding any
particular one.

Dual SDP problems

The convexity of SDP has made it possible to develop
sophisticated and reliable analytical and numerical meth-
ods to solve them [20]. A very important feature of SDP
problems, from both the theoretical and applied view-
points, is the associated duality theory (see also Appendix).
For every SDP of the form (7) (usually called the primal
problem), there is another associated SDP, called the dual
problem, which can be derived via Lagrangian duality:
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max ¥
st Quy ”y-el»elT+2/'l1--Qi+el»1‘T»L+LT-r-e1T+LT-S<L, (8)
i

where the constraint represents a matrix inequality with r
20,520, S;=0. The dual variables y, 4, r, S are Lagrange
multipliers associated to the different constraints in the
primal problem. In the case of feasibility problems (i.e.,
Q= 0), the dual problem can be used to certify the non-
existence of solutions of the primal. This property will be
crucial in our developments.

Results

Parameter estimation for nonlinear mass action kinetics at
steady state

Identifying a satisfactory equilibrium point of a set of
ODEs requires the solution of a system of algebraic equa-
tions (those that define the steady-state conditions) sub-
ject to additional equality or inequality constraints
(consistency with experimental data). This can be time-
demanding, because the system must often be simulated
from a given set of initial conditions until it settles to an
equilibrium [11,26]. This is particularly troublesome
when the computed solution violates the experimental
constraints and must hence be discarded. Traditional heu-
ristic tools for this optimization problem require, for
instance, an iterative procedure where the candidate sets
of parameters are generated by some kind of wrapping
parametrization algorithm (e.g., gradient-based or evolu-
tionary), and a subsequent consistency check by integrat-
ing the system equations for these parameter values [19].
This trial and error method can be very time consuming
because it only allows to check consistency in a subse-
quent step. Hence, an algorithm that searches for steady
state solutions but is guaranteed to be consistent with all
experimental data would be extremely valuable.

SDP and nonlinear systems of equations

As opposed to these "indirect" techniques, our method is
a conceptually novel direct approach based on a convex
relaxation of the generalized parameter estimation prob-
lem at steady state (4). Our techniques apply whenever
the model presentation is in polynomial form, since in
this case the resulting system can be relaxed into a semidef-
inite programming problem (6), which in turn can be
solved using efficient interior-point methods [27-30].

We illustrate the application of our approach with the fol-
lowing nonlinear system given by

y

[A]+[B] —— [A-B]
[AB] —2 [A-B' (9)
[AB"] —s [A]+[B].
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Here, two components A and B form a complex, A e B,
that transforms into a modified form, A e B*, and finally
decays into its building blocks. This system yields a set of
four ODEs that at steady state reduces to a polynomial sys-
tem:

[Al: ~y [A][B] + ks -[A-B"] =0
[Bl: ~ky -[A][Bl+ ks -[AB'] =0
[AB]: ko -[A]-[B] =k -[A<B] =0
[A*B"]: k,:[AsB]-k3-[AB"]  =0.
If it is furthermore known from experimental data that in
equimolar concentrations of A and B one third of them is

unbound while the rest is associated in one of both com-
plexes, we can write mass balances as

(10)

1 1 w0, 2
Al=—=, [B]==, [A«B]+[AB|==, 11
(A=, [Bl=5, [ABl+[AB"] =2 (1)
which have to be kept within a certain experimental accu-
racy € = 20%.

The example above is thus a system of nonlinear polyno-
mial relations based on mass action kinetics that com-
prises both equalities (Eqns. (10)) and inequalities (Eqns.
(11)). As explained earlier, we define the state variables
y'= (1AL [B], [A * B], [A ¢ B*]), (12)

which are then used to produce a new matrix variable X
according to Eqn. (5). To write the SDP problem, the
equality and inequality constraints, Eqns. (10) and Eqns.
(11), respectively, have to be rewritten into the form of
Eqn. (6). For example, the steady state equation for spe-
cies B becomes

0 0 0 0 05k
0 0 -05k 0 0
Q=] o -05k 0 o0 0 | (13)
0 0 0 0 o0
05k 0 0 0 0

while the rows of L corresponding to the mass balance
inequalities for component A are

(-1/3-(1-¢) 1 0 00
LA_(1/3-(1+8) 100 0f (14)

The feasible set of the relaxed SDP problem (7) is always
convex and includes all the equilibria of the original prob-
lem. Thus, SDP optimization enables the possibility of
directly solving the underlying nonlinear system of alge-
braic equations, or of proving its inconsistency. Further-
more, this property makes possible a direct consistency
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check based on feasibility or infeasibility of the SDP opti-
mization. Typically, a parameterization approach would
require identification of a stable steady state, either by
root-finding or numerical integration, at which point the
simulation can be verified or falsified for a given set of
parameters k. In contrast, the SDP-based approach
bypasses this time consuming step: if the problem (7) is
infeasible the parameters k are inconsistent with the
experimental data, and if a feasible solution of rank one
can be found, the given parameters are valid.

For our running example, consider a set of parameters, k,
=3,k,=1andk; =1, respectively, for which the SDP is fea-
sible. Let the solution be

X=1/9-

(15)

w W W W v
—_ = = = W
—_ = = = W
—_— e = = W
— e = = W

which is rank one. Using the largest eigenvalue of X to
scale the corresponding eigenvector yields

xL; =(1,1/3,1/3,1/3,1/3) and yL, = (1/3,1/3,1/3,1/3).

A simple check shows that Yz;l directly fulfills the steady

state condition and all additional constraints.

Additional nonlinear constraints

The decision variable X in Eqn. (5) is by construction a
rank one matrix. This property of X, however, is not nec-
essarily guaranteed when solving the SDP relaxation (7)
(including this constraint would destroy convexity).
Hence, it has to be verified independently once the opti-
mization is completed. From our numerical experience, a
very limited number of solutions fails the rank one condi-
tion such that the corresponding results have to be dis-
carded. A simple but effective combination of constraints,
however, allows to reduce the number of these "false pos-
itive" solutions: since most of the inequality constraints
are linear (e.g., mass balance equations), they can be used
to tighten the description of the feasible set by using
redundant constraints. By exhaustive multiplication of m
pairs of linear inequality constraints, i.e. each upper
bound is multiplied with every possible lower bound,

m
( ) ] new quadratic inequalities are generated. This mul-

tiplication of constraints corresponds to the term L-X- LT
appearing in (7). Note, that even the product of a lower
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and an upper bound of the same constraint can be help-
ful, because the thus generated matrix has nonzero diago-
nal (i.e., quadratic) elements. These additional nonlinear
algebraic constraints improve the performance of the
algorithm significantly, because the set of feasible solu-
tions that do not meet the rank one condition becomes
much smaller.

Analyzing whole regions of parameter space

The approach presented in the previous paragraphs can
directly handle nonlinear algebraic equations in polyno-
mial form. However, it considers only single sets of param-
eters, that have to be provided by an external parameter
estimation algorithm. Since in general the parameter
space can be quite large, it would be very helpful to be
able to discard a priori large regions of the space, where we
know for sure that no consistent rates can be found. As we
will see, we can achieve this goal in a very efficient way by
considering the dual optimization problem (8) presented
earlier.

As in general convex optimization, infeasibility of the pri-
mal problem can be proven by the existence of a dual fea-
sible solution, and conversely, dual infeasibility follows
from a primal solution. Thus, the existence of dual varia-
bles satisfying the dual constraints in (8) directly proves
primal infeasibility. This criterion can be used to yield an
efficient procedure for the analysis of the parameter space.
Therein, large regions can be detected where the given
model is inconsistent with the experimental data. The fea-
sible region will usually represent a small fraction in the
overall parameter space. Therefore an efficient search of
the parameter space will focus rather on negative (incon-
sistent) than positive (consistent) regions.

The use of SDP-based parametrizations allows to obtain
exactly this information. Once dual feasibility has been
proven for a given set of parameters, this point in the solu-
tion space is associated to specific values of the dual vari-
ables. This information can then be used to extend the
feasibility check to larger regions in the parameter space.
Recall that only the matrices Q;, i.e., the mass action kinet-
ics, are actually dependent on the rate parameters k. We
thus used a bisection approach in which the current param-
eter set is an n-dimensional box. Since this is a polytope,
it follows that if the conditions are valid on the corners
then they are also valid on the interior, and thus can be
neglected for further analysis. In particular, we determine
a factor 7 by which each parameter can be perturbed such
that dual feasibility holds. We remark that the choice of
cuboid-like regions is only a matter of convenience, the
results can be easily extended in a direct fashion to any
other polyhedral partition scheme (for instance, using
simplices).
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A formal proof of the guaranteed inconsistency of whole
regions is provided in the Appendix. The pseudo-code of
the complete algorithm for an efficient classification of
the parameter space in feasible and infeasible regions is
shown in Table 1. The procedure extends the infeasibility
information from an isolated set of parameters to larger
regions of parameter space by using SDP optimization. All
parameter sets which lie in these extended regions need
not to be considered any longer for feasibility purposes.
Even more, in contrast to common grid-like discretization
approaches, the algorithm allows an efficient and contin-
uous exploration of the parameter space without undergo-
ing the danger of missing a feasible solution by accident.

Efficient classification of the parameter space

The results in Fig. 1 correspond to the example discussed
earlier (further examples are shown in the Appendix). In
the figure, the contour plot representing the feasible and
infeasible regions in the 3-dimensional parameter space
was obtained by exhaustive evaluation of sets of parame-
ters. Particular solutions obtained with the SDP-based
algorithm that prove infeasibility of whole regions are
indicated in the graph. The respective regions of feasibility
and infeasibility are shown, as well as a few cuboids that
illustrate how we can discard the existence of solutions on
whole regions of parameter space. Each box is obtained
from the solution of a single small SDP optimization
problem. It is clear that the SDP-based search in the infea-
sible region of the parameter space provides a powerful
analysis tool, as it allows the efficient exploration of
whole areas instead of the time consuming consistency
check at single points. The figure also shows how the size
of the boxes varies depending on the relative position
(Fig. 1). In other words, the allowed perturbation 7
increases with the distance from the feasible region. This

Table I: Pseudo-code for efficient classification of the parameter
space.

let K = Rnbe the parameter space
begin: set K* = K and K g
while (K* = &)
consider loop i
generate parameter subset (k; + Ak) € K*
perform dual SDP optimization
if solution (5 A, P, r, S) exists
/1 k;is dual feasible/primal infeasible
while (dual feasibility holds)
increase Ak;
end
* = K¥\(k; £ Ak;)
=K

inconsistent —

Kinconsistent inconsistent - (kl ES Ak,)

end
end

Algorithm for exploration of the parameter space. The set Kj, oncistent
contains parameter values for which the equations and the measured
date are incompatible.
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is highlighted in Fig. 2, where the distribution of 7 for one
slice of the feasible region (in the k; - k; plane) is shown.
Finally, since the systems of equations and inequalities are
all linear in k, the feasible region is invariant under non-
negative scalings (i.e., it is a cone), as can be seen in the
three-dimensional plot in Fig. 1.

Rigorous proofs for model discrimination

The basic algorithm for exploration of the parameter
space can also be used to discriminate between different
model alternatives, for instance when the system structure
is uncertain [14]. This is possible since SDP allows for the
exploration of the complete solution space. If this is the
case, the failure of parametrization (i.e., the lack of suita-
ble values for the model parameters) directly proves
model inconsistency. Moreover, we avoid the danger of
missing possible solutions by accident since we consider
whole regions of parameter space instead of isolated
points. As an example, consider a branching point in a
metabolic pathway (Fig. 3). It is known that all conver-
sion steps are catalyzed by enzymes (E;). However, while
the reaction scheme for the pathway from A to C via B is
well established, it may not be known whether the conver-
sion from B to D is catalyzed by enzyme E; or whether
component A exerts some cooperative effect (Fig. 3). To
discriminate between these two scenarios, two model

Figure |

Graph of the feasible parameter space. Contour plot of
the three-dimensional parameter space of k|, k;, and k; from
the example given in the text. The cone with the black edges
marks the feasible region, infeasible areas are illustrated as
cuboids with gray edges. Gray circles represent the original
set of parameters where the bisection search started.
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Maximal possible parameter perturbation. The size 7
of the maximal possible perturbation in the example given in
the text is shown as a function of k| and k; (here, k, = 1). The
size of the perturbation increases with the distance from the
feasible region and can be used to further refine the search
directions in parameter space.

alternatives that describe possible reaction schemes can be
proposed (Table 2).

The consistency of both models is analyzed through
defined variations in the incoming carbon flux v;: An arti-
ficial data set is generated by simulation of model II, that
in turn is used for parameter analysis (Figs. 3 and 4).
Hence, two steady states can be simultaneously consid-
ered for SDP optimization. As expected, parameter esti-
mation of model II identifies the feasible region in the
solution space without any problems. In contrast, no fea-
sible set of parameters is found for model I when an exper-
imental error of & = 0.25 is assumed (Fig. 4). This is a
direct proof that model I is incorrect and needs to be mod-
ified. Only when an intolerably high deviation of £= 0.75
is allowed, the parametrization algorithm finds solutions
that are consistent with the experimental data (Fig. 4). The
basic ideas underlying this small example can be directly
applied to real biological problem sets where the structure
is unknown. Since the search of the parameter space can
be completed in a few steps, SDP provides a powerful tool
for model discrimination and can be used for model
invalidation and subsequent redesign of experimental set-
ups.

Discussion

We introduced a conceptually novel approach for param-
eter estimation and parameter space classification based
on a direct search for solutions that are simultaneously

http://www.biomedcentral.com/1471-2105/8/12

consistent with the steady-state concentrations and the
inequalities arising from experimental data. The method
is based on semidefinite optimization, whose convexity
properties allow for the direct solution (of relaxations) of
nonlinear optimization problems in polynomial form. It
is thus possible to establish the possible infeasibility of
steady state concentrations for a given set of parameters
under direct consideration of experimental constraints.
Our approach avoids the time-consuming numerical
identification of a stable steady state, where feasibility can
only be validated in retrospective [11,26]. Besides the
direct consistency analysis for single sets of parameters,
the duality properties of SDP optimization problems
allow the direct proof of feasibility (or infeasibility) of
whole regions in the parameter space instead of the mere
consideration of isolated spots. This significantly reduces
the total number of possibilities that have to be evaluated.
Moreover, our approach is based on a simple convex
relaxation of the original parametrization problem and
can hence easily be applied without time consuming
problem reformulation.

The possibility of discarding whole regions of the param-
eter space from further exploration is extremely valuable
for model discrimination, where determination of model
consistency or inconsistency with experimental data is the
desired goal [14]. This approach can be very time-inten-
sive due to the trial and error method that includes several
integrations per set of parameters. Our algorithm thus
provides an valuable tool for model discrimination.

Despite the immediate practical applications of our
method, further work is necessary to fully exploit the total
possibilities of the algorithm presented. Since the prob-
lem size increases with the number of variables of the sys-
tem, the corresponding optimization problems will
inevitably result in large matrices. Current versions of SDP
solvers [27-30], however, slow down considerably when
larger problem sets with more than about 30 state varia-
bles were analyzed. Stiffness of the underlying system of
equations is another difficulty, which remains unsolved
to date. Hence, problems which large differences in the
kinetic parameters, e.g., if Michaelis-Menten kinetics are
transformed to mass action kinetics, can probably not be
solved without sophisticated preprocessing. An adequate
way of scaling therefore needs to be developed. Addition-
ally, the efficiency of the wrapping parametrization algo-
rithm itself could also be improved, since currently there
is no control level algorithm that supervises the search
direction in the parameter space. Valuable information,
however, is available, since the shape of the boxes indi-
cates the maximal possible perturbation 7, and this could
be used to determine the direction of the next step (Fig. 2).
A promising approach would thus be a method that
simultaneously uses primal and dual information.
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Figure 3

http://www.biomedcentral.com/1471-2105/8/12

Uncertain model structure. It is unknown whether A exerts a positive influence on the conversion of B to D. By numerical
integration of model alternative I, concentrations were obtained and used in lieu of experimental data. Overall component
concentrations, a step response upon an increase of v, and corresponding steady states (circle) are indicated in the inlays next

to each component.

Conclusion

In conclusion, we believe the results shown here are an
important first step towards the integration of SDP as a
tool to solve and analyze polynomial systems in chemical
and biochemical engineering. Since our SDP-based algo-
rithm allows to increase the efficiency of the pivotal steps
in parameter estimation, it has great potential for the
identification of nonlinear systems that prevail in biology.
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Appendix

Convex relaxation

Consider a set of quadratic equations and linear inequali-
ties for the vector x as defined in (5).
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Table 2: Comparison of model alternatives for enzymatic
conversion of B to D.

Model alternative I:

[B]+[F;] k? [B-E;] —as s [DJ+[E]

Model alternative II:

kon,3
[B]+[Es] ——= [B-Es]
off 3
kOYl -
[BeEs] +[A] <_k—3b> [BeEgeA] —latst s [D]+[BeEs]
off ,3b
xT-Q;-x=0, L-x20. (16)

Defining X = x-xT, we find that these equations can be
rewritten as affine expressions in the matrix X. A semidef-
inite relaxation of Eqns. (16) is then obtained by replacing
the nonconvex constraint X = x-xT with the weaker (but
convex) alternative:

X=0,
yielding the system

Tr(Q,-X) =0,L-X-¢,20, (17)

withX,;;=1, X 0.
In general, the original (Eqns. (16)) and the new (Eqns.
(17)) formulations are equivalent only if the matrix X has
rank one. However, since such rank constraint is noncon-
vex, it cannot be directly included in the SDP optimiza-
tion. This relaxation causes the set of solutions to becomes
larger, and as a consequence the rank condition must be
checked independently after the optimization is com-
pleted. Notice also that the formulation can be strength-
ened by adding the redundant constraints L- X-LT> 0.

Weak Duality in SDP problems
A typical SDP problem in primal form is

min Tr(C-X)
st Tr(A;-X)=b,i=1,..,m (18)
X 0.

The associated dual problem can be stated as

http://www.biomedcentral.com/1471-2105/8/12

max v’z

m (19)
S.t zi:l AiziﬁC,
where b = (by,...,b,,), and the vector z = (z,,...,z,,) contains
the dual decision variables.

The key relationship between the primal and the dual
problem is the fact that feasible solutions of one can be
used to bound the values of the other problem. Indeed, let
X and z be any two feasible solutions of the primal and
dual problems respectively. Then we have the following
inequality:
Tr(C-X)2bTz. (20)

This property is known as weak duality. Thus, we can use
any feasible X to compute an upper bound for the opti-
mum of bT z, and we can also use any feasible z to com-
pute a lower bound for the optimum of Tr(C- X).

Proof for regions of inconsistency

If a feasible dual solution can be found, Eqn. (8) will be
satisfied. As noticed earlier, the matrices Q; explicitly
depend on the unknown rates k in an affine way. Thus, we

2 B
0.5
0.25
5
5 % 1 2
= c D
Q
8 0.4 - 0.4
Q '
o ! —_
time [-]
Figure 4

Model discrimination based on two distinct steady
states. The figure shows variations in v, simulated with
model | (gray dashed line) and model Il (black solid line),
respectively. A large standard deviation of the experimental
data (&= 0.75, dashed error bars) has to be allowed for
model |, otherwise mass balances are violated (&= 0.25, solid
error bars). For the simulations, the constants for complex
formation were set to the following values: association k, ;=
I; dissociation k. = 0.1; catalytic step k,,; = I|. During the
parametrization step, only the association constants of the
complexes were estimated in a range from 0.3 to 3.
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Figure 5

Contour plot for additional example |. The feasible and
infeasible regions are shown in white and black, respectively.
Starting from an initial set of parameters (black cross), whole
areas can be proven to be inconsistent (gray).

want to be able to disprove the consistency of not just one
particular fixed value of the rate constants, but to simulta-
neously discard whole sets of rates at the same time. In
other words, we want to find solutions (y, 4, r, S) of the
dual form (8) that work for all rate constants k on a given
set.

Notice that the dependence of the matrices Q, on the rate

constants k is affine. Assume the nominal value and devi-
ation of rate constant j is k;, + Ak;. Then, we can write

Qi(k) = Qip + X, Q;8;Ak;,
j

where &, := (k; - kjy)/Ak;, and || < 1. To guarantee that the
dual form (8) holds for all allowable values of the rate
constants, we can use the following result:

Lemma 1 Consider the linear matrix inequality given by:

n
Ag+ Y 8;A;" 0. (21)
i=1

If there exist 1, W,, such that

A _iw Wi+n-A; " 0
CTET [ Wiena 0

fori=1,.., n, then Eqn. (21) holds for all 6 such that || < 7.

(22)

The lemma follows easily from the identity:

http://www.biomedcentral.com/1471-2105/8/12

Figure 6

Contour plot for additional example 2. The feasible and
infeasible regions are shown in white and black, respectively.
Starting from an initial set of parameters (black cross), whole
areas can be proven to be inconsistent (gray) (parameters k;
and k, are fixed, k; and k, are varied in a range between 0 and
5).

n 1 n
Ag+ Y 8iA; = 2—2(77+5i J(W; +n4; ) +(n=8; ) (W; —nA; ).
i=1 i=1
Since the expressions in (22) are affine in the unknowns
n, W, we can hence directly use this lemma to obtain
guaranteed regions of inconsistency.

Further case studies
Additional example 1:

Consider a simple two-element linear reaction, where
component A is converted into component B and vice
versa:

k

Al == 5l
2

We assume unimolar concentrations of species A and B

that are kept within an accuracy of 25%. The two-dimen-

sional contour plot including feasible and infeasible

regions is shown in Fig. 5.

Additional example 2:
Consider another simple nonlinear system, where mRNA

binds to a ribosome to form a protein P, which decays at
a certain rate:

Page 10 of 11

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:12

k
[MRNA] + [rib] ziéﬁ [MRNA-rib]
2

[MRNA-rib]  —%—5  [mRNA]+[rib] +[P]
P] NN}

For simplicity, the overall concentrations of mRNA, ribos-
ome and P are all equal to 1 and have to be kept within an
accuracy of & = 25%. The overall parameter space is 4-
dimensional. Fig. 6 shows the contour plot in the k; - k,
plane.
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