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Abstract

Background: The analysis of the promoter sequence of genes with similar expression patterns is
a basic tool to annotate common regulatory elements. Multiple sequence alignments are on the
basis of most comparative approaches. The characterization of regulatory regions from co-
expressed genes at the sequence level, however, does not yield satisfactory results in many
occasions as promoter regions of genes sharing similar expression programs often do not show
nucleotide sequence conservation.

Results: In a recent approach to circumvent this limitation, we proposed to align the maps of
predicted transcription factors (referred as TF-maps) instead of the nucleotide sequence of two
related promoters, taking into account the label of the corresponding factor and the position in the
primary sequence. We have now extended the basic algorithm to permit multiple promoter
comparisons using the progressive alignment paradigm. In addition, non-collinear conservation
blocks might now be identified in the resulting alignments. We have optimized the parameters of
the algorithm in a small, but well-characterized collection of human-mouse-chicken-zebrafish
orthologous gene promoters.

Conclusion: Results in this dataset indicate that TF-map alignments are able to detect high-level
regulatory conservation at the promoter and the 3'UTR gene regions, which cannot be detected
by the typical sequence alignments. Three particular examples are introduced here to illustrate the
power of the multiple TF-map alignments to characterize conserved regulatory elements in
absence of sequence similarity. We consider this kind of approach can be extremely useful in the
future to annotate potential transcription factor binding sites on sets of co-regulated genes from
high-throughput expression experiments.

Background

Sequence comparisons are one of the most important
computational tools in molecular biology. Sequences are
good symbolic representations of biological molecules
that encode relevant information about their structure,
function and history. From the analysis of functionally

related sequences, biologically significant facts can be
inferred. For instance, genomic sequence comparisons are
performed in order to identify genes or regulatory sites
across evolutionarily related genomes, as these functional
elements tend to exhibit conservational patterns different
from those observed in regions that are not functional.
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In attempt to allow for multiple sequence comparisons,
the basic dynamic programming recurrences introduced
in the 1970s to align efficiently two sequences of n sym-
bols in time proportional to the square of the length of the
sequences [1,2], can be naturally extended for k
sequences, with an exponential cost O(n*)[3]. As this cost
is unaffordable in practice, many heuristics have appeared
to provide acceptable solutions with a minor cost. The
most popular of them is the progressive alignment [4,5].

This procedure is a greedy algorithm that runs in O(k2n2)
time. In a first step, the progressive alignment performs all
of the pairwise alignments to build an evolutionary tree.
In a second step, an initial alignment is constructed from
the two closest sequences, incorporating then the rest to
the profile following the guide tree. Such a procedure does
not guarantee to find the optimal solution in mathemati-
cal terms. However, the results are generally meaningful
from the biological standpoint.

These comparisons at the sequence level have limitations
however. Although similar sequences do tend to play sim-
ilar biological functions, the opposite is not necessarily
true. Often similar functions are encoded in higher order
sequence elements that are not necessarily conserved at
the sequence level. As a result, similar functions are fre-
quently encoded by diverse sequences which are undetec-
table by conventional sequence alignment methods.

Gene promoter regions are a good example. The informa-
tion that governs the RNA synthesis is mostly encoded in
the gene promoter, a region normally 200 to 2000 nucleo-
tides long upstream of the transcription start site of the
gene (TSS). Transcription factors (TFs) bind to sequence
specific motifs (the TF binding sites, TFBSs) within the
promoters. TFBSs are 5-8 nucleotides long and one pro-
moter region contains on the order of 10 to 50 of them
[6]. Such motifs appear to be arranged in specific configu-
rations that define the temporal and spatial transcrip-
tional program of each gene. Genes presenting similar
expression patterns are assumed to share similar configu-
rations of TFBSs in their promoters [7,8].

However, TFBSs associated to the same TF show often lit-
tle sequence conservation. Therefore, promoter regions of
genes with similar expression pattern may not be similar
at the sequence level.

In a previous work [9], we showed that pairwise align-
ments between sequences of labels representing TFs bind-
ing to sites predicted in promoter regions (TF-maps)
could often uncover high-level common regulatory pat-
terns which could not be found by typical nucleotide
sequence comparisons.
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Here, we present an efficient implementation of the mul-
tiple TF-map alignment based in the progressive align-
ment paradigm. We have introduced some modifications
in the pairwise global TF-map alignment algorithm to
allow the alignment of TF-map alignments. In addition,
we have extended the algorithm to allow for non-collinear
alignments, which are rarely considered in conventional
dynamic programming algorithms, being only partially
identified by combining global and local alignment strat-
egies [10,11]. The ability to predict non-collinear align-
ments may be particularly relevant in the case of promoter
regions, where the linearity of TFBSs configurations can be
weakly conserved [12].

The structure of the paper is the following: first, we briefly
review the concept of TF-map and provide the formal def-
inition of a multiple TF-map alignment. Then, we intro-
duce the algorithm to compute the optimal pairwise
alignment of two alignments. Next, we describe the main
algorithm that performs the progressive alignment of
multiple TF-maps. Later, we define formally a non-col-
linear alignment, introducing some modifications in the
basic algorithm. Finally, we systematically estimate the
optimal parameters of the alignment to distinguish pro-
moters from other gene regions in a set of well character-
ized human-rodent gene pairs extracted from the ABS
database [13] and their corresponding orthologs in
chicken and zebrafish. These results are compared to
those obtained by conventional sequence alignment
methods. Three particular examples are presented in
which multiple TF-map alignments characterize con-
served regulatory elements that are otherwise impercepti-
ble in sequence-level comparisons.

TF-maps

Let > ,y4 be the alphabet of four nucleotides. Let >, be the
alphabet of symbols corresponding to higher-order ele-
ments that can be annotated over a genomic sequence, for
instance TFs. We define a generic mapping function as a
procedure to translate a sequence of nucleotides S =s;s, ...

s, where each nucleotide s;e >y, into a sequence of

tuples M = mym, each tuple

e ] Pl P2
m; =<m; ,m; ,m;

m, where

,m; > denotes the match of a motif

f

for the higher-order element m/ e X.;; occurring between

p

i

p2

! and the position m; "~ over the sequence

the position m
S with score m; .
We introduced the concept of mapping for the promoter

characterization problem in a previous work [9]. Let X
be the alphabet of TFs denoting symbols. A mapping func-
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tion is a procedure to translate a promoter region S = s;s,
... 5, where each nucleotide s; € >\, into a sequence of
TF-tuples M =

1
m; =< mlf,mf

mm, ..

2

m, where each TF-tuple

,m; > denotes the match of a binding

site for the TF mlf € Y occurring between the position

pl

2
m; p

and the position m; = over the sequence S with score

N
m; .

In the context of the detection of regulatory elements, dif-
ferent mapping functions can be used to obtain the trans-
lation from S to M such as a collection of position weight
matrices (PWMs) representing TFBSs (JASPAR [14],
PROMO [15] or TRANSFAC [16]), or a pattern discovery
tool that identifies a set of unknown motifs conserved in
several promoters (e.g. MEME [17]). In practice, for each
match over a given threshold, we register a new TF-tuple

in M defined by the label ( mlf ) of the TF or the pattern,

the positions (mlpl, mlpz) and the score (m]) of the
match (see Figure 1(A), for an example). This translation
pl

preserves the order of S in M, that is if i <j in M then m;

< m§7 ! Matches to different TFs may possibly occur at the

same position, being false positives in most cases (see a
real example in Figure 1(B)). We refer to the resulting
sequence of TF-tuples M as a Transcription Factor Map, or
simply a TF-map.

In the implementation here, matches to PWMs are consid-
ered strandless, that is, they are annotated at a given loca-
tion, irrespective of the orientation in which they occur.
While biological evidence suggests that some TFBSs are
functional only when present in a given strand, in other
cases TF activity appears to be independent of the orienta-
tion of the binding site [18,19]. Since in general, we do
not have information of the strand in which a binding site
may be functional, we have not considered strand in our
analysis.

Multiple alignment of TF-maps

Let M;, M,, ..., M, be a set of TF-maps. Each map is

denoted as M; = m; ym; ;... m;)\ where mlf] € Xp Let

M ,M;,...,M;, be the extended set of TF-maps. Each

. & * * *
extended map is denoted as M; =m;1,m; 5..m;, . where

M|

ml*]; e M;uU {-}. The symbol '-' indicates a gap, which can
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be considered as a particular TF-tuple < '-', -, -, >. The

value - denotes a null value, yis the penalty for introduc-

ing a gap in a column of the alignment.

The multiple alignment of k maps M;, M,, .., M, is
defined as a rectangular array T where each column
T(i) = (my ;,m> ;,....my,;) is the multiple match among the
TF-tuples

M, M, My,

in position i from the extended maps

* * *
my Mo my
m* m~ m*
T 2,1 2,2 e 2.t A (1)
E3
Me1 M2 Mt

Such a multiple TF-map alignment - or simply, a multiple
map alignment (MMA), in contrast to a multiple sequence
alignment (MSA) - satisfies the following conditions:

1. The extended maps have the same length.

2. If the gaps are removed from each M; , the original M,

is recovered.

3. At least one element in every column is different from
a gap.

4. The elements that are aligned in a column correspond
to the same TF.

Note that the first three conditions define the classical
multiple alignment of sequences. The last one, however,
introduces a new constrain that is related to the match
state, according to the notion of pairwise TF-map align-
ment provided in [9].

The score of a multiple alignment of TF-maps
Given the multiple alignment T, we compute the score of
the MMA 5(T) as:

DI I
- A3)
- uzvl.li,f(mi’zl —m;ﬁﬂmzf;l —mZﬁ})
(2)

where ¢, 4, g, > 0, g is the number of columns with only
one element different from a gap in the MMA (unaligned
elements), and f is a function that measures the conserva-

s(T) =
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AP-1
HNF-1a TBP

S CGCGCGEGTTAATTATTACCA I‘ATAAAI%CCCG

TF Posl Pos2 Score
M HNF-1« 7 20 1.0
AP-1 8 15 0.7
TBP 22 28 1.0
(A)
(B) . nel o
Figure |

(A) The sequence of a promoter is searched for occurrences
of known binding motifs for transcription factors (TFs), using
a collection of position weight matrices. Matches are
denoted as TF-tuples that contain the label of the TF, the
positions of the match in the primary sequence, and the
score provided by the corresponding matrix. Because binding
sites tolerate sequence substitutions, several overlapping TF-
tuples can be identified in a subset of positions. TF-tuples are
graphically represented as boxes along the promoter
sequence. Each TF is denoted with a different color. (B) Pro-
moter TF-mapping of the phospholipase Al gene (RefSeq: NM
015900, 500 nucleotides). TRANSFAC 6.3 was used as the
mapping function [16]. In both cases, the TF occurrences are
displayed as boxes along the promoter. In (A), the boxes are
condensed in a single line. The TF-map graphical representa-
tion has been produced with the program gff2ps [27].

tion of distance between the sites of every map in two con-
secutive columns (i, i) with at least two aligned elements
in the MMA. That is, the score of the alignment increases
with the score of the aligned elements (&), and decreases
with the number of gaps (), the number of unaligned ele-
ments (A1), and with the difference in the distance between
adjacent aligned elements (). See [9] for further details
about the TF-map alignment parameters.

The algorithms

There are many possible alignments among multiple TF-
maps. The optimal alignment is the one scoring the max-
imum (that is, showing maximum similarity) among all
possible alignments. In a previous work [9], we imple-
mented a dynamic programming algorithm to obtain
such an alignment efficiently for the case of two TF-maps.
The optimal multiple sequence alignment problem (and
therefore the multiple alignment of maps as well) is, how-
ever, much more difficult, being formally a NP-complete
problem [20].

http://www.biomedcentral.com/1471-2105/8/138

Here, we propose to adapt the popular progressive align-
ment strategy to the TF-map alignment. The solutions
obtained by this method are not guaranteed to be opti-
mal. However, multiple progressive alignments usually
capture the sequence features underlying the common
functionality shared by the aligned sequences [5]. We
have generalized the basic pairwise TF-map alignment
algorithm developed in [9] in order to allow the compar-
isons between two single TF-maps, a TF-map and a MMA,
and two MMAs.

The alignment of two MMAs

Let A =m, ym, ;... myx | and Ay =m, m, ;.. MyJa,| be

two MMAs that have been already computed. Let S be the
scoring dynamic programming matrix where S(i, j) = S(m,,
i» m,, ;) denotes the score of the best TF-map alignment of

the alignments A, = m m, ;and A, = m m, ;as

x, 1 y, 1 - }’/j
defined previously (Equation 2). The ComputePairwiseSim-
ilarity algorithm shown below is a generalization of that
developed in [9] to align two TF-maps that computes the

optimal pairwise TF-map alignment between A, and A,.

This algorithm basically searches the maps of both align-
ments to find matches between one site in the first align-
ment and one site in the second one. Once a new match
is identified, the previous matches must be evaluated in
order to construct the optimal alignment with this new
one (see Figure 2). Because this class of scoring matrices
are highly sparse [9], we register the coordinates in S of the
matches computed previously. Thus, to compute the opti-
mal score at the cell S(i, j), only the non-empty cells in S
that are visible for the current match need to be accessed.
In addition, we maintain the list sorted by optimal score,
so that the cell scoring the maximum value is at the begin-
ning of the list and, in most cases, only a few nodes will
need to be accessed before a critical node is reached
beyond which the optimal score can not be improved [9].

The number of computations P(n) in this algorithm is
very similar to that obtained in the conventional pairwise
TF-map alignment algorithm [9]. The exact complexity of
this algorithm is difficult to be studied - depending
mostly on the size of the input maps and the sparsity of
the resulting matrix S. An expected time cost analysis
reveals that the cost function can be explained in terms of
(a) a first quadratic term derived from the necessary com-
parison between all of the TFBSs of both maps to detect
the match cells and (b) a second quadratic term necessary
to search for each match the best adjacent previous pair in
the optimal TF-map alignment. In [9], we studied the pos-
itive contribution of using a list of non-empty cells in S
that reduces the second component to an expected cost of
O(p - n2), where p is the percentage of the similarity matrix
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that is occupied. In the case of pairwise TF-map promoter
comparisons, this value was estimated to be below 0.05
(less than 5% of occupancy).

Implementation

In the pseudocode below, the alignments A, and A, are
represented as two arrays of sites sorted by the position in
their promoters, where each site corresponds to an input
TFBS. The MMAs are internally encoded with pointers
among the sites that form each match. Gaps here are not
explicitly represented. Each site m, ; is a structure as
described above with the functions factor, pos1, pos2 and
score returning the values of the corresponding fields.

The variable maxSim stores the optimal score computed so
far. The sites in the optimal TF-map alignment can be eas-
ily retrieved using a supplementary structure path(i, j) that
points to the previous cell in the optimal path leading to
cell §(i, j). In addition, the function ComputelnitialSimilar-
ity calculates for each match S(i, j) the initial score of a
hypothetical alignment that includes only the sites m, ;
and m,, ;. Once the match between two sites m, ;and m,, ;
has been identified, the best previous match between two
other sites m, ; and m,, ;.is used to construct the new align-
ment (see the matches A and B in Figure 2). The list L is
used to locate the non-empty positions in S. Each node of
the list L is represented as structures p and n with the func-
tions abscissa and ordinate returning the corresponding
coordinates in S of each previous match.

The score of the new match between m, ;and m, ;is the
sum of the scores of the columns in which both elements
were aligned in their respective MMAs. Unaligned sites are
scored with the gap penalty y . The function ComputeLa-
mbda counts the number of sites in each group that are not
included in the alignment, taking into account the size of
each individual MMA.

In practice, we do not allow overlap in the primary
sequence between adjacent sites in the alignment. This is
not a practical limitation of the algorithm, but a require-
ment introduced according to our observations in availa-
ble annotations of regulatory elements. The function
ComputeOverlap calculates the average distances D1 and
D2 between any pair of consecutive matches in the maps
of each alignment, verifying the absence of physical over-
lap in their promoters. The function |D1 - D2| scores the
conservation of distance between the sites of every map in
two consecutive columns on each MMA (function f, see
Equation 2).

http://www.biomedcentral.com/1471-2105/8/138

ComputePairwiseSimilarity
Require: A,, A : TF-map alignments, L: list
of <abscissa, ordinates>, L =
{calculating the element i, j in S}
for 1 = 0 to |A,/ - 1 do
for j = 0 to |A,/ - 1 do

)

if factor(m, ;) = factor(m

V. J
then
5: S(i, j)<« ComputeInitial
Similarity(m, ;, m, ;);

score (mj) ) ;

{searching the best previ
ous match in L}

p « first (L);
i' <« abscissal(p);
10: j' <« ordinate(p);

while end(L) = FALSE and

S(i', 7"+ x >S(i, j) do

{Compute the u value and
check overlap}

(D1, D2, overlap) <«—
ComputeOverlap (i, 1i', 7, J', A, Ay) ;
if overlap = FALSE then

15: y < A (ComputeLambda (1,

z < p (|D1- D2|);

maxSim « S(i', j') + x
-y - z;

if maxSim > S(i, 7j)then
S(i, j) <« maxSim;
20: p < next (L) ;

1' < abscissal(p);
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j' <« ordinate(p);
n < CreateNewNode (i, 7);
InsertNode (n, L);

Progressive MMA algorithm

Let (A, ... Ay) be the initial list of & TF-map alignments,
where each alignment A; contains a single TF-map. Let S
be the similarity matrix where S(A;, A;) denotes the simi-
larity between two TF-map alignments A; and A;.

The progressive MMA algorithm shown below builds up a
multiple TF-map alignment in a stepwise manner. In a
first step, all pairwise TF-map alignments are performed.
The initial multiple alignment is created with the two
most similar ones. These maps are substituted for the
alignment of both. The similarity between this new align-
ment and the rest of the TF-maps is then estimated, updat-
ing the S matrix (see Implementation).

In a second step, an iterative procedure selects at each
round the pair of alignments that are more similar from

Ay

A,

—

o

Matched elements

I Unmatched elements

Figure 2

Graphical representation of the dynamic programming
matrix produced in the alignment of two MMAs A, and A,. A
new match between sites from both alignments must pre-
serve the previous internal alignment (matches in red). For
each new match (A), the best previous aligned match (B)
must be selected to form the optimal alignhment.

http://www.biomedcentral.com/1471-2105/8/138

the pool of available ones. These two alignments are then
merged into a new MMA, estimating the similarity to the
remaining ones. At the end of the process, there is only
one alignment that contains the multiple alignment of the
input maps.

The cost of the progressive MMA can be expressed in terms
of the number of pairwise TF-map alignments that must
be computed. Let k be the number of maps to be aligned
and n be the length of each map. The initial round per-
forms O(k2) pairwise alignments. Next, the progressive
rounds perform O(k) alignments involving two previous
alignments. Let P(n) be the cost of each pairwise opera-
tion (see previous section), then the cost of the progres-
sive map alignment algorithm is O(k2 P(n)).

Implementation

In the progressive MMA algorithm shown below, the var-
iable maxSim saves the maximum score so far computed
at each round. The identifiers of the alignments that pro-
duce such a score can easily be retrieved using a supple-
mentary pair of variables iSim, jSim.

The function ComputePairwiseSimilarity is a generalization
of the TF-map alignment algorithm presented in [9], as
explained in the previous section. The optimal pairwise
alignments between the input TF-maps in the initial
round are saved, as they could be required during the iter-
ative procedure.

Once a new TF-map alignment is created from the two
most similar ones, their binding sites must be merged
(function MergeAlignments). The order of the TFBSs in the
new alignment must take into account the position of the
binding sites in their primary promoter sequences. In the
approach here, we do not create a profile of each MMA.
Instead, all of the TFBSs of each alignment are always
available for subsequent TF-map alignments.

The alignments between this new TF-map alignment and
the others are not explicitly computed. The similarity of
them is instead estimated with the WPGMA method
(Weighted Pair Group Method with Arithmetic Mean
[21]), in which the similarity of the previous alignments
between Ajg;, and Ajg;,, to the other alignments is weighted
according to the number of maps of each one. If an esti-
mated alignment between two MMAs is identified as the
most similar one during the progressive step, then it must
be explicitly computed before merging both TF-map
alignments.
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Progressive MMA algorithm
Require: A: list of TF-map alignments (4,
AL)

{Initial Step:
Vs all}

pairwise alignment all

maxSim « -
for i = 1 to k do
5: for j = 1 + 1 to k do

S(a;, Aj)

larity (4;, A;);

< ComputePairwiseSimi

{select the
similarity}

pair with maximum

maxSim < max(maxSim, S(A;, A;));

{Create a new MMA: estimate the simi

larity to others}

10:A
A

<« Merge Alignments (A

iSim-3jSim iSim/

jSim) i

{Progressive Step: select the two most
similar alignments}

while |A]| > 1 do
maxSim <« -oo
15: for i = 1 to |A| do
for j = 1 + 1 to |A| do

{select the pair with maximum
similarity}

S(4;,

maxSim <« max(maxSim, 4

Aj) ) i
{Create a new MMA: estimate the sim
ilarity to others}

20: A
A

isim-jsim < Merge Alignments (A;g;n:

jSim) i

Non-collinear TF-map alignments

The existence of regulatory elements that are conserved in
different order among related regulatory regions has been
documented in a few cases, specially in enhancers [22].
The identification of these regulatory rearrangements is

http://www.biomedcentral.com/1471-2105/8/138

very difficult at the sequence level. We have here intro-
duced some subtle changes in the pairwise TF-map align-
ment algorithm shown before to deal with non-collinear
alignments. The aligned TFBSs in such MMAs are there-
fore not necessarily located in the same relative order in
every map.

Definition

Let T be an alignment between two TF-maps M, and M,
formally defined as a correspondence T'= {(m, |, m, ), ...,
(my , my )} [9]. Let (my ;, m, ;) and (m, ,, m, ;) be two
matches in T, not necessarily contiguous, with i <k. Then,
we define the collinearity or non-collinearity of T in terms
of the partial order between j and I, for all the match pairs
of T as:

1. If j <l then T is a collinear alignment

2.1fj > I then T is a non-collinear alignment (see example
shown in Figure 3(A)).

The generalization of this definition for k > 2 TF-maps is
trivial (see the example of a non-collinear alignment for k
= 3 TF-maps in Figure 3(B)).

Algorithm

The non-collinear matches shown in Figure 3 can not be
detected in the basic pairwise TF-map alignment algo-
rithm [9]. Let A and B be two TF-maps in which two
matches could form a non collinear alignment (repre-
sented as a circle and a square in Figure 4). The normal
implementation fills the matrix in row by row, from top
to bottom (or column by column, from left to right).

According to this, when the first match is being processed
(red square), the second one (red circle) is not yet availa-
ble (the red circle is not in the green area). Conversely,
when the second match is processed, the first one is not
accessible as the basic algorithm only allows the search for
best previous aligned elements in the list of computed val-
ues that are in the area delimited by the current match
(area denoted by dotted lines).

To overcome such a limitation, we propose to compute
the optimal values of the matrix S following a different
order, to allow the second element (red circle) to be visi-
ble when the first one is being processed (red square). A
diagonal filling of the matrix calculates first the match
between circles (see Figure 4).

Thus, this element will be available to compute the best
alignment for the match between squares that is processed
later. While this strategy still produces the same align-
ments obtained with the ordinary implementation, non-
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collinear alignments produced by new combinations of
matches can also be constructed.

Adjusting the non-collinearity

We have designed a simple mechanism to adjust the fre-
quency of non-collinear aligned sites in the output. An
additional parameter ¢ has been introduced in the basic
MMA algorithm to weight those alignments involving
non-collinearity.

Let A and B be two TF-maps in which a previous match
has been identified (represented as two circles in Figure
5(A)). Then, a second match between one element in A
and another one in B is being processed (represented as
two squares in Figure 5(A)). The dotted lines indicate that
such a site in B can be located either on the left or on the
right of the circle site in the same map. In the first case, a
non-collinear alignment is produced; in the second case,
a normal collinear alignment is constructed. The case in
which the non-collinear match occurs in A can be simi-
larly defined.

The algorithm to align two MMAs must be slightly modi-
fied to accomodate the non-collinearity parameter c¢. The
variable z in the ComputePairwiseSimilarity is defined now
as:

_ lf (D2<0) —>H|D1_C'D2|,C21
|if (Dy20) > u|Dy =D |

The optimal positional conservation between both
matches occurs when D, = D,. However, the parameter ¢
is used in the 4, penalty to punish only those matches that
do not respect the collinearity of the current alignment

(A) k=2 TF-maps (B) k> 2 TF-maps

1] i
I 1L
1L

Figure 3

Graphical representation of two examples of non-collinear
TF-map alignments. In (A), the alignment involves only two
TF-maps. In (B), the resulting multiple alignment of three
maps contains a non-collinear block of three TFBSs.

http://www.biomedcentral.com/1471-2105/8/138

TF-MAP B
JA
= [
n,
5
=
=
<> ............
COLINEAR AREA
NON-COLINEAR AREA
Figure 4

Different forms to fill a dynamic programming matrix in dur-
ing the alignment. For a current match between two align-
ments (denoted as a red square), the available area to search
the best previous match when the matrix is processed row
by row is depicted in green. For the same element, the addi-
tional area to search the best previous match when the
matrix is processed diagonal by diagonal is depicted in blue.
With the diagonal filling, a previous match (denoted as a red
circle) that forms a non-collinear alignment can be detected.

(the square site is on the left of the circle site in B, see Fig-
ure 5(A)).

Informally, if ¢ = 1 then both collinear and non-colinear
matches are indistinctly combined into the resulting
MMA. High values of ¢, however, produce a higher
amount of collinear matches into the results. In order to
establish formally the behaviour of this parameter, we
have counted the number of non-collinear matches in the
TF-map alignment of the human and mouse promoters
(500 nucleotides) of the MMP13 gene (RefSeq:
NM_002427, NM_008607). In Figure 5(B), there is a clear
correspondence between the amount of inversions in the
MMA and the value of ¢. No inversions are produced for
large values of ¢. Identification of non-collinear configura-
tions of TFBSs in regulatory regions is poorly known, and
only a few cases are documented [22]. We recommend,
therefore, to use this option very carefully. In addition, we
also suggest the use of a small set of matrices to perform
the mapping, which can reduce the number of artifacts in
the resulting non-collinear MMA (see Promoter character-
ization section, even-skipped stripe 2 enhancer).
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Datasets and software availability

The datasets used in this paper are available at [23]. An
implementation of this algorithm has been written in C
and is publicly available at [24]. A web server that per-
forms the mapping and the alignment of multiple pro-
moter regions with such an algorithm is accessible at [25].

The input of the program consists of a file that contains
the TF-maps to be aligned. The file must be in General
Feature Format [26]. Options allow to control the values
of @, 4, i, yand ¢ as well as to display the results in plain
format or GFF format. The output includes the score and
the length of the optimal MMA, and the matches in the
input TF-maps (see Figure 6 for an example). A graphical
representation of the MMA is also displayed using the pro-
gram gff2ps [27].

Results

The optimal MMA of a set of TF-maps is obviously
dependant on the values of the ¢, 4, 4, yand ¢ parameters.
In addition, the optimal parameter configuration is likely
to depend on the particular problem to be addressed
(orthologous genes or co-regulated genes in microarray
experiments), and the particular protocol to map the
TFBSs on the sequences.

http://www.biomedcentral.com/1471-2105/8/138

Results in a previous work [9] indicated that TF-maps
alignments are able to characterize promoter regions of
co-regulated genes even in absence of sequence similarity.
Thus, TF-map alignments were shown to detect high-
order regulatory signals conserved in a collection of
related promoters that were undetectable with current
sequence alignment methods. It is important to mention
that two or more different TFBSs can be aligned if and
only if they correspond to the same TF, even though they
may not show sequence similarity.

Here we have conducted a similar systematic training over
an extended set of orthologous promoters to obtain the
optimal parameter configuration. In order to verify the
ability of MMA to identify regulatory elements that are
rarely detected in conventional comparisons, we have
compared the results to those obtained by several multi-
ple sequence alignment methods. We have focused on
two specific examples to show the abilities of MMA in the
characterization of multiple collinear related promoters.
Finally, we have characterized non-collinear arrange-
ments of TFBSs on an early developmental enhancer con-
served in several species of Drosophila.

(A) (B)
?_r—
Dy
TF-MAP A O 3 |
29
°)
n
i
> o
z @
TF-MAP B — O — o
|
Dy <0 Dy >0 &1
p(|D1 —c-Daf)  p(|D1— Da) °1 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50
C parameter
Figure 5

(A) A graphical explanation of the parameter ¢ that controls the proportion of non-collinear blocks in a resulting alignment; (B)
Number of inversions in the TF-map alignment of the human and mouse promoters (500 nucleotides) of the MMP|3 gene (Ref-

Seq: NM 002427 and NM 008607), using multiple values of c.
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Multiple TF-map training

For the pairwise TF-map alignment, we estimated the opti-
mal parameters in a set of experimentally characterized
human and rodent gene promoters [9,13]. Here we have
extended such a dataset by searching the corresponding
orthologs in chicken and zebrafish as well. Using the Ref-
Seq [28] gene set as mapped into the UCSC genome
browser, we have correctly identified the ortholog in both
species, if available. We refer to the resulting set of
human-mouse-chicken-zebrafish homologous genes as
the HRCZ SET. This dataset contains 18 human-rodent-
chicken-zebrafish orthologs, 7 human-rodent-chicken
orthologs, 4 human-rodent-zebrafish orthologs, and 7
human-rodent orthologs.

The lack of available collections of experimentally verified
TFBSs is an important limitation for the evaluation and
the training of phylogenetic footprinting systems. Despite
several databases of annotations and promoter sequences
have recently appeared [13,29], there is not enough regu-
latory information conserved among species other than
human and mouse to train the MMA.

Thus, we can not repeat the training procedure used in [9]
to evaluate the ability of MMA to detect conserved regula-
tory elements at larger evolutionary distances — at which
the degree of conservation may be negligible. However,
we can use another method also presented in [9] to show
that MMAs are much more informative than primary mul-
tiple sequence alignments.

### Maximum similarity: 15.99

http://www.biomedcentral.com/1471-2105/8/138

We first have mapped the TFBSs occurrences in the pro-
moter sequences using the collection of 50 most informa-
tives matrices in JASPAR 1.0 [14]. In a previous work [9],
we observed a substantial gain of specificity in the detec-
tion of real TFBSs (without a significant loss of sensitivity)
when using such a subset of matrices instead of the entire
JASPAR collection. The original frequency coefficients of
the matrices were converted before into log-likelihood
ratios, to which we referred as JASPARps, in [9], using
the random equiprobability distribution as a background
model. A prediction obtained with a given PWM from
JASPAR;pso Was accepted if it had a score above 50% of
the maximum possible score for such matrix [23].

Then, we have compared the MMAs obtained in the 200
nucleotides of the promoter region of the 36 gene pairs
from the HRCZ SET, with the MMAs obtained using the
same mapping function in fragments of 200 nucleotides
from intergenic (2000 nucleotides upstream of the TSS,
2000 nucleotides downstream the transcript), 5'UTR
(downstream of the TSS), 3'UTR (upstream the end of the
transcript), coding (downstream of the translation start
site and considering only coding DNA), intronic (down-
stream of the first intron junction), and downstream
(downstream of the transcription termination site)
sequences (see Figure 7 for a graphical representation of
the test).

We have computed the average score of the MMA on each
one of the genomic regions, identifying the alignment

### Optimal MMA contains 6 elements
### (((X00371,extracted09,51.89),NM_203377,49.95) ,NM_200586,15.99)
### X00371 extracted09 NM_203377 NM_200586

Hit# HUM MOU CHI ZEB
HMG-TIY: 22 17 33 13
RREB-1: 273 235 - 256
HMG-IY: 360 317 305 313
Bsap: 398 349 330 391
TBP: 468 413 401 452
NRF-2: 488 472 475 476
Figure 6

Results of the TF-map alignment of the human promoter of the Myoglobin gene and the orthologs in mouse, chicken and
zebrafish. Here, the 500 nucleotides upstream of the annotated TSS have been considered (with position | corresponding to -
500). Each row contains the aligned occurrences of the same TF at the TF-maps of some species (only the starting position of
the binding site is shown). Gaps are represented with the symbol "-". A graphical representation of the TF-map alignment is

shown in Figure 8.
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that produces the highest score for each orthologous set.
We have repeated this test using different combinations of
parameters. Systematically, the parameters ¢, A, and u
were allowed to independently take values between 0.0
and 1.0, in incremental steps of 0.1. At the same time, the
parameter y (gap penalty) was tested between 0 and -10
with a step of -1. The optimal parameter configuration is
considered to be that set of parameter values that better
discriminate between promoters and the rest of genomic
regions.

We have also performed the multiple sequence align-
ments of the same regions using the following programs
(see [30] for a comprehensive review on DNA sequence
alignment): CLUSTALW [5], MLAGAN [31] and FOOT-
PRINTER [32]. CLUSTALW and MLAGAN perform global
multiple sequence alignment.

FOOTPRINTER performs local multiple sequence align-
ment. The number of significant motifs (parsimony score
2) identified by FOOTPRINTER on each gene region was
used to rank the alignments of this program.

Results appear in Table 1. As expected, nucleotide
sequence alignments score the highest in the coding
regions (in 27 out of 36 cases for CLUSTALW, 26 and 23
cases for MLAGAN and FOOTPRINTER respectively), fol-
lowed by the alignments in the 5'UTRs (4 out of 36 for
CLUSTALW, 4 and 3 for MLAGAN and FOOTPRINTER)
and in the promoters (4 out of 36 for CLUSTALW, 4 and
5 for MLAGAN and FOOTPRINTER). Only in one case,
the 3'UTR was the most conserved region among
orthologs (in three cases for FOOTPRINTER). The scores
of the sequence alignments indicate that promoter regions
are less conserved than coding regions.

Despite this, the optimal collinear MMA configuration [«
=1, 4=0.3, £=0.1, y=-2] scores the highest in the pro-
moter regions (in 18 out of 36, see Table 1). In addition,
the average score of map alignments is notably higher
than that of the coding regions (25.41 against 17.15).
Only in 6 out of 36 cases the TF-map alignments score the
highest in coding regions. Interestingly, while 3'UTR
sequences in the human-mouse-chicken-zebrafish
orthologs are much less conserved than coding regions or
5'UTRs, MMAs score the highest in them in 7 cases. This is
consistent with recent investigations about the existence
of regulatory motifs in the 3'UTR regions of the genes
[33]. A similar result is obtained in the case of introns:
intronic sequences are much less conserved than coding
and UTR sequences. However, MMAs score the highest in
intronic regions in 2 cases. This fact is noticeable as first
introns are also known to often contain regulatory motifs
[34,35].

http://www.biomedcentral.com/1471-2105/8/138

We have also performed a complementary test to measure
the specificity of the TF-map alignments. As a negative
control, we have shuffled the orthologous associations in
the HRCZ SET to construct a pool of 36 unrelated human-
mouse-chicken-zebrafish gene entries. Then, the corre-
sponding multiple TF-map alignments of these non-
orthologous paired promoters were obtained using the
parameters previously optimized. Results appear in Table
2. The TF-map alignments of unrelated promoters were
significantly worse with an average score more than 50%
smaller than TF-map alignments that involved "bona
fide" orthologous promoters. For instance, the average
score of the TF-map alignments among orthologous pro-
moters when using the JASPAR ¢ ps, collection was 25.41
(see Table 2). In contrast, the score of the TF-map align-
ments between non-related promoters was 9.91. The sites
in the alignments involving non-orthologous gene pro-
moters may correspond to general regulatory elements
present in most core promoters of our dataset.

To validate this hypothesis, we have analyzed the compo-
sition of the TF-map alignments of non-orthologous gene
promoters. We have detected an enrichment in TATA and
CAAT boxes (20% and 10% of the aligned sites, respec-
tively), which are well known to be part of core promot-
ers. Such a bias is not observed in the composition of the
alignments of the coding sequences of unrelated genes.
These alignments are therefore partially capturing com-
mon regulatory elements present in unrelated gene pro-
moters of our dataset. In addition, we also found an
overrepresentation (25% of the aligned sites) of TFs
mainly expressed in the liver (HNF3, COUP-TF, HNF1).
Such a trend is not detected in the composition of the
alignments of the coding sequences of non-related genes.
This enrichment correlates well with the composition of
the HRCZ SET, which contains experimental regulatory
annotations from liver-specific genes (e.g. [36] and [37];
see [9] for further details).

We have performed an additional test to assess the signif-
icance of the scores of the MMAs. The previous tests have
involved alignments of orthologous gene regions of the
same type (e.g. four promoters or four coding segments).
We have compared now the score of the MMAs among
orthologous promoters of the same gene in the HRCZ SET
with the scores of the alignments of the same maps in
which one TF-map was randomly substituted by the TF-
map of another segment of the same gene (denoted in
Table 3 as PPPS, where P is a promoter map and S is any
gene region: Coding, Promoter, Intronic, 5'UTR, 3'UTR,
intergenic, downstream).

Results appear in Table 3. The average score of MMAs
exclusively constituted by promoter maps was 25.41 (PPP
+ Promoter in Table 3). Indeed, the average score of the
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TF-MAP TF-MAP TF-MAP TF-MAP TF-MAP TF-MAP TF-MAP TF-MAP
Intergenic Promoter 5’ UTR Coding Intronic 3’ UTR Downstream Intergenic
T
| I - |
20|00 Pronlloter 5 UTR CDS ¥ CDS 1 3’ UTR Downsltream 20|00
CCTTACAGGAACA ITTTG|  [AT "TGAAAAACTCAGA
' T T — s
e .
2OIOO Pronlloter 5 UTR CDS ¥ CDS 1 3’ UTR Downsltream 20|00
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Figure 7

Graphical representation of the MMA training. For multiple combinations of ¢, 4, 1z and » we have compared the multiple TF-
map alignments obtained in the proximal promoter regions from the HRCZ SET (200 nucleotides), with the alignments
obtained in fragments of 200 nucleotides from intergenic (2000 nucleotides upstream of the TSS and 2000 nucleotides down-
stream of the transcript), 5'UTR (downstream of the TSS), 3'UTR (upstream of the end of the transcript), coding (downstream
of the translation start site and considering only coding DNA), intronic (downstream of the first intron junction), and down-
stream (downstream of the transcription termination site) sequences.
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Table I: Multiple alignment results in orthologous sequences
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HRCZ SET MMA CLUSTALW MLAGAN FOOTPRINTER
TOPI Avg.Score TOPI Avg. score TOPI Avg. score TOPI Avg. Motifs

Coding 6 17.15 27 3706.72 26 3739.58 23 2041
5'UTR 2 10.48 4 2671.78 4 2742.92 3 11.66
Promoter 18 2541 4 2005.67 4 2114.00 5 8.66
3'UTR 7 15.85 | 1994.22 | 2046.31 3 9.63
Intronic 2 8.34 0 1267.89 0 1268.42 | 3.00
Downstream 0 6.85 0 1174.28 [ 1245.47 | 2.02
5'Intergenic 0 5.42 0 1052.92 0 1092.28 0 0.75
3'Intergenic | 4.14 0 974.69 0 1027.58 0 0.44

TF-map and sequence alignments (CLUSTALW [5], MLAGAN [31], FOOTPRINTER [32]) of different genomic regions between the human, mouse,
chicken and zebrafish orthologous promoters in the HRCZ SET. TOPI is the number of genes in which the highest scoring alignment is found in a
given genomic region. The MMA results were obtained with the optimal configuration = 1; 1 =0.3; £=0.1; y=2.

MMAs involving only promoter maps was more than 60%
higher than alignments in which one of them was substi-
tuted by another gene region map (e.g. 10.06 for PPP +
Coding in Table 3). The average score of such alignments
dropped even more when a second substitution was per-
mitted (see Table 3).

Finally, we analyzed the scores of pairwise TF-map align-
ments between each human promoter in the HRCZ SET
(Py) and the corresponding orthologous gene regions (Sg)
in mouse. The average score of the TF-map alignments
involving the two promoters was substantially higher
(42.00) than any other incorrect combination (e.g. 5.80
for human promoter-mouse coding region alignments).
These results show that orthologous promoter-promoter
TF-map alignments are more significant than alignments
of any other combination of gene region maps.

Promoter characterization

We have selected three particular examples that show the
ability of MMAs to characterize promoter regions in the
absence of sequence conservation. In all cases, we have
compared the multiple TF-map alignment to the corre-
sponding multiple sequence alignments, as in the section

Table 2: Specificity of the TF-map alighments

above, to measure their accuracy to detect the TFBSs exper-
imentally annotated on these promoters.

Actin o-cardiac gene

Actins are highly conserved proteins that are involved in
various types of cell motility. The alpha actins are found
in muscle tissues and are a major constituent of the con-
tractile apparatus. The Actin a-cardiac gene has been iden-
tified in many kinds of cells including muscle, where it is
a major constituent of the thin filament, and platelets
[38].

The promoter of the human and mouse Actin a-cardiac
genes (ACTC, GenBank: M13483, M26773) has been
extensively characterized by experimental means [39]. In
the ABS database [13], the entry A0028 includes the
known orthologous binding sites in the respective human
and mouse promoters (500 nucleotides, the position
+501 is the TSS). The human ACTC promoter is consti-
tuted of three SRF sites (+301, +352, +392), a SP1 site
(+418), and a TATA box (+469).

Using the RefSeq gene annotations [28], we have also
identified the corresponding orthologous promoters in

MMA ON HRCZ SET Avg Avg* Max Max*
Coding 17.15 4.66 62.60 31.37
5'UTR 10.48 3.60 35.74 26.16
Promoter 25.4| 9.91 71.22 46.18
3'UTR 15.85 7.23 76.31 50.51
Intronic 8.34 3.53 48.60 22.39
Downstream 6.85 4.88 24.91 24.10
5'Intergenic 5.42 3.65 21.36 24.12
3'Intergenic 4.14 4.53 35.70 25.40

Comparison between average and maximum scores of TF-map alignments of several regions from orthologous genes from the HRCZ SET and
average and maximum scores of TF-map alignments of several regions from randomly shuffled genes from the HRCZ SET (denoted as *, see main

text for details).
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Table 3: Significance of the TF-map alignment scores
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S
Promoter Coding 5'UTR 3'UTR Intronic Downstream 5'Intergenic 3'Intergenic
PPPS 25.41 10.06 743 5.36 10.54 10.84 10.84 10.77
PPSS 25.41 9.79 5.03 5.24 7.50 6.31 4.98 5.6l
P.Sg 42.00 5.80 5.04 2.49 4.57 5.79 4.64 3.63

Average score of multiple TF-map alignments of groups constituted of orthologous promoters from the HRCZ SET (denoted as P), introducing one
or two non-corresponding orthologous sequences (denoted as S). Last row shows the average score of pairwise TF-map alignments that involve
each human promoter (Py) and the corresponding rodent region of the same gene (Sg) in the HRCZ SET.

chicken and zebrafish NM_001031229,

NM_214784).

(RefSeq:

We have then aligned the four promoters and compared
the resulting MMA with the functional annotations in the
ABS database. In general, the multiple TF-map alignment
of the four orthologous promoters of ACTC contains
many of the known functional sites in human and mouse,
detecting as well the corresponding orthologs in the other
species.

The MMA of the ACTC promoters and the experimental
evidence are shown in Figure 8 (top). While the region
proximal to the TSS is not more dense in predicted TFBSs
than other regions, most of the aligned elements cluster
next to the near TSS. In addition, the alignment agrees
well with the functional annotation available in human
and mouse, providing novel orthologous sites in chicken
and zebrafish:

1. The second SRF binding site is correctly identified in
human, mouse and also in zebrafish.

2. A RREB-1 site that overlaps the SP-1 active site is iden-
tified in the MMA. RREB-1 and SP-1 are members of the
zinc finger protein family with different binding specifici-
ties. However, the consensus of both matrices in JASPAR
are very similar, being constituted of several occurrences
of the motif CCCC [14].

3. A SQUA site that overlaps the third SRF active site is
identified in the MMA. SQUA and SRF are both members
of the MADS family [14].

4. A novel forth SRF binding site is located immediately
upstream of the experimental first one at the four species.

5. The TATA box is correctly detected in human, mouse
and zebrafish as well.

No significant conservation among the sequences was,
however, detected in the multiple sequence alignment of

the four ACTC promoters (see the alignments in the Sup-
plementary Information).

Myoglobin gene

The Myoglobin gene is a member of the globin superfamily
and is expressed in skeletal and cardiac muscles. The
encoded protein is an haemoprotein contributing to intra-
cellular oxygen storage and transcellular facilitated diffu-
sion of oxygen [40].

The promoter of the Myoglobin gene in human (MB, Gen-
Bank: X00371) and in mouse (RefSeq: NM_013593) has
been experimentally characterized [39,41]. In the ABS
database [13], the entry A0037 includes the known
orthologous binding sites in the respective human and
mouse promoters (500 nucleotides, the position +501 is
the TSS). The human MB promoter is constituted of a
CCAC box (+272), a MEF-2 site (+335) with two sur-
rounding E-boxes (+326, +348) and a TATA box (+469).
Using the RefSeq gene annotations [28], we have also
identified the corresponding orthologous promoters in
chicken and  zebrafish  (RefSeq: NM_203377,
NM_200586).

We have then aligned the four promoters and compared
the resulting MMA with the functional annotations
detailed above. The multiple TF-map alignment of the
four orthologous promoters of MB contains several of the
functional sites in human and mouse, detecting some of
the orthologs in the other two species. The output cover-
age is again very small.

The MMA of the MB promoters and the experimental evi-
dence are shown in Figure 8 (bottom). Most of the aligned
elements are present next to the TSS, while this spatial
trend is not observable in the predictions at each pro-
moter. The alignment also contains several of the func-
tional human and mouse sites, providing their
counterparts in chicken and zebrafish:

1. A RREB-1 site that overlaps the functional CCAC box is
identified in the MMA. In fact, the RREB-1 matrix consen-
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Figure 8

On top, the JASPAR predictions on the human-mouse-chicken-zebrafish promoters of the Actin a~cardiac gene (ACTC, GEN-
BANK: M13483 and M26773, RefSeq: NM 001031229 and NM 214784), the resulting MMA and the experimental evidence. At
bottom, the JASPAR predictions on the human-mouse-chicken-zebrafish promoters of the Myoglobin gene (MB, GENBANK:
X00371, RefSeq: NM 013593, NM 203377 and NM 200586), the resulting MMA and the experimental evidence. In both cases,
the TF-map alignment represents a considerable noise reduction which has biological relevance, as most experimentally anno-
tated TFBSs in these promoters are successfully covered by the MMAs (see main text). Both graphical representations have

been produced with the program gff2ps [27].
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sus in JASPAR represents an A/C rich area that contains the
CCAC motif [14].

2. The TATA box is correctly detected in the four species.

The multiple sequence alignment of the four MP promot-
ers did not reveal any significant conservation (see the
alignments in the Supplementary Information).

Even-skipped stripe 2 enhancer

Proximal promoters are adjacent to the gene. Enhancers,
however, are other type of regulatory regions (typically
500 - 1,000 nucleotides long) positioned several kilo-
bases upstream or downstream of the regulated gene.
Such elements can function in either orientation, being
distance and position independent [42]. The regulatory
logic of enhancers is different from the promoters, allow-
ing a great plasticity in the arrangement of the TFBSs (e.g.
non-collinearity [22]). Enhancers are constituted of mul-
tiple binding sites to recruit four or five different TFs that
define space and time specific aspects of gene expression
[43]).

The body patterning of early embryo in Drosophila is gov-
erned by a hierarchy of maternal and zygotic genes. In par-
ticular, maternal and gap gene factors together control
pair rule gene expression in 7 alternating stripes, which in
turn regulate segment polarity and homeotic gene expres-
sion in 14 stripes [44]. The stripe 2 enhancer of the pair-
rule gene Even-skipped has been experimentally character-
ized in several species of Drosophila, showing considerable
evolutionary change in the binding site composition and
spacing [45]. Such annotations have been extensively
used to train several computational regulatory module
prediction approaches [46-48].

The stripe 2 enhancer of the Even-skipped gene (EVE, Gen-
Bank: AF042709 (D. melanogaster), AF042710 (D.
yakuba), AF042711 (D. erecta), AF042712 (D. pseudoob-
scura)) is governed by 17 TFBSs of four TFs [45]: 2 activa-
tors (bicoid and hunchback) and 2 repressors (giant and
Kruppel). We have obtained from TRANSFAC 8.4 [16] the
PWMs to recognize bicoid (I$BCD_01), hunchback
(I$HB_01) and Kruppel sites (I$KR_01). We will focus
therefore only on the occurrences for these three TFs. The
positions of the experimentally verified binding sites in
the Drosophila melanogaster enhancer are [45]: bicoid
(+138, +159, +310, +403, +521), hunchback (+496, +578,
+661) and Kruppel (+3, +139, +327, +521, +571, +615).
We have obtained the TF-maps of bicoid, hunchback and
Kruppel in these enhancers (threshold score 50%). We
have then aligned the four enhancer maps allowing non-
collinear rearrangement in the alignments (parameter c =
1, see Section Non-collinear TF-map alignments). We
have compared the resulting MMA with the available
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functional annotations. Matches to one of the elements in
overlapping sites for activators/repressors are considered
to be correct. The MMA of the four orthologous enhancers
and the experimental evidence are shown in Figure 9.

Despite we trained our algorithm specifically on human-
mouse-chicken-zebrafish genes (vertebrates), the MMA of
the four Drosophila enhancers still agrees well with the reg-
ulatory annotation available for Drosophila melanogaster,
providing the orthologous known sites in the other spe-
cies and two additional putative non-collinear rearrange-
ments (see Figure 9):

1. Five out of six known Kruppel sites are correctly identi-
fied in the four enhancers.

2. Three out of five known bicoid sites are identified in the
four enhancers.

3. Two out of the three hunchback sites are identified.

The MMA contains a non-collinear rearrangement
between the HB1 site and the KR1 site in D. erecta (see Fig-
ure 9). The HB1 site is not detected in D. erecta and D.
pseudoobscura in the conventional sequence alignment of
the four enhancers [45]. Non-collinearity is also observed
between the BC2 site and a hypothetical Kruppel site pre-
dicted in D. pseudoobscura.

Discussion

Among the many codes that shape the sequence of the
genomes, the one regulating their transcriptional activity
remains remarkably elusive. Indeed, it is usually impossi-
ble to infer the specific spatial and temporal expression
pattern of a given genomic locus simply from the analysis
of the sequences presumably involved in its regulation. It
is well known that the initiation of the transcription by
RNA Polymerase II requires the interaction between this
enzyme and a number of TFs that bind to the DNA
sequence in the promoter region upstream of the tran-
scription initiation site. While transcription factors bind
short DNA motifs on the promoter region, these motifs
are often degenerated, and their effective recognition by
the factors is dependent on the structural conformation of
the region harboring them.

As a result of these and other circumstances, the relation
between primary sequence and regulatory code is far from
being trivial. Indeed, recent genome-wide studies based
on chromatin immunoprecipitation (ChIP) of DNA
bound by promoter-associated proteins, followed by
either direct sequencing of the bound region or hybridiza-
tion in a tiling array (ChIP-chip [49-51]) underlined the
complexity of this relationship. Often no occupancy by a
given TF has been experimentally detected for many
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Figure 9

The TRANSFAC predictions of bicoid (in green), hunchback (in blue) and Kruppel (in yellow) zygotic factors on the stripe 2
enhancer of the Even-skipped gene in D. melanogaster, D. yakuba, D. erecta and D. pseudoobscura (EVE, GenBank: AF042709,
AF042710, AF042711 and AF042712), the resulting MMA and the experimental evidence. The TF-map alignment agrees well
with the experimental annotation of the enhancer in D. melanogaster, as most experimentally annotated TFBSs are successfully
covered by the MMAs. Non-collinear rearrangements in the MMA are denoted with a red square (see main text). The graphical
representation of the maps and the alignments has been produced with the program gff2ps [27].

genomic sites where binding motifs can be computation-
ally predicted [52,53]. Therefore, promoter regions of
genes sharing similar expression programs often do not
show nucleotide sequence conservation.

To overcome this limitation, we introduced recently a
novel approach based on abstracting the nucleotide
sequence of gene promoters and replacing it by a
sequence of labels, each label denoting, at a specific loca-
tion on the primary sequence, the TF for which a known
binding site has been predicted. We used the term TF-
maps for denoting such sequences of labels [9]. Pairwise
alignments between TF-maps can occasionally reveal
underlying configurations of TFBSs shared by co-regu-

lated genes, which escape detection by typical nucleotide
sequence comparisons.

Here, we introduce the multiple TF-map alignments. Mul-
tiple comparisons increase the power to detect the under-
lying features common across the compared elements by
increasing the signal to noise ratio. Multiple sequence
comparisons, in particular, have been used to identify reg-
ulatory motifs and coding exons in genomic sequences
[54,55]. The rationale is that since the probability of
mutation is lower in functional than in non-functional
regions, by increasing the number of sequences in the
comparisons, nucleotide divergence increases in non-
functional regions proportionally more than in functional
ones, producing a sharper contrast in the sequence conser-
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vation landscape [56,57]. A similar rationale can be
applied to the multiple-TF map alignments. TF-maps,
obtained usually through computational predictions of
binding sites, contain many non-functional elements (i.e.
false positive hits). One expects that, among multiple TF-
maps corresponding to genes with similar expression pat-
terns, only the functional elements (i.e. the "bona fide"
TFBSs) will be conserved.

Indeed, as we have shown, the main effect of the multiple
map alignments (MMA) is the dramatic reduction in the
number of predicted TFBSs that typically result after a
PWM-based search (see Figure 8). For instance, we aligned
157 human sites to 197 mouse sites, 229 chicken sites and
167 zebrafish sites mapped in the respective Actin a-car-
diac gene promoter orthologs. The resulting multiple TF-
map alignment included only 14 TFBSs, which approxi-
mately represents a 13-fold reduction. In addition, most
aligned sites in the MMAs are concentrated in the proxi-
mal promoter region of each gene (200 nucleotides
upstream of the TSS). This gain in specificity is not simply
due to the selection of an arbitrary set of non-overlapping
TFBSs, since many experimentally annotated TFBSs on
these promoters are successfully covered by the resulting
MMAs.

We have trained our approach on a human-mouse-
chicken-zebrafish dataset mostly constituted of tissue-spe-
cific genes, because of the enrichment of such a promoter
class in the regulatory annotation literature [36,39]. A
recent study states, however, that the classical TATA-box
promoter architecture of such genes represents a minority
of the set of mammalian promoters in human and mouse
[58]. The structure of TATA-independent promoters
occurring within a CpG island is more flexible and evolv-
able. We consider, however, the evaluation of the MMA
presented here is still correct as our approach does not dis-
tinguish the TATA-box and the other core promoter ele-
ments from the rest of TFs during the alignment. MMAs
can therefore also deal with flexible regulatory rearrange-
ments (see the TF-map characterization of the Even-skipped
stripe 2 enhancer). In addition, in a previous study the TF-
map alignments showed to be also effective in more gen-
eral regulatory datasets that contained both classes of pro-
moters [9]. Map alignments were introduced in the early
1980s to compare restriction enzyme maps [59]. Several
improvements on the basic pairwise algorithm were
developed since then [60] but this is the first time a mul-
tiple alignment implementation is proposed. In practice,
guaranteeing the optimal solution to the multiple
sequence comparison problem is difficult. Our approach
is based on the progressive alignment paradigm, which
produces not necessarily optimal alignments despite the
results are biologically meaningful [4]. Here we have gen-
eralized the data structures and algorithms shown in a
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previous work for the pairwise comparison [9], to deal
with multiple maps without adding supplementary com-
plexity. Thus, the cost of the final implementation is pro-
portional to the number of pairwise comparisons
performed by the progressive approach.

In addition, we have redefined the way in which the
dynamic programming matrix is processed in order to
capture non-collinear configurations in the maps of regu-
latory elements. We have shown an example in which
non-collinearity helps to find rearrangements of TFBSs
that can not be detected using a conventional linear
approach. Despite it is actually very difficult to train the
non-collinear algorithm due to the lack of abundant
experimental annotations, we believe this kind of
approach will be very important in the future as collinear-
ity can not be always assumed in regulatory regions [12].

The TF-map alignments are able to unveil characteristic
regulatory patterns that are difficult to be detected at the
sequence level. To test this hypothesis, we have used col-
lections of position weight matrices as external mapping
functions. However, the TF-map alignment algorithm can
also deal with other kind of regulatory maps as those pro-
duced by pattern discovery programs. For instance, we
have used the MEME program [17] to discover novel
motifs (number of motifs: 20, minimum site length: 6,
maximum site length:15) in the promoters of the Actin o-
cardiac and Myoglobin genes. We have then performed the
MMA of such patterns. The input motifs and the resulting
alignment in both cases are shown in Figure 10. Such an
approach can be useful to enrich the results obtained
when the same promoters are aligned using JASPAR (see
Figure 8).

While here we have focused on TF-maps, the algorithms
and software that we have developed can also be applied,
in principle, to any other problem in which the primary
sequence can be annotated with higher-order features
(that is, it can be mapped into a sequence of labels denot-
ing these features). Thus, comparisons between the anno-
tations (instead of primary sequences) can reveal more
biological clues. Examples could include comparisons
between exons/introns that have been annotated with
matches to binding motifs for splicing regulatory factors
[61]. The MMAs, in this case, could reveal classes of exons
whose splicing is regulated in a similar way. Or compari-
sons between protein sequences which have been anno-
tated with functional (PFAM, [62]) or structural domains.
The MMAs could help here to infer functional super-fam-
ilies. Or comparisons between entire genomes, which
have been annotated with the biological functions (for
instance, using Gene Ontology (GO) terms [63] of the
genes across the genomes). The MMAs could help to
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Figure 10

On top, the MEME novel patterns discovered on the human-mouse-chicken-zebrafish promoters of the Actin o~cardiac gene,
the resulting MMA and the experimental evidence. MEME motifs in the alignment supported by real sites: (Motif2, GAC-
CAAATAAGGCAA, SRF), (Motif4, GGCAGGGGAGAGGAT, SPI), (Motifl0, TATAAAG, TBP). At bottom, the MEME pat-
terns on the human-mouse-chicken-zebrafish promoters of the Myoglobin gene, the resulting MMA and the experimental
evidence. MEME motifs in the alignment supported by real sites: (Motif5, TATAAAA, TBP). The motifs are displayed as boxes
along the promoter. MEME motifs were obtained with these parameters: -nmotifs 20 -minw 6 -maxw |5. Both graphical repre-
sentations have been produced with the program gff2ps [27].
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investigate whether function and chromosomal localiza-
tion are related.

Conclusion

In general, as the functionality of the primary sequence
becomes better understood, more innovative alignment
techniques between higher-order representations of the
sequences, such as the approach we presented here, will
become increasingly useful to uncover the features that
underlie common functionality.
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