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Abstract

Background: RNA metabolism, through 'combinatorial splicing', can generate enormous
structural diversity in the proteome. Alternative domains may interact, however, with
unpredictable phenotypic consequences, necessitating integrated RNA-level regulation of
molecular composition. Splicing correlations within transcripts of single genes provide valuable
clues to functional relationships among molecular domains as well as genomic targets for higher-
order splicing regulation.

Results: We present tools to visualize complex splicing patterns in full-length cDNA libraries.
Developmental changes in pair-wise correlations are presented vectorially in 'clock plots' and linkage
grids. Higher-order correlations are assessed statistically through Monte Carlo analysis of a log-
linear model with an empirical-Bayes estimate of the true probabilities of observed and unobserved
splice forms. Log-linear coefficients are visualized in a 'spliceprint,’ a signature of splice correlations
in the transcriptome. We present two novel metrics: the linkage change index, which measures the
directional change in pair-wise correlation with tissue differentiation, and the accuracy index, a very
simple goodness-of-fit metric that is more sensitive than the integrated squared error when applied
to sparsely populated tables, and unlike chi-square, does not diverge at low variance. Considerable
attention is given to sparse contingency tables, which are inherent to single-gene libraries.

Conclusion: Patterns of splicing correlations are revealed, which span a broad range of interaction
order and change in development. The methods have a broad scope of applicability, beyond the
single gene — including, for example, multiple gene interactions in the complete transcriptome.

Background

Through alternative splicing at multiple sites, a single
transcriptional unit may give rise to a complex array of
isoforms - a 'mini transcriptome,' or single-gene tran-
scriptome (SGT). Considerable effort is being invested to
assemble a genome-wide compendium of sites of tran-
script and peptide variations [1-6], the guiding principle

being that combinatorial splicing may profoundly expand
the proteome, and consequently the phenotypic reper-
toire, without increasing the number of structural genes

[7].

Such phenotypic elaboration may arise through simple
combinations of individual 'modular’ domains, or
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through cooperative effects from multiple variable
domains that interact functionally [8]. The latter compli-
cation imposes significant regulatory demands - for the
efficient selection of combinations of viable combina-
tions — which may in part underly the expansion of the
non-coding genome [9,10]. To understand gene function
more fully, we must determine how all the possible alter-
native domains are actually combined by the RNA splic-
ing process into working molecules. This requires
structural analysis of large numbers of full-length tran-
scripts expressed from each gene, approaching numbers
currently available in whole-genome full-length ¢cDNA
libraries derived from whole-genomes [11-16] to ensure
adequate representation of the less abundant variants.

EST, microarray, and proteomics methodologies for large-
scale alternative splicing surveys share the limitation that
by sampling fragments of macromolecules they cannot
capture most intramolecular linkage information. That is,
they primarily yield marginal splicing frequencies but not
correlations. The latter are invaluable for discerning the
tissue- and cell-specific functional differentiation of splice
variants [4,17]. Full-length cDNAs, by contrast, provide
diaries of intramolecular splicing choices. We have devel-
oped robust methods for production of full-length, non-
recombinant, statistically representative single-gene
libraries (SGLs) [18]. An SGL is a 'vertical' sample of the
transcriptome, representing its basic building block, the
SGT.

Initial analyses of moderate-scale SGLs [8,18,19] reveal
fascinating developmental changes in both the extent and
pattern of splicing linkage. These represent developmen-
tal changes in the regulatory programs that establish the
selection rules for combining variable domains into func-
tional ensembles, thus establishing the molecular pheno-
type. Recent developments in production of large-scale
full-length ¢cDNA libraries and high-throughput sequenc-
ing techniques [20,21] promise to provide this informa-
tion at high resolution and on a meaningful scale.

As large-scale SGT data become available, reliable statisti-
cal methods will be required to discern potentially com-
plex splicing interactions. Two features of such data have
direct relevance to the present work: (1) high-order splic-
ing correlations, which reflect high-order functional inter-
actions within single molecules, and (2) very sparse
representation of the complete configuration space,
which presents a fundamental challenge to statistical anal-
ysis. Data sparseness results from a They typical situation
where several alternative splice loci have low-frequency
variations, rendering a substantial fraction of splice com-
binations as simply improbable.

http://www.biomedcentral.com/1471-2105/8/16

Here we present tools for statistical analysis of high order
splicing correlations in full-length SGLs

A thorough statistical analysis of alternative splicing (1)
begins with full-length cDNA libraries that are unbiased,
representative samples of the mRNA populations, (2)
presents a complete discussion of marginal splicing fre-
quencies as well as correlations, including tissue-to-tissue
variations in these parameters, and (3) employs a stochas-
tic splicing model where the observed data is a likely out-
come. We present tools for analysis of splicing
correlations in full-length SGLs, with careful attention to
handling of sparse contingency tables. We provide simple,
novel graphical visualizations that accentuate coordinated
changes within groups of variable loci. The data — human
low voltage-activated calcium channel gene (CACNA1G)
SGLs from fetal and adult whole brain - derive from
recent work [8], where we discuss in detail marginal splic-
ing frequencies and their developmental changes, as well
as splicing correlations, effects on ion channel function of
alternative splicing at individual alternative domains, and
high-order, non-additive functional interactions among
multiple alternative domains. The present work builds on
that material, presenting a detailed exposition of the sta-
tistical model, which was beyond the scope of that publi-
cation, a thorough analysis of splicing correlations, and
visual tools that will prove generally useful in studies of
splicing linkages. Since our focus is correlations, we limit
our discussion of marginal frequencies to the extent to
which it informs our understanding of correlations.
Though we employ a particular dataset and splicing
model for the sake of illustration, these analytical tools are
not model-specific and are generally applicable to other
types of multivariate data.

Methods

CACNAIG Gene and SGL Data

Table S1 presents the data for the present statistical analy-
ses, listing the frequencies of full-length splice variants in
whole-brain SGLs from two developmental stages of
expression of the human calcium channel gene
CACNA1G, described in reference 8. Marginal frequencies
at the separate alternative loci calculated from this data
are given in table S3, and are plotted in Figure S5 with
confidence intervals. Figure 1 is a schematized CACNA1G
gene structure illustrating the nine alternatively spliced
exon segments (white blocks) and a splicing graph depict-
ing the ways in exons may be joined by alternative splic-
ing. There are 512 distinct structures, most of which have
not been observed, and in fact may not be expressed.

Definitions

An alternative splice locus is a categorical variable repre-
senting a region of the primary transcript that is subject to
alternative splicing (we may omit the qualifier 'alterna-
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CACNAI G Alternative Splicing Graph. The
CACNAIG gene comprises 38 known exons and 37 introns.
All known exons or exon segments are shown. Lengths are
not to scale. Introns are omitted. Black boxes depict consti-
tutive (invariate) exons or exon segments, identified by the
upper set of labels. Thin black segments on the ends are non-
coding termini, corresponding to the alternative splice loci.
White blocks depict segments corresponding to the alterna-
tive splice loci, labeled below the figure. Line segments join-
ing the boxes, above and below, indicate potential alternative
splices.

tive' when the meaning is clear). We consider alternative
splicing a stochastic process, so that every alternative
sequence configuration C, of any set of loci S, is a random
variable with splicing probability ps(Cs). We say that a locus
j has a strong splicing bias if any p,(C;) approaches 1. For a
single locus j, the configuration C; may be represented by
an integer between 0 and g; - 1, where g; is the number of
sequence alternatives, or multiplicity, of j. For a cassette
exon, spliced in or out as a unit, it is often convenient to
assign 1 to the insertion and 0 to the deletion, although
the reverse may occasionally be more convenient - if the
insertion is rare, for example. What defines a locus may
also be flexible, depending on the purpose. An isolated
cassette exon unambiguously defines a single binary
locus, with multiplicity 2. Two adjacent alternatively
spliced cassette exons, however, may be considered two
loci with g = 2 or a single locus with g = 4. If the two exons
are mutually exclusive then the best representation may
be as a single locus with g = 3. Figure 1 illustrates the nine
alternative loci in the CANCA1G gene.

If splicing at separate loci is independent [17,19,22], the
expected frequency of each splice variant v is equal to its
independent stochastic expectation

k
o =[15) (1)
j=1

where fj(v) is the marginal frequency of C;(v), the configu-
ration of locus j in splice variant v. The number of possible
full-length transcript variants is

http://www.biomedcentral.com/1471-2105/8/16

N =18, (2)
j=1

Computations and illustrations were made in the R pro-
gramming language [23].

Mutual information methods

We quantify splicing linkage between a pair of loci i and j
with the mutual information I(i, j), which measures the
reduction in uncertainty about the configuration of one
locus when that of the other is specified [24]: I(, j) = H(i)
+ H(j) - H(i, j), where H(i) + H(j) is the expected entropy
of C;; given independent splicing at the observed marginal
frequencies, and H(i, j) = -2;p(Cy)-log p(Cy) is the
observed entropy.

While mutual information is non-negative, it is useful to
define a directed, or 'configuration-specific' mutual infor-
mation, which may be negative. The sign gives the direc-
tion of correlation between a specific pair of
configurations, called the reference configurations. For
example, if we define the reference configuration at a pair
of binary loci as the insertion at both loci, then a negative
value means that insertion at one locus correlates with
deletion at the other. The choice of reference configura-
tion is arbitrary, and reversing the reference configuration
for one locus simply reverses the sign of the configuration-
specific mutual information.

The dependency, D(i|j) = I(i, j)/H(i), is the mutual informa-
tion normalized to its maximum possible value, the total
entropy of the 'dependent' locus, i. It measures the degree
to which the independent variable is a predictor of the
dependent variable: the one with lower marginal entropy
has a higher dependency on the other.

The Linkage change index

To quantify developmental changes in linkage we intro-
duce the linkage change index, S, (Figure 2A-C). For a
given pair of loci, we define the linkage vector D = (x, y),
with components x - the splicing linkage in the fetal pop-
ulation, and y - the adult linkage. The difference y - x is a
simple measure of the developmental change in linkage:
it is zero when linkage is the same (x = y) at both stages
and maximal (positive or negative) for a complete reversal
of linkage (x = -y). Scaling to the length of D gives

Sp=(y—x)/|D|
= sin 6@ —cos 6

=/2sin 0

where 81is the angle between D and the x axis (Figure 2A)
and ¢ = 6- 7/4 is the angle between D and the transformed
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Two metric indices introduced in this work. A, The Linkage Vector, D, compares splicing correlation between two loci in
two populations; B, The Linkage Change Index Sy measures displacement of D from the zero-change axis (x'). C, Sy is a sinusoi-

dal function of the phase ¢ between D and x', the axis of zero linkage change. Positive values indicate an increasing positive or
decreasing negative linkage change, and magnitude |Sy| > | indicates a sign reversal (c.f. panel B). D, The Accuracy Index, A =

a/b, measures displacement of a point estimator x, from the center of mass of a distribution p(x).

x axis, x', representing unaltered linkage. In polar coordi-
nates, D ranges in magnitude between about 1 and 1.4
times the larger of x and y, and has phase ¢, the relative
developmental change in linkage. Note that sin ¢ = y'/|D|,
so Spis proportional to ', the perpendicular displacement
of D from the x' axis.

Spis a more straightforward index of linkage change than
either ¢ or sin ¢ (c.f. Figure 2B): S, is positive when splic-
ing correlation becomes more positive or less negative
with development (0 <¢ <z, magenta lines in Figure 2B
and 2C), and if the correlation actually reverses direction
from negative to positive, then S, exceeds 1 (/4 <¢p< 3 7/
4, quadrant II). Likewise, S, < 0 reflects increasing nega-
tive (red lines), or decreasing positive correlation, and S,
< -1 means the linkage reverses, from positive to negative
(quadrant IV). Figure 2C plots S, as a function of the
phase ¢, annotated corresponding to Figure 2B.

Assessing higher-order linkages with log-linear models
Given a table of frequencies for N splice variants (Table
S1), it is natural to arrange the data in a k-dimensional
contingency table with k variables (j = 1,..., k) of g; catego-
ries (C; = 0,..., g - 1) each. This simplifies calculation of
marginal frequencies. We fit the complete contingency
table to a log-linear model [25], giving the log-frequency
of each splice variant as a sum of coefficients ug(Cy),
which measure the extent of mutual correlation among a
set of loci S with configuration Cg. The most complete, or
saturated, log-linear model is:

log p(Cio3.1) =
grand mean u

up(C)+up(Cy) + -+ + 1, (Gy)
up(Cio) + -+ + g 1 (Crer )

independence
main effects

+ o+ 4+ o+

order k-1 123, 1(Ci23..%)

where subscripts refer to alternative splice loci. Each full-
length splice variant C,,; ,has a unique equation (3), giv-
ing Nyequations in all. The saturated model has a term for

every possible subset of loci plus an intercept, u, with

k
2?_0( . ) terms in all. With all binary loci, the saturated
—\J

model has 2% equations of 2 terms each. An unsaturated
model is hierarchical if the presence of a u-term for any
group of loci S implies a u-term for every subset of S.

For any locus j in a set of loci S, the sum of ug(Cs) over all
configurations of j is constrained to zero. Thus, for any Cg

and Cg differing only in the configuration of a binary
locus j, ug(Cs) = -ug( Cg ). If all loci in S are binary, then all
terms ug(C) have the same magnitude, |ug|. Working with

all binary loci thus simplifies the analysis, but does not
otherwise alter the capabilities of the method. We use nor-
malized frequencies, rather than total counts, to allow
direct comparison of populations of different sizes with-
out rescaling
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Accuracy index
The 'accuracy,' A, measures the extent to which a point,
Xy, is centered within a distribution, p(x). This has the

advantage of extreme simplicity: it is the ratio of areas a
and b in Figure 2D, where a is always the smaller of the
two areas 2 {p(x): x < x,} and X {p(x): x = x,}. For a con-

tinuous pdf the two areas are jxo p(x)dx and J: p(x)dx .
- 0

Note that both a and b include p(x,). This is by design, as
it yields a meaningful result for any x, and distribution
p(x). In the extreme low-variance limit, for example, if the
p(x) is an impulse Jc), then A (x) = 0 for all x except x =
¢, where A (x) = 1. The accuracy is thus always defined,
and ranges from 0, when x, lies completely outside the
distribution, to 1, when x, is the median of the distribu-

tion.

Supplementary Figures, Tables, and expressions
Figures, tables and expressions with labeled beginning
with 'S' are in Additional file 1.

Results

Some interesting developmental splicing changes are evi-
dent simply form inspection of table S1. For example, the
adult brain expresses a complement of structures that is
very distinct from the fetal-brain population. A large por-
tion of the difference is attributable to a developmental
switch from insertion of segment 26 to 25C between con-
stitutive exons 25B and 27. A broad array of other changes
occur as well, most due to changes in splicing correlations.
For example, the fetal brain expresses a significantly more
diverse population of transcripts (from a much less
diverse population of expressing cell types) than the adult
brain, even though the marginal entropies of the alterna-
tive loci are highly similar and predict populations of
equivalent diversity. See reference 8 for a detailed discus-
sion of these matters.

Clock plots

Figure 3A plots splicing linkage between a pair of loci at
one developmental stage versus another to display the
developmental change in linkage. We call this a 'clock
plot:' Each point is a vector whose magnitude measures
the overall splicing linkage between the two loci and
whose direction (displacement from the diagonal) indi-
cates developmental regulation of linkage. Splicing may
be developmentally regulated at both loci, but if they are
regulated independently the plot point will fall on the ori-
gin, no matter how great the changes in splicing. If two
loci are linked, but their linkage does not change with
development, the point will lie away from the origin but
on the diagonal. Thus, one pair of loci (1 and 2) shows a

http://www.biomedcentral.com/1471-2105/8/16

slight positive correlation between the reference configu-
rations at the early stage, but this correlation increases
greatly with development. The second pair also undergoes
a developmental change in linkage, but in this case the
loci become less correlated at the later stage. Linkage in
this case is configuration-specific mutual information,
which may be positive or negative. Plotting the configura-
tion dependence allows us to see a reversal in the direc-
tion of correlation - manifest as a reflection about one
axis - that may occur even in the absence of a change in
mutual information.

Figure 3B is a clock plot displaying all 36 pairs of the nine
alternative splice loci in the CACNA1G gene in fetal and
adult human brain (data are in Table S1). The points are
dispersed primarily along the adult axis, indicating a gen-
eral developmental increase in splicing linkage among
most pairs of loci, an interesting exception being those
that involve locus 38B (violet). Splicing at one pair of loci
in particular, 25C and 26, is highly linked, with insertion
at one locus favoring deletion at the other in both stages
of development, but much more strongly so in the adult
than in the fetal brain. Several loci show considerable
pair-wise splicing linkages with multiple other loci. We
note that domains that correlate structurally in this way
are good candidates for some kind of functional relation-
ship, and multiple pair-wise splicing linkages to a single
locus, as seen here, may reflect either simple pair-wise
functional interactions or a higher-order interrelation-
ship. We explore the latter possibility in the next section.

Figure 3C, plots the (configuration-specific) dependency of
25C on 26 (orange) and that of 26 on 25C (blue). The
dependency measures the extent to which splicing at one
locus predicts splicing at the other. Unlike mutual infor-
mation, the dependency is an asymmetric function of the
two loci, and may reveal relationships that are less appar-
ent with mutual information. In this case the strong devel-
opmental change in linkage is manifest more as a change
in dependency of 26 on 25C rather than the other way
around, as indicated by the much greater displacement of
the blue point from the diagonal. This reflects a greater
discrepancy in entropy of those two loci in the fetal pop-
ulation than in the adult (Table S3).

The statistical uncertainty, indicated by the dispersion
around each data point in Figure 3C-E, for example, is
obtained from 1000 simulated populations for each tis-
sue, sampled by Monte Carlo from the empirical Bayes
estimate (described below) of the distribution of splice
variants in each tissue. For every pair of loci in each tissue,
the mutual information (or dependency) values were
binned into a histogram. Because splicing in the two tis-
sues may safely be considered independent, the two-
dimensional joint distribution for a pair of loci is the Car-
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Clock plots. A, lllustrative example. Each circle represents
a pair of alternative loci (e.g. loci 'l and '2). The gray vectors
depict splicing linkage that is present but does not change
with development. B, Mutual information clock plot for all 36
pairs of the nine loci in the fetal and adult cDNA populations.
Pairs of loci are identified in the plot symbols by colors
defined in the key. The reference configuration is the inser-
tion for every locus. C, Dependency clock plot for the single
pair of loci (25C, 26). orange: D(25C]26); blue: D(26]|25C).
D, Mutual information clock plot for the eight pairs involving
locus 14: I(x, 14), Vx # 14. E, Dependencies, D(x|14), of the
same pairs.
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tesian cross product of the resulting bin-counts vectors
from the two tissues. The error ring encloses the 95%
most-probable values in this case.

Figures 3D and 3E allow comparison of mutual informa-
tion and dependency for the same pairs of loci, in this case
all pairs involving locus 14. The data represent 1000 pop-
ulations sampled from the empirical Bayes estimate, and
error rings enclose the 95% most-proabable values for
each pair of loci.

Pairwise linkage grids

Figure 4A displays linkage grids, showing the splicing
dependency of all pairs of loci in a population that are sta-
tistically significant at the level of 99%. The rows give the
dependent variables and columns the independent varia-
bles. In this way we may compare in adjacent grids the
extent of splicing linkage in two populations for all pairs
of loci exceeding a desired significance level. It is readily
apparent in these plots that brain maturation entails the
appearance or strengthening of a considerable number of
pair-wise correlations.

Figure 4B plots the dependency values for those loci show-
ing a statistically significant developmental change in link-
age. Thus, whereas in Figure 4A the significance was
determined separately for each tissue, in Figure 4B it was
determined for both jointly. Note that while loci 25C and
26 show a high degree of negative dependency in both tis-
sues (c.f. the red cells in the small white-bordered box
within each grid of Figure 4A), the dependency of 25C on
26 does not change significantly with development,
whereas the reverse dependency increases somewhat. This
reflects the different positions of the two points in Figure
3C, where the orange ring touches the diagonal.

We have introduced the linkage change index, Sp,, to quan-
tify these changes (c.f. methods). Figure 4C plots S}, and
|D| for those pairs of loci with nonzero S, at 99% signifi-
cance or greater. The left grid shows the dynamic range of
directional changes, while the right shows the overall
magnitudes of the linkages involved. An interesting point
of comparison is the values within the white-bordered
box representing loci 25C and 26. These cells are quite
dim within the Sj grid, whereas they are bright in the
other grids. This shows that, while there is strong splicing
dependency between these two loci at both stages, and
there is a statistically significant change in linkage with
development, the extent of change is actually not very
great in comparison to that at other pairs of loci. As we
noted above, though, the dependency of 25C on 26
undergoes a greater developmental change than the
reverse dependency; this is more apparent in the plot of S,
than in the other plots. Other significant changes are
much more obvious here as well.
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Linkage grids. A, B. Dependency, D(i|j), of splicing at one
locus i on a second locus j is plotted for all pairs of loci in the
fetal and adult cDNA populations. Independent loci j are on
the abscissa. The layout is the same for all grids. Only
dependencies at or above 99% significance are displayed. Sta-
tistical significance was determined for the two tissue sam-
ples either separately (A) of jointly (B). For a given tissue, the
same values are plotted in A and B when the linkage is signif-
icant in both. Note that a linkage may be significant in one tis-
sue but not both or vice versa. C. The linkage change index, Sp
(left), measures the extent of change in linkage at a pair of
loci in a single parameter. Only changes significant at or
above 99% are shown. The right panel plots the magnitude of
the linkage vector, |D|, which gives an indication of the over-
all level of linkge at each pair of loci. The color scale ranges
from -0/15 to +0.15 on the top four grids and from -1.4 to
+1.4 on the bottom left. Some cell values fall outside the indi-
cated range in order to improve the dynamic range overall.
Plus signs (+) indicate these saturated cells.

Spliceprints

Up to this point we have considered splicing linkage
between pairs of loci. It is possible for splicing to involve
correlations of higher order. For example a segment may
be deleted at locus 1 only if segments are inserted at both
loci 2 and 3. This situation necessarily entails pair-wise

http://www.biomedcentral.com/1471-2105/8/16

correlations between loci 1 and 2 as well as 1 and 3, but a
three-way linkage is more intricate than a collection of
disjoint pair-wise linkages.

Statistical interactions between splicing events at separate
sites may be expected to relate directly to functional inter-
actions between the alternatively spliced domains. It is
only through this mechanism that alternative splicing
may exert control over the function of the expressed pro-
teins. The nature of physico-chemical interaction between
domains in a protein is extremely complex, generally
unpredictable, and not limited to "nearest-neighbor"
effects. This means that functional interactions may be
expected between arbitrarily many domains, and that func-
tional effects of a configuration change may be highly
nonlinear, depending on the complement of variable
domains at other sites in the same protein. We have dem-
onstrated highly nonlinear (non-additive) functional
effects, exactly of this nature, in the CACNA1G ion chan-
nel electrophysiology [8]. Thus we should not be sur-
prised to find higher-order splicing interactions, reflecting
control of domain combinations at multiple loci, and we
do not expect this phenomenon to be limited to the
present system.

We model multi-site alternative splicing with a log-linear
model [25] to quantify higher-order linkages. Figure 5 dis-
plays the amplitudes of the log-linear coefficients from
two developmental stages, for all terms of order 1 or
higher in the saturated model. The contributing loci are
not identified here, but terms for subsets of the same car-
dinality are grouped together between vertical rules. In
each plot, values above the zero line are coefficients
derived from the Empirical Bayes estimate of the experi-
mental population. For comparison, traces below the
midline plot mean values from 1000 Monte Carlo popu-
lations. Because only the magnitudes are plotted, the ordi-
nate values increase with distance from zero both upward
and downward. Differential splicing regulation in the
fetal and adult brain appears as different patterns in the
upper and lower boxes. Notice that independent splicing
gives coefficients that lie on the zero line, and that the
more compressed fetal pattern indicates a lower level of
splicing correlations, especially at higher orders. Although
we focus only on the magnitudes of the log-linear coeffi-
cients in the present work, a wealth of information is
present in their signs, which would admit a multidimen-
sional extension of the clock plot analysis. Also, of course,
the spliceprint is not limited to log-linear coefficients, and
the coefficients may be presented in any desired order on
the abscissa.

Minimal-linkage models
We may wish to identify the smallest set of interactions
that can account for the data, within bounds of statistical
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Spliceprints. Log-linear coefficient magnitudes are plotted
for all subsets of more than one locus. The vertical scale is
the same for all traces. Within a cardinality, k, the sequence
of coefficients is determined by listing the 9 loci from left to
right as in Figure 4 (abscissa), and choosing groups of loci
from left-most to right-most as follows: for loci A = 25A, B
= 14, etc., cardinality-3 coefficients occur in the order ABC,
ABD, ACD, BCD, ABE,..., PHI, GHI.

significance. It may be surprising, for example, that some
genes display nearly independent splicing at multiple
sites, even in rather complicated tissues [8,17,19]. In such
cases one or two pair-wise interactions may account for
any deviations from independence. We may identify those
by first ranking the pairs in order of decreasing mutual
information, then define a hierarchical model with only
the most highly correlated first-order interaction terms. A
least-squares fit to this model gives coefficients for only
those interactions. We then ask whether this represents a
possible parent distribution for the observed population.

A simple way to do this is to sample Monte Carlo popula-
tions from the fitted distribution, with the same number
of transcripts, N, as the experimental population. For each
MC population we then calculate its likelihood of arising
from a reference distribution, p, for example:

Np—1
p=NUTT #iv /! (4)

v=0
This is a multinomial distribution of Ny splice variant
classes, v, each with expected probability p, and abun-
dance n,in the sample: Y1, = N. The reference distribution
is in fact arbitrary: we are not interested in the exact likeli-
hood of our data; rather, we wish to find a model that gen-
erates populations of likelihood similar to the data with a
given reference distribution. The fraction of MC likeli-
hoods not exceeding the observed value measures the evi-
dence against the model. This approach is an
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approximation to the method of posterior predictive
assessment of model fit of Gelman et al. [26]. Expression
(4) constitutes their statistic T. We seek a model with suf-
ficient departure from independence to be consistent with
the observed data.

Figure 6 illustrates this method with the adult data. It
shows log-likelihood histograms for six Monte Carlo
ensembles of 1000 populations each. The reference distri-
bution is the independent-splicing expectation [equation
(1)] of the experimental population. The horizontal rule
at -143 shows the log-likelihood of the observed popula-
tion. The first ensemble (left-most histogram) was sam-
pled from the reference distribution, and shows that
independent splicing is inconsistent with the experimen-
tal data. The reference distribution gives the 'cardinality-1'
log-linear model, log p(C, 55 ;) =u + 2u(C;), with all inde-
pendence terms and no interactions. The next histogram
is obtained by adding a single interaction to this model:
u3,4(C5,), the pair-wise interaction between loci 25C and
26, identified by mutual information as the most highly
correlated segments. Each subsequent ensemble is
obtained from the previous by adding the next most-cor-
related pair. A minimum of five pair-wise linkages is thus
required to account for the observed splicing correlations
by a stochastic mechanism within bounds of 95% confi-
dence.

Saturated models

Peptide domains that interact functionally are likely to
exhibit statistical correlations reflecting enrichment of
productive interactions or suppression of detrimental
ones. Figures 1 and 2 show that many individual loci par-
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Figure 6

Posterior predictive assessment of minimal model
fit. A simple model may account for the observed distribu-
tion within admissible error limits, but it may cause one to
overlook important effects in a network of interactions. His-
tograms of log-likelihood (assuming independent splicing) are
presented, each for 1000 Monte Carlo populations, sampled
from a series of models incorporating an increasing number
of pairwise correlations. See text for details.
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ticipate in pair-wise interactions with multiple other loci.
Where these reflect functional interactions, we anticipate
two important consequences, due to the fact that they
occur within a close-packed, folded protein: (i) they are
likely to be transitive in nature - e.g., if loci A and B interact
and loci B and C do, we expect that A and C will as well.
Furthermore, we should expect that splicing at C will have
effects that depend on A and B together, i. e. (ii) a set of loci
may influence protein function as an integrated ensemble,
rather than a collection of functionally separable mod-
ules. It then follows that their splicing regulation will
exhibit mutual, higher-order interdependencies. Unsatu-
rated models cannot capture these correlations accurately:
Alow-order model, as in Figure 6 for example, is from this
perspective an oversimplification, emphasizing a few low-
order interactions at the expense of a wealth of informa-
tion in the higher orders. Though we correctly identify the
most highly correlated domain pairs, this gives no clue
how pairs may link up within a molecule, i.e., evidence for
ensembles of functionally interacting protein domains.

Figure 7 shows the distribution of amplitudes among the
first 4 orders of interaction terms (cardinality k = 2,...,5)
from fits of four hierarchical models to the same data
(adult population). Each panel plots coefficients from a
model that includes all terms of cardinality k and lower,
but none higher. When excluded from the model, high-
order interactions are 'absorbed’ into lower-order terms.
Notice, for example, the redistribution of relative ampli-
tudes within the cardinality-3 coefficients as higher-order
terms are included in the model. This occurs as weight
from triplets in higher-order linkage groups is shifted to
their higher-order coefficients when they are made availa-
ble in the model. Since we wish to compare coefficients
estimated under identical models from parallel data sets,
we use a saturated model to avoid confounding the low-
order terms with higher-order effects. A nonzero coeffi-
cient for a set of loci then indicates a mutual splicing
dependency among all loci in the set, in excess of any
lower-order interactions that may be present among com-
ponent subsets, and larger magnitudes reflect stronger
correlations.

Empirical Bayes methodology

We are not interested in the precise values of the coeffi-
cients as much as the relative amplitudes of the same coef-
ficients from two different populations, as compared side-
to-side in Figure 5, for example. From this we may discern
statistically significant developmental shifts in splicing
linkages. This requires that we estimate the variance of the
log-linear coefficients. These may be obtained from a sat-
urated model fit to Monte Carlo populations sampled
from an estimate of the parent distribution.

http://www.biomedcentral.com/1471-2105/8/16
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Figure 7

Spliceprints of successively higher-order hierarchical
models fit to the same data. Excluding high-order effects
from the model changes the relative magnitudes of the
remaining coefficients, thus misrepresenting the lower-order
interactions. The vertical scale is the same for all plots.

The simplest such estimate is the observed distribution
itself (the bootstrap). While this makes no assumptions
about the underlying mechanism, it assigns zero probabil-
ity to the unobserved splice forms, which is obviously
unreasonable. Increasing the experimental sample size,
even by an order of magnitude, may not make the boot-
strap applicable if the number of alternatively spliced loci
is even moderately large (Figure S2): the probability space
expands geometrically with the number of variables, so
unless the sample is vastly larger than the number of
classes the table of observed frequencies will contain a
large number of zeros (empty cells). This is exaggerated
when splicing at any locus is strongly biased, as is com-
mon (e.g. Figure S5). Transcripts that combine rare splice
configurations at multiple loci thus have a very low expec-
tation, though we cannot assume that any empty cells
would persist if we continued data collection indefinitely.

The empirical Bayes approach [27] enables an estimate of
the parent distribution with plausible nonzero probabili-
ties for the unobserved classes. This estimate (the posterior
distribution) incorporates the observed distribution (the
likelihood) with our current understanding of the underly-
ing process (the prior distribution). We have found the
'‘pseudo-Bayes' estimator of Bishop et al. [25], a linear
shrinkage estimator chosen for its simplicity, to be
entirely adequate. Improvements may be made to the esti-
mator - with nonlinear shrinkage, for example, but typi-
cally at the expense of added complexity. Our models do
exhibit sensitivity to the choice of prior distribution, how-
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ever, because of the sparse representation of splice forms
in the experimental data. We present a thorough examina-
tion of different priors in the Supplementary Information.
Because splicing at separate loci is approximately inde-
pendent (Figure S4), equation (1) provides an excellent
prior: the tissue-specific independent marginals prior. In this
work we primarily use the averaged-marginals variant of
this prior, obtained by averaging the fetal and adult
expected frequencies.

The empirical Bayes methodology is open to the criticism
that including experimental results in the prior may lead
to duplicate use of evidence and subsequent underestima-
tion of uncertainty. Purportedly 'uninformative' priors
inadvertently introduce their own errors, however, mainly
by forcing untenable splice correlations into the estimator
(c.f. Supplementary Information; also Figure 9). By mak-
ing judicious use of the observed marginal frequencies in
the prior we minimize this effect, and keep the focus of
inference on the interactions. The present method has a
major advantage in providing a simple comparison of two
developmental stages by linkage order, with low compu-
tational burden.
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Figure 8

Cardinality-averaged log-linear coefficients. All coeffi-
cients of the same degree are presented as a single average
magnitude. 1000 Monte Carlo populations were sampled
from the empirical Bayes posterior obtained with the 'aver-
aged-marginals' prior and fetal (gray) or adult (black) likeli-
hood. Error bars delimit the 2.5 — 97.5% interquantile range
for each distribution.
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Figure 9

Frequency-of-frequency plots. Monte Carlo populations
of 108 transcripts each were sampled from the empirical
Bayes estimate obtained with the fetal or adult likelihood and
either the tissue-specific independent marginals (dots), aver-
aged-marginals (squares), or uniform (circles) prior. The
uniform prior gives an idiosyncratic L-shaped profile with an
abrupt lower copy-number limit (open circles). This reflects
the implicit exchangeability of the unobserved classes: all
have the same low probability, but because the majority of
forms are not observed, their cumulative probability in the
estimator is large. This is one example of how the uniform
prior (or any prior obtained by a small constant correction
to the observed frequencies), although 'uninformative', is
overly simplistic, and leads to artifacts.

Developmental changes in higher-order linkages

Figure 8 presents a statistical summary of Figure 5,
obtained with the averaged-marginals prior. The adult
population displays increased higher-order correlations
compared to the fetal for groups of up to at least 6 loci.
This agrees with the mutual information results (e.g. Fig-
ure 3B), with an interesting additional feature: the fetal
and adult profiles are most divergent at cardinalities 4 and
5 with the gap closing toward cardinality 2. This shows
that much of the difference in mutual information
between the two tissues derives from extensive splicing
correlations involving sets of considerably more than two
loci, whereas the extent of isolated pair-wise interactions
is more nearly comparable in the two tissues. Elsewhere
we demonstrate that these higher-order splicing correla-
tions correspond to non-additive functional interactions
among multiple domains in the expressed ion channel
protein [8]. The spliceprint provides compelling evidence
that entire ensembles of domain configurations are
selected in concert during processing of the RNA tran-
script, and that this process becomes more restrictive in
the course of development. These loci are spread out over
a large portion of a large transcript, separated by ten or
more introns in some cases. Fededa et al [28] present one
mechanism of long-range coordination of alternative
splicing, and others most likely will be found.
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The SGT is a transcriptome

Though we have used actual SGT data and a detailed mul-
tivariate stochastic splicing model to present analyses of
splicing correlations, our focus is on the methods them-
selves, which apply regardless of the dataset or details of
the splicing model. Only with a realistic splicing model, of
course, can we make reliable statistical inferences. We
present a detailed rationale for our model as a supplement
[see Additional file 1]. This model may be further refined,
for example through computational methods of variable
selection (Dahinden, Parmigiani, Emerick, and Biihl-
mann, manuscript in preparation) or collection of addi-
tional data from different sources. A realistic splicing
model allows us to investigate the single-gene transcrip-
tome with established methods of transcriptome analysis.
Figure 9 presents one such approach.

The transcriptome is a highly complex assortment of gene
products, but it exhibits a remarkably stable expression
pattern. Only a few genes are expressed at a high level,
while most genes are represented by only a few copies. It
is not clear that this pattern should persist at the single-
gene level. Different physiological inputs would affect the
profile at different levels, so those aspects of gene-network
topology that conspire to shape the aggregate gene expres-
sion profile, for example, may or may not be relevant to
the selection of splice isoforms from a single gene in sep-
arate cells or tissues. Nonetheless, the basic characteristics
of the transcriptome profile are also present in its elemen-
tal building block, the SGT. Figure 9 shows 'frequency-of-
frequencies' plots for simulated SGTs sampled from the
tissue-specific independent-marginals distribution (filled
circles). The reverse-] pattern, like those obtained in
genome-wide expression profiles assayed by SAGE [29],
reflects the complexity of both the transcript inventory
and the tissue physiology in which this gene is expressed.
The identical profile was obtained with the averaged-mar-
ginals estimator (squares), which places a lower reliance
on the observed marginal splicing frequencies in either
tissue. (A uniform prior distribution (open circles), which
we have shown to be inappropriate for a wide range of
reasons yields an idiosyncratic L-shaped profile with an
abrupt lower copy-number limit).

This analysis shows that the SGT exhibits a complex
expression profile similar to that of the complete tran-
scriptome, but that this is true whether or not splicing cor-
relations are present at observed levels. Splicing
correlations may represent a level of organization unique
to the single-gene level. Alternatively, of course, analysis
of correlated gene expression in the whole-genome tran-
scriptome may reveal comparably interesting behavior.

http://www.biomedcentral.com/1471-2105/8/16

Discussion

The human genome supports in the neighborhood of
23,000 protein coding genes [30], very similar to the
number found in genomes of vastly simpler organisms,
such as C. elegans and Drosophila [31,32]. To account for
the increase in human phenotypic richness, therefore, the
number of structural genes is not as important a factor as
the way in which genes are used. Variations in gene
expression levels, changes in the timing of expression,
evolutionary adaptations that rearrange gene interactions
as well as evolution of the coding sequence, and increased
post-transcriptional modification of primary transcripts
to diversify the products of single genes all play a role
[9,33].

Here we present tools to evaluate and visualize complex
patterns of transcriptome variation, illustrated on popula-
tions of full-length cDNA splice variants from CACNA1G,
the gene encoding the human Ca,3.1 T-type calcium-
channel ¢; subunit. In the course of brain maturation the
transcriptome of this gene undergoes a transformation
that would be largely invisible to a study of gene expres-
sion levels or a microarray- or EST-based splicing survey.
The changes appear only in the complete structures of full-
length transcripts, as alterations in splicing correlations at
separate loci within the same molecule. A standard analy-
sis of pairwise correlations, while illuminating, is incom-
plete in an important way. Compared to the fetal
transcriptome, the adult displays a marked increase in
mutual information between many pairs of loci (Figure
4). The multivariate analysis, however, reveals two com-
ponents of this increase: a modest elevation in disjoint
pairwise linkages and a substantial increase in higher-
order correlations that include linked pairs as a subset.
Overall, splicing in the adult is far more restrictive than
fetal splicing. This occurs at the same time as the range of
cell types in which this gene is being expressed is diversi-
fying, not constricting. This is consistent with the notion
that splicing may need to be more stringently specified in
the more intricate 'wiring' of the mature brain [8].

It is the grounding principle of this work, therefore, that
splicing correlations will generally reflect functional inter-
actions, and that these are likely to involve multiple
domains. Splicing of physically linked domains should be
co-regulated to inhibit detrimental interactions as well as
to enhance beneficial ones. This relates directly to the
complexity of the processes that regulate selection of alter-
native domains, the most important factor being whether
the domains are modular or functionally interactive.

Modular domains may be shuttled in or out with predicta-
ble effects, independent of splicing at other loci. They may
be used to conjoin functional activities — post-synaptic
targeting with fast activation gating in an ion channel, for
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example. Interactive domains, in contrast, express a shared
functional effect that exists only in the context of the
ensemble. A specific effect cannot be independently
defined for a single interactive domain: reconfiguring one
such domain 'reinterprets' the functional influences of the
others.

That is, the molecular phenotype may be expressed as a
linear combination of the effects of modular domains, but
not so for interactive ones. As an example, deleting seg-
ment 38B of the Ca,3.1 calcium channel decreases the
window current magnitude when 25C is present, but
increases it when 26 is present, and has no effect when
both are absent; furthermore, it does not effect gating
rates, except when 14, 25C and 26 were all absent, where-
upon it speeds inactivation [8]. Whether domains interact
functionally depends on the domains, and modular and
interactive qualities are not mutually exclusive.

The number of alternative molecular phenotypes is the
same whether the loci are modular or interactive. In the
former case, however, any given state is decomposable
into identifiable subsets of phenotypes, whereas in the lat-
ter it is not. Functional interactions admit the possibility
of introducing completely unpredictable, qualitatively
novel behavior simply by reconfiguring an existing set of
domains. In the course of evolution, the simple addition
of a new variable domain may reinterpret the phenotypes
of existing splicing patterns, enabling a rapid expansion of
functional alternatives from the ancestral gene.

Non-additive functional interactions may have various
causes. Inserting one domain may simply block access to
a binding site for a second domain, for example. Another
possibility is an 'allosteric' type of interaction where elec-
trical or conformational changes communicate through
the protein interior. The consequences of such interac-
tions may become even more complex when other genes
are alternatively spliced in multiple ways. Current esti-
mates of the number of alternatively spliced genes in
humans range to ~76% of known genes [34], with an
average of 3.9 splicing isoforms per gene [1]. Furthermore,
the frequency of alternative splicing is elevated in genes
that mediate cell signaling and metabolic networks [34],
increasing the likelihood of nonlinear, and largely unpre-
dictable interactions between genes with alternatively
spliced products that communicate through such net-
works. Strong intergenic interactions are of course normal
where proteins contact physically, as subunits of a multi-
enzyme complex, or in a multi-subunit ion channel. There
are 22-25 such genes for voltage-dependent calcium
channels, all of which may be alternatively spliced. These
may assemble in up to 840 stoichiometric complexes,
excompassing as many as 20 variable sites each. Physio-
logical channels may arise from as many as ~9 x 108 tran-
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script combinations. This is an enormous space of
possibilities, just for calcium channels, that can be
exploited in the refinement of neuronal networks.

We may expect splicing correlations to cross gene bound-
aries in such cases, though direct physical contact may not
even be necessary in general [35]. Splicing linkage analy-
ses in high-throughput transcriptomics may provide a val-
uable compliment to direct peptide interaction studies,
such as yeast two-hybrid, to reveal functional interactions
that do not require strong physical contacts. It is interest-
ing, in this light, that the notion of a reconfigurable 'inter-
actome' [36] extends to variable domains within the
protein interior.

The unpredictable consequences of functional interac-
tions are amplified through ambiguity in the determi-
nants of alternative splicing, which are not fully specified
in the gene sequence. Complex mammalian genes sup-
port an intrinsic uncertainty in the structure of the
expressed protein which is reduced epigenetically,
through information residing outside the gene, within
networks of trans regulatory factors, for example [37-39].
Thus, very rare splice configurations may be produced
under most conditions. Though any particular one may
have a low probability, there is always a chance that a new
form may arise, producing a protein that functions, albeit
in an unusual way. A low level of such 'noise' may in fact
be useful to a cell in a complex, unpredictable local envi-
ronment. This certainly describes the mammalian brain,
where humans have far outpaced other primates in the
evolutionary divergence of phenotype. In keeping with
this, the brain expresses a disproportionate diversity of
alternative splicing, compared to other tissues [40].

In the context of expanding complexity in alternative
splicing, interactions between variable domains therefore
present a challenge to the regulatory processes that select
them. A set of k modular domains may be configured
through k sequential yes/no choices. Functional interac-
tions, however, force a single, non decomposable, selec-
tion from 2k alternatives. The regulatory complexity thus
increases exponentially with the number of loci if they
interact, but only linearly if they do not. This is the cost of
diversifying the proteome through combinatorial splic-
ing. It returns a significant payoff, however, because the
exponential expansion of the regulatory load is compen-
sated by an expansion of phenotypic potential on the
same scale. We have noted [8] that this regulatory burden
could be escaped if some mechanism were available for
somatic selection during development, based on feedback
from the expressed transcriptome.
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Conclusion

As full-length cDNA datasets become available the meth-
ods presented here will assist in defining the interaction
landscape, revealing domain configurations that are
selected in concert and providing insights into how
domains within proteins interact functionally. Addition-
ally, however, they should adapt well to studies of cluster-
ing in the transcription of genes (and parts of genes). A
compelling application is to the class of RNA transcripts
that do not encode proteins [41]. Though largely of
unknown function, these ncRNAs comprise a large pro-
portion of the transcriptome, representing roughly 50%
of transcriptional units and covering 30 times more of the
genome than the protein-coding mRNA, and they are
elaborately processed (capped, polyadenylated and
spliced - constitutively, alternatively and trans-spliced)
[20]. They likely represent an important component of the
intricate web of RNA factors involved in the regulation of
gene expression [42], including regulated alternative
splicing.
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