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Abstract
Background: In ribonucleic acid (RNA) molecules whose function depends on their final, folded
three-dimensional shape (such as those in ribosomes or spliceosome complexes), the secondary
structure, defined by the set of internal basepair interactions, is more consistently conserved than
the primary structure, defined by the sequence of nucleotides.

Results: The research presented here investigates the possibility of applying a progressive,
pairwise approach to the alignment of multiple RNA sequences by simultaneously predicting an
energy-optimized consensus secondary structure. We take an existing algorithm for finding the
secondary structure common to two RNA sequences, Dynalign, and alter it to align profiles of
multiple sequences. We then explore the relative successes of different approaches to designing
the tree that will guide progressive alignments of sequence profiles to create a multiple alignment
and prediction of conserved structure.

Conclusion: We have found that applying a progressive, pairwise approach to the alignment of
multiple ribonucleic acid sequences produces highly reliable predictions of conserved basepairs,
and we have shown how these predictions can be used as constraints to improve the results of a
single-sequence structure prediction algorithm. However, we have also discovered that the
amount of detail included in a consensus structure prediction is highly dependent on the order in
which sequences are added to the alignment (the guide tree), and that if a consensus structure does
not have sufficient detail, it is less likely to provide useful constraints for the single-sequence
method.

1 Background
The research presented here investigates the possibility of
applying a progressive, pairwise approach to the align-
ment of multiple ribonucleic acid (RNA) sequences, in
which the property being aligned is not the primary struc-
ture defined by the identity of the nucleotides, but the sec-
ondary structure created from base pair interactions. In
RNA molecules whose function depends on their final,
folded three-dimensional shape (such as those in ribos-

omes or spliceosome complexes), the secondary structure
is more consistently conserved than the sequence.

Although there exist dynamic-programming methods for
predicting the secondary structure of a single sequence,
the quality of the prediction can be significantly improved
by using an alignment of multiple related sequences;
unfortunately, it is difficult to accurately align the
sequences without knowing their structures. A theoretical
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algorithm was proposed by Sankoff more than twenty
years ago [1] to solve the alignment and structure predic-
tion problems simultaneously. Although a variety of pro-
grams (e.g. Foldalign [2], PMcomp/PMmulti [3]) are
based on restricted versions of the Sankoff algorithm, it is
so computationally complex in time and memory require-
ments that it has never been implemented in full.

Similar limitations exist when aligning multiple
sequences using dynamic programming approaches. The
exact algorithm is unreasonably slow for very long
sequences (e.g. genomes), or for sets of many sequences.
Hence, heuristic methods have been developed. Clustal
[4] is a widely used multiple sequence alignment pro-
gram, which usually produces results that are reliable
enough that the extra resources required by the full algo-
rithm are rarely justified. The heuristic used by Clustal is
to approach the alignment of the entire set of sequences
through a progressive series of pairwise alignments, creat-
ing profiles of partial sets of sequences which are then
fixed in relative alignment when that profile is aligned to
additional sequences. The quality of the multiple
sequence alignment produced by the Clustal series of pro-
grams has been improved by a number of adjustments as
the program has been updated over the years. One essen-
tial heuristic is that the order in which sequences are
aligned reflects an estimated phylogenetic tree, such that
the most closely related sequences are aligned first, while
more diverse sequences – which have a greater possibility
of being aligned incorrectly – are added later in the proc-
ess. The tree structure that is used to guide the alignment
is calculated based on the relative scores of alignments of
all possible pairs of individual sequences.

Here, we take a constrained, pairwise implementation,
Dynalign [5], and alter it to align profiles of multiple
sequences, and then explore the relative successes of dif-
ferent approaches to designing the tree that will guide pro-
gressive pairwise alignments of sequence profiles to create
a multiple sequence alignment and a consensus predic-
tion of a conserved secondary structure.

1.1 Background: RNA alignment and secondary structure 
prediction
The 'traditional' methods to determine the secondary
structure of RNA involve a combination of biochemical
analysis of folded molecules and comparative sequence
analysis of a gene family with known phylogeny. By ana-
lyzing the covariance between particular nucleotides
across a set of sequences, probable basepairs can be
detected by the fact that mutations in the primary
sequence will maintain the secondary-structure pairing
pattern. The combination of these two approaches,
applied to the most intensively studied classes of struc-
tural RNA molecules (ribosomal RNA and transfer RNA),

have resulted in detailed structural models which have
been supported by more recent three-dimensional X-ray
crystallography analyses [6]. However, both approaches
are extremely time-consuming, and covariance analyses
require large numbers of sequences, including closely
related molecules which can be the basis of reliable align-
ments of the primary sequences. As more and more classes
of functional RNA molecules are discovered (see the
review by Storz [7] for examples), reliable computational
methods for detecting conserved RNA secondary structure
would increase the ability to connect sequence data to
structure and function.

There are many different computational approaches cur-
rently being used to attempt to predict secondary structure
of single RNA molecules, or to detect conserved structures
or structural motifs in multiple sequences. The approach
described here focuses on the global alignment and struc-
ture prediction of a set of related sequences, using the
nearest-neighbour energy model to assess the probable
stability of different potential structures.

The nearest-neighbour energy model is a rule-based
approach which attempts to explain empirically-meas-
ured thermodynamic changes in the stability of different
RNA molecules, using a sum of energy terms representing
the theoretical creation of the complete structure from
smaller structures by adding nucleotides (possibly base-
paired) at either end of the sub-structure. Each energy
term is only dependent on the identity of the bases added
and those at the ends of the sub-structure (the 'nearest
neighbours'). The model is therefore ideally suited for a
dynamic programming calculation, since the optimal
energy conformation for subsequences of a certain length
can be calculated by extending previously calculated
shorter sub-structures; the process is repeated starting with
small, trivial cases (hairpin loops), until a structure for the
entire sequence is predicted [8].

As mentioned, the energy terms are derived from empiri-
cal thermodynamic measurements (changes in the 'melt-
ing temperature' between similar molecules). In order to
explain as much of the variance of the empirical data as
possible, the model uses a complex set of rules and terms,
accounting for diverse possible interactions between adja-
cent bases which could increase or decrease the stability of
the structure. However, in order to maintain the computa-
tional simplicity of the dynamic programming method,
tertiary (three-dimensional) interactions, which may sig-
nificantly affect stability, are not considered. Energy min-
imization methods also do not consider kinetic effects
which may favour a locally stable conformation over a
global optimum.
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For these and related reasons, many single-sequence sec-
ondary structure prediction programs based on the near-
est-neighbour model, such as the commonly used mfold
[9], currently predict multiple potential structures if they
have similar calculated stability energies, and also recalcu-
late the energies for the potential structures using a more
complex energy model. However, even with these adjust-
ments, the nearest-neighbour model is still only a rough
approximation of the true change in free energy between
the unfolded and folded structures, and some structures
are very poorly predicted by this method alone.

The predictions from the nearest neighbour energy model
can be improved by incorporating covariance information
from multiple related sequences, to distinguish conserved
basepairs from potential interactions which are not part of
the biologically significant structure. The program RNAal-
ifold [10], which applies a nearest-neighbour model to a
precalculated sequence alignment, can significantly
improve structure predictions relative to single-sequence
methods, but only if the input alignment is reliable [11].
This is an important caveat, since sequence alignment
methods developed for amino acid sequences or protein-
encoding nucleic acids assume patterns of sequence con-
servation different from the structural RNA molecules. In
order to generate a reliable alignment of RNA sequences
without prior structural knowledge, the primary
sequences must be near-identical; however, if the
sequences are too similar, then the alignment does not
add significant information, and the structure predicted
for the profile may be no better than predictions for the
individual sequences.

The program Dynalign, developed by Mathews and
Turner [5], attempts to circumvent this problem by com-
bining alignment and structure prediction into one
dynamic-programming optimization. Their program is
essentially a restricted implementation of an algorithm
originally proposed by Sankoff [1]. Sankoff's general algo-
rithm (never implemented) describes how a set of nucleic
acid sequences with unknown conserved secondary struc-
ture could be aligned, and the conserved structure pre-
dicted, by calculating the most stable conserved structure
for all possible alignments of one subsequence from each
sequence in the set, by extending structures for alignments
of the same or shorter subsequences. Since the number of
subsequences of a sequence is proportional to the square
of its length, the time required for a complete implemen-
tation of the algorithm would be proportional to the
product of the squares of the lengths of all sequences in

the set ( (n2k), for k sequences of length n); energy values
for all the possible sub-alignments would have to be
maintained in order to calculate longer alignments, so the

memory requirements would increase in the same propor-
tions.

Dynalign limits the computational complexity of the
algorithm by only aligning two sequences, and by restrict-
ing the change in index between aligned nucleotides in
the two sequences to be no greater than a chosen maxi-
mum separation distance: for example, with maximum
separation m, the nucleotide at index i of the first
sequence could only be aligned with nucleotides at indi-
ces i ± m of the second sequence. This constraint signifi-
cantly reduces the number of different subsequences
compared, limiting the overall time and memory com-

plexity to (n2m2); however, it does mean that Dynalign
is only appropriate for global alignments (not local align-
ments or motif detection).

In order to model potential deletion or insertion muta-
tions between the two sequences, Dynalign allows for the
addition of gaps to the alignment. However, to avoid hav-
ing the program insert excessive gaps while optimizing
incorrect basepairs, an additional term is included in the
energy calculations to penalize added gaps. Unlike the
other terms, there is no empirically-derived value for the
gap penalty, so Mathews and Turner explored the effect of
a series of values. Their results were not conclusive; they
found that the optimum value depended on the data set
being examined, although a penalty below optimum
resulted in poorer predictions then a penalty the same dis-
tance above optimum [5].

In many cases, Dynalign calculations can avoid incorrect
predictions made by mfold, but because it only uses two
sequences, the available covariance information is lim-
ited. For this reason, researchers in our lab have previously
implemented an extended version of Dynalign (X-Dyna-
lign), which finds the common structure and alignment of
three input sequences [12]. We found that this approach
increased the reliability of the predictions (it was less
likely to predict biologically non-meaningful basepairs),
and overall improved the worst case predictions. The X-
Dynalign experiments also showed that lower-than-opti-
mum gap penalties were likely to cause poor results, while
at higher penalties results were more consistent. The com-
putational complexity of the extended program increases

to (n3m6) in time and (n2m4) in memory; even with
the fairly restrictive maximum separation value of 5, cal-
culations for 5S rRNA sequences (length approximately
120 nucleotides) required many days and gigabytes of
memory to complete. Any extension to increase the




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number of sequences beyond three would be computa-
tionally infeasible with current computing technology.

Other approaches have been used to modify Sankoff's
algorithm into an implementable program. For example,
the program PMmulti [3], which avoids simultaneously
solving the folding and alignment problems, by first com-
puting base pairing probability matrices for each sequence
using the McCaskill approach. It then extracts a common
secondary structure and alignment using a dynamic pro-
gramming approach akin to Nussinov's weighted circular
matching algorithm.

1.2 Progressive pairwise alignment of RNA sequences

In order to search for a common structure in a set of more
than three related RNA sequences, we have adopted the
progressive pairwise alignment approach exemplified by
the Clustal programs for primary sequence multiple align-
ments. The concept is to find a common structure
between a pair of sequences, using the Dynalign algo-
rithm, and then use the resulting alignment of those
sequences as a fixed profile in order to find a common
structure between them and an additional sequence or
profile. The approach is repeated, aligning sequences and
profiles in an order defined by the nodes of a binary tree
with the individual sequences at the leaves, until the
entire data set has been aligned and a consensus structure
predicted for the final alignment. For a data set of k
sequences, this will require k - 1 iterations of the program,
making the overall time complexity of the program

(kn2m2); the memory requirements remain (n2m2).

In implementing and testing this approach, we have
explored the effect of the order in which sequences are
added to the alignment on the quality of the eventual pre-
dictions. For randomized sequence orders, we consider
the effect of the topology of the guide tree: whether it has
a balanced or linear structure. For an approximate phylo-
genetic order, we consider two ways of constructing a
guide tree: by using the phylogeny predicted by Clustal W
based purely on primary sequence, and by using a neigh-
bour-joining algorithm to create a tree based on the
energy scores of all possible pairwise Dynalign align-
ments. Throughout, we have also investigated the optimi-
zation of the Dynalign gap penalty term.

The programs have been run on two different data sets of
twelve sequences each, one of transfer RNA (tRNA)
sequences from diverse organisms, and the other using
the 5S RNA molecule from bacterial large ribosomal sub-
units (5S rRNA), see Section 4.1 for details. All of the
sequences have reliable reference structures derived from
comparative sequence analysis, but many of the structures

are poorly predicted by single-sequence methods, see Fig-
ure 1. We compare the single-sequence folding program
mfold, the two-sequence Dynalign, and our various exper-
imental approaches to creating a consensus alignment, for
their ability to predict these reference structures.

Because the purpose of the method is to find a strict con-
sensus structure that exists in all sequences in the data set,
it is not expected to detect any structural details unique to
particular sequences: it will not predict a particular base-
pair for the alignment as a whole unless it is possible in
every sequence at that point. For these reasons, the pre-
dicted structure for any one sequence may not be as com-
plete as a prediction made with a single-sequence
method. Furthermore, the Dynalign energy model only
considers canonical base pairing interactions (the
Watson-Crick C:G and A:U pairs, plus the 'wobble' G:U
pair); other pairing interactions detected through compar-
ative sequence analysis or biochemical means will not be
predicted. Finally, like most other dynamic-programming
structure prediction algorithms, it will not predict any
pseudoknot structures: structures in which a nucleotide
contained within a segment bound by a base-pair itself
pairs to a nucleotide outside that segment. With all that
said, the hope is that the predictions will be highly relia-
ble, as there is unlikely to be a biologically irrelevant near-
est-neighbour optimum structure common to the entire
data set.

1.3 Assessing results
In order to compare the accuracy of the various methods
in predicting the reference structures, some quantitative
measures of similarity are required. The Sensitivity of a pre-
diction is defined as the percentage of basepairs in the ref-
erence structure which were predicted, while the Positive
Predictive Value (PPV) is the percentage of predicted base-
pairs that also exist in the reference structure. A prediction
with low sensitivity therefore does not include all the
detail of the true structure, while a prediction with low

 

Boxplots showing the range of sensitivity and positive predic-tive value statistics for mfold optimum predictions on the two test data setsFigure 1
Boxplots showing the range of sensitivity and positive predic-
tive value statistics for mfold optimum predictions on the 
two test data sets.
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PPV includes a number of inaccurate predictions (PPV is
undefined if a method does not produce any predicted
basepairs at all). We use a strict definition of a correctly
predicted basepair – the exact same nucleotides must be
paired in both structures – and consider all incorrect pre-
dictions equally.

A third statistic, used to combine these two measures into
an overall assessment of the quality of prediction, is the
Matthew's Correlation Coefficient (MCC). For the calcula-
tions, we used the approximation proposed by Gorodkin
et al., where MCC is calculated as the square root of the
product of the sensitivity and PPV statistics [2].

2 Results and discussion
2.1 Reference alignment and structures
The ID codes, source species, primary sequences and ref-
erence structures for all twelve tRNA sequences are given
in Table 1. The tRNA sequences include those with and
without large loops or additional helices in the variable
region of the standard 'cloverleaf' structure; the total
length of the sequences ranges from 71 to 92 nucleotides.
The pairwise primary sequence identity (based on the ref-
erence alignment) ranges from 26% to 68%; the average is
43.5%.

The reference sequences and structure alignment for the
5S rRNA data set are given in Table 2. The pairwise pri-
mary sequence identity ranges from 55% to 100% (the 5S
rRNAs from Arthrobacter oxydans, X08000, and A. globi-
formis, X08002, have the same primary sequence); the
average pairwise identity is 67%.

For both data sets, an 'ideal' consensus structure, based on
the reference alignment and individual structures, has
been created and is also shown in the sequence tables. The
consensus only contains basepairs where all sequences
have a canonical basepair at that position in the align-
ment, and therefore represents the best possible predic-
tion one could expect from the progressive Profile-
Dynalign method. The tRNA consensus structure contains
20 basepairs, as compared to 20–26 basepairs in the indi-
vidual structures. The 5S consensus contains 29 basepairs,
compared to 38–40 basepairs per structure (of which 33–
37 basepairs per structure are canonical). However,
because the consensus structures are missing basepairs in
some helical regions, it is possible that the calculated sta-
bility of these helices will be reduced to the point where
they are not predicted at all.

2.2 Single sequence folding using mfold
The secondary structure predictions from mfold vary
widely in quality for our data sets, but are generally poor:
these sequences were originally selected to demonstrate
the potential for improvement over single-sequence struc-

ture prediction methods. Considering only the structures
reported by mfold as the energy-model optimum, the
worst prediction was for tRNA sequence RF6320, in which
none of the predicted basepairs are present in the refer-
ence structure; the best prediction was for tRNA sequence
RD1140, in which the reference structure was perfectly
predicted. For the 5S rRNA sequences, the worst was for
sequence V00336, with an MCC value of 0.256, while the
best was sequence M16532, with MCC = 0.801. The over-
all range in values for each data set is charted in Figure 1.
In general, the sensitivity and predictive value are similar
for a given structure: when a prediction fails to include ref-
erence basepairs, it is usually predicting incorrect pairs
instead.

2.3 Pairwise alignment and folding
The alignment and structure prediction of all the possible
pairs of sequences resulted in 11 predictions for each of 12
sequences, at each of 7 gap penalty levels tested, for each
of the two data sets. For the tRNA sequences, the worst
prediction (0.240 MCC) was for sequence RS1141 when
aligned with RE2140 at gap penalty 0.5 kcal/mol; how-
ever, many other pairs resulted in perfect predictions. For
the 5S rRNA sequences, the worst prediction was for
sequence M25591 when aligned with sequence AJ131594
with zero gap penalty (0.165 MCC); the best prediction
was for sequence K02682 when aligned with AJ131594
with gap penalty 4.0 kcal/mol (0.768 MCC, with perfect
predictive value).

The overall range in both sensitivity and PPV values at
each gap penalty level is shown in Figure 2 for tRNAs and
Figure 3 for 5S rRNA sequences. As can be seen, for the
tRNA sequences, the results are fairly consistent for gap
penalties ranging from 0.5 kcal/mol to 6.0 kcal/mol (the
highest value tested); this loosely correlates with results
from the original paper [5], despite the use of different
parameters (increased maximum separation and inserts
allowed in helices). The majority of predictions in these
trials had perfect PPV and near-perfect sensitivity, but
there nonetheless remains a long 'tail' of poor results at
each penalty level.

The predictions for the 5S rRNAs show a stronger relation-
ship to the change in gap penalty, with a clear optimum
in sensitivity for penalty values between 1 and 2 kcal/mol,
while the predictive value was fairly constant with a gap
penalty greater than 1 kcal/mol. With the same parame-
ters, but a different set of 5S rRNA sequences, Mathews
and Turner had found that the results peaked at a penalty
of 0.4 kcal/mol; for this set, a penalty of 0.5 kcal/mol (the
nearest value tested) produced noticeably less than opti-
mal predictions.
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Table 1: The tRNA sequences in the test data set. Reference alignment showing the reference structures and the ideal consensus 
structure (bottom). Quotes indicate non-canonical basepairs. The number of nucleotides and of basepairs is given for each sequence 
and structure.

ID & Species Sequence & Structure Length ID

RD0260 GCGACCGGGGCUGGCUU-GGUA-AUGGUACUCCCCUGUCACGGGAGAG-----
----------AAUGUGGGUUCAAAUCCCAUCGGUCGCGCCA

77 RD0260

Phage T5 (Virus) (((((((..((((....-....-.)))).(((((.......)))))..-----
----------...(((((.......))))))))))))....

21

RD0500 GCCCGGGUGGUGCAGU--GGCCCAGCAUACGACCCUGUCACGGUCGUG-----
----------A-CGCGGGUUCAAAUCCCGCCUCGGGCGCCA

76 RD0500

Haloferax volcanii (Archæa) (((((((..((((...--......)))).(((((.......)))))..-----
----------.-.(((((.......))))))))))))....

21

RD1140 GGCCCCAUAGCGAAGUU-GGUU-AUCGCGCCUCCCUGUCACGGAGGAG-----
----------AUCACGGGUUCGAGUCCCGUUGGGGUCGCCA

77 RD1140

Mycoplasma capricolum (Eubacteria) (((((((..((((....-....-.)))).(((((.......)))))..-----
----------...(((((.......))))))))))))....

21

RD2640 GGGAUUGUAGUUCAAUU-GGUC-AGAGCACCGCCCUGUCAAGGCGGAA-----
----------GAUGCGGGUUCGAGCCCCGUCAGUCCCGCCA

77 RD2640

Hordeum vulgare (Plant chloroplast) (((((((..((((....-....-.)))).(((((.......)))))..-----
----------...(((((.......))))))))))))....

21

RD4800 AAAAAAUUAGUUUAAU--CA---AAAACCUUAGUAUGUCAAACUAAAA-----
----------A-AAUUAGAUCAU--CUAAUAUUUUUUACCA

71 RD4800

Aedes albopictus (Animal mitochondria) (((((((..((((...--..---.)))).(((((.......)))))..-----
----------.-.(((((.....--))))))))))))....

21

RE2140 GCCCCCAUCGUCUAGA--GGCCUAGGACACCUCCCUUUCACGGAGGCG-----
----------A-CAGGGAUUCGAAUUCCCUUGGGGGUACCA

76 RE2140

Synechocystis sp. (Eubacteria) (((((((..((((...--......)))).(((((.......)))))..-----
----------.-.(((((.......))))))))))))....

21

RE6781 UCCGUCGUAGUCUAGGUGGUUA--GGAUACUCGGCUCUCACCCGAGAG-----
----------A-CCCGGGUUCGAGUCCCGGCGACGGAACCA

76 RE6781

Hordeum vulgare (Plant chloroplast) (((((((..((((.........--)))).(((((.......)))))..-----
----------.-.(((((.......))))))))))))....

21

RF6320 GUCGCAAUGGUGUAGUUGGGA---GCAUGACAGACUGAAGAUCUGUUG-----
----------GUCAUCGGUUCGAUCCCGGUUUGUGACACCA

76 RF6320

Schizosaccharomyces pombe (Fungi 
cytoplasm)

(((((((..((((........---)))).(((((.......)))))..-----
----------...(((((.......))))))))))))....

21

RL0503 GCGGGGGUGGCUGAGCCAGGCCAAAAGCGGCGGACUUAAGAUCCGCU-CCC--
GUAG---GGGUUCGCGAGUUCGAAUCUCGUCCCCCGCACCA

88 RL0503

Haloferax volcanii (Archæa) (((((((..((('...........'))).(((((.......))))).-(((--
....---)))...(((((.......))))))))))))....

24

RL1141 CCCCAAGUGGCGGAAUA-GGDA-GACGCAUUGGACUUAAAAUCCAAC-GGGC-
UUAAU-AUCCUGUGCCGGUUCAAGUCCGGCCUUGGGGACCA

89 RL1141

Mycoplasma capricolum (Eubacteria) (((((((..(((..... -.... -..))).(((((.......))))).-
.... -.....-.......(((((.......))))))))))))....

20

RS0380 GCCGAGGUAGCAUAGCUUGGCC-AAUGCGGUUGCUUCGAGAGCAACG-UUCC-
ACAC--GGACU-CAGGAGUUCAAAUCUCCUCCUCGGCGCCA

88 RS0380

Halobacterium cutirubrum (Archæa) (((((((..((((.........-.)))).(((((.......))))).-'(((-
....--)))'.-.(((((.......))))))))))))....

25

RS1141 GGAAGAUUACCCAAGUCCGGCUGAAGGGAUCGGUCUUGAAAACCGAGAGUCGG
GGAAACCGAG--CGGGGGUUCGAAUCCCUCAUCUUCCGCCA

92 RS1141

Mycoplasma capricolum (Eubacteria) (((((((..((('...........'))).(((((.......)))))..'((((
.....))))'--.(((((.......))))))))))))....

26

Consensus structure (((((((..(((.............))).(((((.......))))).......
............. (((((.......))))))))))))....

20 Consensus
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Table 2: The bacterial 5S rRNA sequences in the test data set. Reference alignment showing the reference structures and the ideal 
consensus structure (bottom). Quotes indicate non-canonical basepairs. The number of nucleotides and of basepairs is given for each 
sequence and structure.

ID & Species Sequence & Structure Length

AJ131594 -UGCC-UGAUGACCAUAGCAAGUUGGUACCACUCCUUCCCAUCCCGAACAGGACAGUGAAA-
CGACUUUGCGCCGAUGAUAGUGCGG--GUU---CCCGUGUGAAAGUAGGUCAUCGUCAGGCNN---

117

Comamonas acidovorans -'(((-((((((..... ((((((((....(((((((.............))))..)))...-
)))))).)).(('((''..((((((--...---.))))))..''))'))...)))))))))'.---

38

AJ251080 ---CC-UAGUGGUGAUAGCGGAGGGGAAACACCCGUUCCCAUCCCGAACACGGAAGUUAAG-
CCCUCCAGCGCCGAUGGUAGUUGGGGCCAGC-GCCCCUGCAAGAGUAGGUCGCUGCUAGG----C-

117

Bacillus stearothermophilus ---((-((((((.....((((((((....'((((((.............))))..))'...-
)))))).)).(('((''..(('(((((....-)))))'))..''))'))...))))))))----.-

38

K02682 -NGUC-UGGCGGCCAUAGCGUGGGGGAAACGCCCGGUCCCAUCCCGAACCCGGAAGCUAAG-
CCCCAUAGCGCCGAUGGUACUGCAACCGGGA-GGUUGUGGGAGAGUAGGUCGCCGCCGGAC---A-

120

Micrococcus luteus -.(((-((((((.....((((((((....'((((((.............))))..))'...-
)))))).)).(('((''.. ((((((((....-))))))))..''))'))...)))))))))---.-

39

M10816 -NNCC-UAGUGACAAUAGCGGAGAGGAAACACCCGUUCCCAUCCCGAACACGGAAGUUAAG-
CUCUCCAGCGCCGAUGGUAGUUGGGGCCAGC-GCCCCUGCAAGAGUAGGUCGUUGCUAGG----C-

119

Bacillus stearothermophilus -..((-((((((..... ((((((((....'((((((.............))))..))'...-
)))))).)).(('((''.. (('(((((....-)))))'))..''))'))...))))))))----.-

38

M16532 -NCUC-GGACCACCAUACCGGGGGGGAAACACCCGGUCCCAUUCCGAACCCGGAAGUUAAG-
CCCCCCAGGGCCGAUGAUAGCCUCGC-CCCGA-GCGAGGUGAAAGUAGGUCGUGGUCCGGGCAC--

121

Thermus sp. -'(((-((((((.....((((((((....'((((((.............))))..))'...-
)))))).)).(('((''..(((((((-.....-)))))))..''))'))...)))))))))'..--

39

M25591 ---CC-UAGUGGUGAUAGCGGAGGGGAAACACCCGUUCCCAUCCCGAACACGGAAGUUAAG-
CCCUCCAGCGCCGAUGGUAGUUGGGGCCAGC-GCCCCUGCAAGAGUAGGCCGCUGCUAGG----C-

117

Bacillus stearothermophilus ---((-((((((.....((((((((....'((((((.............))))..))'...-
)))))).)).(('((''..(('(((((....-)))))'))..''))'))...))))))))----.-

38

V00336 -UGCC-UGGCGGCCGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAA-
CGCCGUAGCGCCGAUGGUAGUGUGGGGUCU--CCCCAUGCGAGAGUAGGGAACUGCCAGGCA--U-

120

Escherichia coli -((((-((((((.....((((((((....(((((((.............))))..)))...-
)))))).)).(('((''..((((((((...--))))))))..''))'))...))))))))))--.-

40

X02024 -NNUU-UGGUGGCGAUAGCGAAGAGGUCACACCCGUUCCCAUACCGAACACGGAAGUUAAG-
CUCUUCAGCGCCGAUGGUAGUUGGGGUGUUA-GCCCCUGCAAGAGUAGGACGUUGCCAGG----C-

119

Bacillus pasteurii -..((-((((((.....((((((((....'((((((.............))))..))'...-
)))))).)).(('((''..(('(((((....-)))))'))..''))'))...))))))))----.-

38

X02627 CGACC-UGGUGGUCAUCGCGGGGCGGCUGCACCCGUUCCCUUUCCGAACACGGCCGUGAAA-
CGCCCCAGCGCCAAUGGUACUUCGUC-UCAA--GACGCGGGAGAGUAGGUCGCUGCCAGGUC---U

120

Agrobacterium tumefaciens .((((-((((((.....((((((((....(((((((.............))))..)))...-
)))))).)).(('((''..(('((((-....--))))'))..'')) '))...))))))))))---.

39

X04585 -CGUU-UGGUGGUCAUAGCGUUGGCUAAACACCCGAUCCCAUCCCGAACUCGGCCGUUAAGGGCCAACA-
CGCCGAUGGUACUGCGUC-UCAA--GACGUGGGAGAGUAGGUCACCGCCAAACCN---

119

Rhodobacter capsulatus -'(((-((((((.....(.((((((....'((((((.............))))..))'....)))))).-
).(('((''..(((((((-....--)))))))..''))'))...)))))))))'.---

38

X08000 -NAUUACGGCGGUCAUAGCGUGGGGGAAACGCCCGGUCCCAUUCCGAACCCGGAAGCUAAG-
ACCCACAGCGCCGAUGGUACUGCACCCGGGA-GGGUGUGGGAGAGUAGGUCACCGCCGGACAC---

122

Arthrobacter oxidans -.'((.((((((.....((((((('....'((((((.............))))..))'...-
'))))).)).(('((''..((((((((....-))))))))..''))'))...))))))))'..---

39

X08002 -NAUUACGGCGGUCAUAGCGUGGGGGAAACGCCCGGUCCCAUUCCGAACCCGGAAGCUAAG-
ACCCACAGCGCCGAUGGUACUGCACCCGGGA-GGGUGUGGGAGAGUAGGUCACCGCCGGACAC---

122

Arthrobacter globiformis -.'((.((((((.....((((((('....'((((((.............))))..))'...-
'))))).)).(('((''..((((((((....-))))))))..''))'))...))))))))'..---

39

Consensus Structure ...((.((((((.....(.(((((......((((((.............))))..))......)))))..).
((.((....((.(((.........))).))....)).))...))))))))......

29
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2.4 Increasing the number of sequences
As the number of sequences in an alignment is increased
by the progressive pairwise approach, a number of trends
in the quality of the resulting structural predictions
become apparent. Figure 4 compares the sensitivity and
PPV statistics for the predictions for each tRNA sequence,
relative to the number of sequences in an alignment and
the gap penalty used, for all the pairwise results and all the
randomized tree structures sampled. Figure 5 shows the
same data for the 5S rRNA sequences.

As expected, the sensitivity of the predictions is reduced
and the predictive value increased as the number of
sequences used increases. However, the loss in sensitivity
can be quite drastic, and frequently results in no predicted
structure at all for alignments of more than 6 or 7
sequences. Nonetheless, when a structure is predicted for
alignments of this size, the basepairs are nearly always
part of the reference conserved structures.

The drop in prediction quality at low gap penalty values is
even more pronounced. Zero gap penalty always resulted
in a lack of predicted structure: the alignments produced

generally have so many gaps added that the difference in
length between partial alignments and new sequences is
greater than the maximum separation parameter (results
not shown). For the tRNA data set, all values above this
have similar results, except for an additional drop in sen-
sitivity at the highest gap penalty tested (6 kcal/mol). For
the 5S rRNA sequences, the results for a gap penalty of 0.5
kcal/mol were also poor, but above this were fairly con-

Sensitivity versus positive predictive value (PPV) for all pre-dicted 5S rRNA structures from the pairwise alignments and all stages of the randomized progressive alignments, with the gap penalty used and the number of sequences in the align-ment indicated by the colour and size of the points, respec-tivelyFigure 5
Sensitivity versus positive predictive value (PPV) for all pre-
dicted 5S rRNA structures from the pairwise alignments and 
all stages of the randomized progressive alignments, with the 
gap penalty used and the number of sequences in the align-
ment indicated by the colour and size of the points, respec-
tively.
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stant up until 6 kcal/mol, at which point sensitivity was
often higher, but PPV sometimes lower.

It should be emphasized that, due to the complexity of the
programs, only six randomized trees (three balanced and
three random) were run for each data set at each gap pen-
alty level. However, there are hundreds of millions of pos-
sible binary tree topologies with twelve distinct leaf-
nodes, so that differences between gap penalty levels may
be due to sampling error.

2.5 Optimizing the tree structure
For the final twelve-sequence alignments based on a ran-
domized input order, the 'one-at-a-time' linear tree topol-
ogy seemed to frequently result in better alignments (and
therefore more sensitive consensus structures) for the
tRNA data set than when a balanced tree was used as a
guide. For the 5S rRNA sequences the opposite seemed to
be true – based on the limited number of random trees
used – but the difference was not as great. Nonetheless,
both types of randomized trees frequently resulted in
alignments from which the algorithm could find no ther-
modynamically stable consensus structure. The range in
prediction statistics for the final consensus structures cre-
ated with the various different guide-tree algorithms are
shown in Figure 6 for tRNA molecules, and Figure 7, for
5S rRNAs, for select gap penalty values.

The guide trees produced by applying the neighbour-join-
ing algorithm to the pairwise Dynalign energy values
ensured results that were as good as or better than the best
results from the randomized trees, for gap penalty values
greater than or equal to a data set-dependent minimum.
For the tRNA data set, this was 1 kcal/mol, but for the 5S
rRNA set, the neighbour-joining trees did not predict any
consensus structure for gap penalty values less than 4 kcal/
mol; nonetheless, for gap penalties of 4 or 6 kcal/mol, this
approach resulted in a prediction of 11 consensus base-
pairs, more than were predicted by any of the randomized
trees.

As with the randomized trees, once a full alignment of all
twelve sequences was reached, all the predicted pairs for
the tRNA consensus reflected reference basepairs, while at
most one pair was misaligned in some of the 5S
sequences.

Since the pairwise alignment scores used to create the
neighbour-joining tree are time-consuming to generate,
we also ran the progressive alignment on a set of pairwise
results calculated with a restricted maximum separation
parameter. This appeared to be a relatively successful way
to speed up the creation of the guide tree. Although the
trees sometimes varied slightly from those created from
the full alignment scores, the final consensus predictions

were the same for the 5S sets, and had at most one missing
basepair for the tRNA predictions (results not shown).

The final method of guiding the progressive alignment,
using the phylogeny predicted for the data set by Clustal
W, was less successful. Comparing the final results pro-
duced from this approach versus the neighbour-joining
method shows that the 'phylogeny' was a poor guide for
the progressive structure alignment. For the tRNA
sequences, the nearest-neighbour algorithm resulted in
consensus structures with 16 or 17 basepairs for gap pen-
alty levels ranging from 1 to 4 kcal/mol, while the struc-
tures derived from the Clustal tree had only 5 or 6
predicted pairs. The actual guide trees used at gap penalty

Boxplots showing the range in sensitivity and positive predic-tive value (PPV) for the twelve predicted tRNA structures from the final alignment and consensus predictions of all runs with gap penalty ≥ 2.0 kcal/mol, defined by the algorithm used to build the guide treeFigure 6
Boxplots showing the range in sensitivity and positive predic-
tive value (PPV) for the twelve predicted tRNA structures 
from the final alignment and consensus predictions of all runs 
with gap penalty ≥ 2.0 kcal/mol, defined by the algorithm 
used to build the guide tree. NJ is neighbor-joining, CW is 
Clustal W, B1, B2 and B3 represent the 3 runs with balanced 
guide trees, while L1, L2 and L3 represent the 3 runs with 
linear guide trees. Undefined PPV values are plotted as zero.
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4 kcal/mol are contrasted in Figure 8; clearly, the order in
which sequences are added to the alignment differs at a
number of points.

For the 5S sequences, when the Clustal tree is compared
against the neighbour-joining tree based on a gap penalty
of 4 kcal/mol (Figure 9), the only topological differences
are that the sequence V00336 is not added until the end,
and the sequences X02627 and X04585 are joined
together before being aligned with any other sequences.
Nonetheless, these differences were sufficient to reduce
the overall consensus structure from 11 predicted basepa-
irs to six.

The trees that were generated by the nearest-neighbour
method also varied depending on the gap penalty used for
the pairwise alignments; however, since we always used
the same penalty for the progressive alignment as for the
pairs, it cannot be specified whether changes in the final
prediction are due to the guide tree or the gap penalty.

2.6 Using the consensus structure to constrain mfold
With such high predictive values but low sensitivity for the
predicted consensus structures, the consensus structures
were used as constraints for mfold, in an attempt to fill in
the missing detail while still avoiding the incorrect struc-
tures that the model otherwise selected as optimal. As
examples, we used the alignments created by the neigh-
bour-joining trees at gap penalty values 4 kcal/mol and 6
kcal/mol to generate new sets of mfold predictions, with
the consensus-predicted basepairs forced to be included.

The consensus structure for the tRNAs that was derived for
gap penalty = 4 kcal/mol had 16 predicted basepairs
(compared to 20–26 basepairs per sequence in the refer-
ence structures); all the predicted basepairs were accurate,
but one helix was not predicted, and another helix had
been shortened by one pair. After re-folding the individ-
ual sequences with mfold, all the sequences included this
missing base-pair in the optimal predicted structure, and
many included the missing helix and some variable-loop
helices that were not possible in the consensus structure;
however, many also included incorrect additional basepa-
irs. The change in overall sensitivity, PPV, and MCC statis-
tics between the original mfold optimum, the consensus
structure, and the constrained mfold predictions is shown
in Figure 10(a). The refolded results (as measured by the

The phylogeny predicted by Clustal W for the tRNA sequences (a), and the guide tree created by neighbour-join-ing the scores from the pairwise alignments with gap penalty of 4 kcal/mol (b)Figure 8
The phylogeny predicted by Clustal W for the tRNA 
sequences (a), and the guide tree created by neighbour-join-
ing the scores from the pairwise alignments with gap penalty 
of 4 kcal/mol (b). Images produced by drawgram, from the 
Phylip package of programs [30].
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Boxplots showing the range in sensitivity and positive predic-tive value (PPV) for the twelve predicted 5S rRNA structures from the final alignment and consensus predictions of all runs with gap penalty ≥ 2.0 kcal/mol, defined by the algorithm used to build the guide treeFigure 7
Boxplots showing the range in sensitivity and positive predic-
tive value (PPV) for the twelve predicted 5S rRNA structures 
from the final alignment and consensus predictions of all runs 
with gap penalty ≥ 2.0 kcal/mol, defined by the algorithm 
used to build the guide tree. NJ is neighbor-joining, CW is 
Clustal W, B1, B2 and B3 represent the 3 runs with balanced 
guide trees, while L1, L2 and L3 represent the 3 runs with 
linear guide trees. Undefined PPV values are plotted as zero.
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Matthew's Correlation Coefficient) were also usually a
considerable improvement over the worst-case results
from pairwise Dynalign (for one sequence, equal to the
worst case); two sequences – RS1141 and RL0503, which

frequently had poor predictions from the pairwise align-
ments – had notable improvements over the average pair-
wise results.

The consensus structure calculated for the tRNA set with
gap penalty 6 kcal/mol only had 7 predicted basepairs,
those of the 'stem' helix in the cloverleaf structure. When
the individual sequences were refolded using only these
basepairs as mfold constraints, eight of the mfold opti-
mum predictions were the same as the unconstrained pre-
dictions; this includes the sequence that was originally
perfectly predicted by mfold, but also includes 3
sequences in which those seven basepairs were the only
correct predictions. The constrained prediction for
sequence RF6320 (which was the same as the second
unconstrained prediction) also was inaccurate except for
these basepairs, but this was still an improvement on the
optimum unconstrained prediction, which did not con-
tain any of the reference basepairs. Nonetheless, the con-
strained predictions for the other three sequences were
different from any originally reported by mfold, including
a perfect prediction for one (RD2640). (The changes in
sensitivity, PPV, and MCC statistics for each sequence is
given in Figure 10(b).)

In contrast, when the much more complete consensus
structure had been used, only four of the resulting struc-

The sensitivity, positive predictive value (PPV), and Matthew's Correlation Coefficient (MCC) statistics for the unconstrained mfold optimum structure, selected consensus structures, and the mfold optimum prediction when the consensus structure is used as a forced constraint ('refolded'), for each tRNA sequenceFigure 10
The sensitivity, positive predictive value (PPV), and Matthew's Correlation Coefficient (MCC) statistics for the unconstrained 
mfold optimum structure, selected consensus structures, and the mfold optimum prediction when the consensus structure is 
used as a forced constraint ('refolded'), for each tRNA sequence. (a) Gap penalty of 4.0 kcal/mol used to generate consensus 
alignment. (b) Gap penalty of 6.0 kcal/mol used to generate consensus alignment.
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The phylogeny predicted by Clustal W for the 5S rRNA sequences (a), and the guide tree created by neighbour-join-ing the scores from the pairwise alignments with gap penalty of 4 kcal/mol (b)Figure 9
The phylogeny predicted by Clustal W for the 5S rRNA 
sequences (a), and the guide tree created by neighbour-join-
ing the scores from the pairwise alignments with gap penalty 
of 4 kcal/mol (b). Images produced by drawgram, from the 
Phylip package of programs [30].
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tures had been reported by the unconstrained mfold, and
these mostly because of good original predictions (the
worst was for RL1141, with 85% sensitivity and 61% PPV
– this structure had been the second one reported by the
original mfold, and both contain incorrectly predicted
basepairs involving the large single-stranded variable loop
region).

For the 5S rRNA data set, the consensus structure pre-
dicted by the nearest-neighbour tree was the same
whether a gap penalty of 4 or 6 kcal/mol was used, so the
constrained mfold predictions were only run once. This
structure had 11 predicted basepairs, relative to 38–40
basepairs in the individual reference sequences (29 in the
'ideal' consensus); furthermore, one of the basepairs was
incorrect for 5 of the sequences (a fact one would not usu-
ally have the luxury of knowing). Nonetheless, these con-
straints were sufficient to result in MCC values greater
than 0.75 – 0.90 in all refolded structures except for
X08000/X08002; this was an improvement over the aver-
age pairwise Dynalign results for all sequences, and it was
an improvement over the unconstrained mfold in all but
two cases in which it was the same prediction.

For the (identical) sequences X08000/X08002, the
refolded structure had been reported by the uncon-
strained mfold as a suboptimal result; with 22 correct and
12 erroneous basepairs, this was still an improvement on
the original optimum, which had 12 correct and 22 erro-
neous basepairs. For all the other (8) sequences, the struc-
tures resulting from the constrained refolding had not
originally been reported as possibilities. The statistics for
the original mfold optima, the consensus structure, and
the constrained optima for each sequence are in Figure 11.

Interestingly, the sequence with the best prediction under
the constrained re-folding was also the sequence with the
worst prediction, unconstrained. Sequence V00336, from
E. coli, was originally folded by mfold into a structure in

which only the outermost helix matched the reference
structure (0.26 MCC); a reported sub-optimal structure
likewise only matched this one helix. However, with the
11 constrained base-pairs from the consensus structure,
mfold was able to detect the complete structure: all canon-
ical basepairs were predicted, with no incorrect predic-
tions. The reference structure, the original mfold

The reference secondary structure predicted for 5S rRNA sequence V00336 (a), the structure predicted by mfold as the unconstrained optimum (b), the conserved structure pre-dicted by the nearest-neighbour consensus algorithm with gap penalty 4 or 6 kcal/mol (c), and the structure predicted by mfold as the optimum, when it was forced to include the consensus basepairs (d)Figure 12
The reference secondary structure predicted for 5S rRNA 
sequence V00336 (a), the structure predicted by mfold as the 
unconstrained optimum (b), the conserved structure pre-
dicted by the nearest-neighbour consensus algorithm with 
gap penalty 4 or 6 kcal/mol (c), and the structure predicted 
by mfold as the optimum, when it was forced to include the 
consensus basepairs (d). Images produced by the sir graph 
utility of the mfold program [24].
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optimum, the consensus structure, and the constrained
mfold optimum are shown in Figure 12. A similar, if not
quite as spectacular, improvement occurred for the
sequence X02627, which went from 0.32 MCC for the
original mfold prediction, to 0.90 MCC for the refold.

2.7 Comparison to other methods
We compared the structure prediction performance of
Profile-Dynalign to other methods: the two-step Sankoff
algorithm-variant PMmulti [3], and the fixed-alignment
folding algorithm RNAalifold [10]. Since the quality of
the input alignment can significantly effect the outcome
of RNAalifold, three input alignments were considered.
Alignments derived using sequence information alone
were obtained using Clustalw. Then, PMmulti and Profile-
Dynalign alignments were also used as input.

Table 3 shows the results ranked by average MCC score.
On this particular tRNA data set, both variants of the
Sankoff algorithm are making perfect predictions, how-
ever, the sensitivity of Profile-Dynalign is higher than that
of PMmulti. On the 5S data set, the performance of both
algorithms is comparable. The combination Clustalw and
RNAalifold is performing well on both data sets, with PPV
scores in the 80s. The sensitivity is lower on the tRNA set,
which have lower sequence identity, and are therefore
more difficult to align using sequence information alone.
Consequently, the use of an alignment derived using
structural information provides further improvement,
particularly with respect to coverage. The combination
Profile-Dynalign and RNAalifold performs best on the
tRNA data set while PMmulti and RNAalifold is superior
on the 5S data set.

While this work was in review, a novel pairwise – stochas-
tic context-free grammar (SCFG) approach was published
[13]. In evaluating its performance, it was found that free-
energy based approaches, namely Dynalign and PMcomp,
are "generally best at structure prediction over the widest
range" than SCFGs. Thus we expect the same trend for
Profile-Dynalign.

2.8 Time requirements
On a 2.2 GHz processor, it required between 30 and 40
minutes to calculate a full progressive alignment for the
tRNA data set (11 pairwise alignments of sequences
between 71 and 92 nucleotides long, with maximum sep-
aration 25). The linear trees, in which a single sequence is
added to the profile at each step, were consistently faster
than the balanced trees. The calculation of a full set of
pairwise alignments (66), with maximum separation 25,
required over five hours; the fast pairwise alignments,
with maximum separation 5, were completed in approxi-
mately ten minutes.

The 5S rRNA sequences, which were longer (117–122
nucleotides) but were aligned with a maximum separa-
tion of 15, were run on much slower 900 MHz processors;
it required up to five and a half hours to calculate a full
progressive alignment, although the linear trees again
consistently finished faster (in less than four hours). A
complete set of pairwise alignments with maximum sepa-
ration of 15 required 38 hours of processor time, but with
maximum separation of 5 the pairwise results were com-
plete in just over two and a half hours.

3 Conclusion
We were attempting to build a reliable tool for generating
secondary structure predictions for a family of RNA
sequences by applying a progressive pairwise approach to
the alignment and structure prediction program Dyna-
lign. This approach, originally suggested by the creators of
Dynalign when they first introduced the program [5], was
inspired by past success in applying progressive pairwise
alignments when creating a multiple alignment of
sequences with conserved primary structure, as in the
Clustal series of programs. However, the comparison is
not perfect: while the primary structures being aligned by
Clustal are unambiguous, the RNA secondary structures
we are attempting to align are disguised in an overlapping
array of potential basepairs, for which the relative likeli-
hoods can only be estimated.

The pairwise Dynalign method on its own is in some cases
sufficient to detect a true energetically stable, conserved
structure between two sequences, but in other cases the

Table 3: Comparing the structure prediction performance of PMmulti, RNAalifold and Profile-Dynalign on the tRNA and 5S data sets.

tRNA 5S
Method % Sens % PPV MCC % Sens % PPV MCC

PMmulti 30.0 100.0 0.548 36.8 88.9 0.572
Profile-Dynalign 80.0 100.0 0.894 35.9 94.7 0.583
Clustal W + RNAalifold 55.8 83.7 0.680 86.5 80.3 0.833
PMmulti + RNAalifold 55.4 88.3 0.697 96.6 85.3 0.908
Profile-Dynalign + RNAalifold 85.0 100.0 0.922 66.1 80.5 0.729
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optimization model still favours an alternate common
potential structure. We have shown that by increasing the
number of sequences used, it becomes very unlikely that
the energy optimization model will predict secondary
structure elements that are not part of the true conserved
structure. However, it has also become clear that the pro-
gressive pairwise approach we use is strongly dependent
on the order in which sequences are aligned, and that a
less-than-optimal order can often result in the program
not being able to detect any conserved structure at all.

When comparing our results against those from the sin-
gle-sequence mfold method, the two sequence Dynalign,
and the three sequence X-Dynalign, all of which are based
on the same general optimization model, there are inverse
trends of increasing predictive value and decreasing sensi-
tivity as the number of sequences increases. This suggests
that there might be an optimum data set size at which the
combination of the two is maximized. Although this
might be true for a complete dynamic programming opti-
mization, for our progressive pairwise approach, the larg-
est losses in sensitivity and increases in PPV tended to
occur simultaneously, usually when the alignment had
between 3 and 6 sequences. Although there were occa-
sional drops in sensitivity beyond that (particularly when
two six-sequence profiles were joined in a balanced tree),
and some cases where PPV was still poor at six sequences
(particularly in the 5S rRNA data set), the quality of pre-
diction mostly stayed fairly steady after that point (Figures
4 and 5), suggesting that the initial alignments mostly
control the final sensitivity.

Since the experiments so clearly emphasize that the tree
structure used to guide the progressive alignment strongly
influences the quality of the final prediction, it would be
useful if we could detect the properties which differentiate
a good tree from a poor one. We had examined the effect
of differences in tree topology for a randomized sequence
order: whether it was better to align profiles of equal num-
bers of sequences at each stage (balanced tree), or to add
one sequence at a time to the alignment (linear tree): for
the tRNA data set, there was a clear benefit to the linear
approach. By examining the progression of intermediate
structures (not shown), the good predictions resulted
from the creation of accurate alignments early on, which
were then maintained as new sequences were added. In
the other cases, the progression quickly degenerated to lit-
tle or no predicted consensus structure, indicating an
incorrect alignment which no additional sequences could
improve. When using a balanced guide tree, there would
be a greater possibility that at least one of the initial pro-
files contains an incorrect alignment, thereby explaining
the frequently poorer results.

The same split in end results was not observed for the 5S
rRNA data set, for which both topologies result in low-
sensitivity consensus structures, if any; this can probably
be explained by the lower quality initial pairwise predic-
tions for this data set (Figure 2 vs Figure 3).

Comparing the results of the two datasets using different
algorithms (Table 3), it is clear that the Profile-Dynalign
method offered the greatest improvement in predictions
for the tRNA dataset. Although it is risky to derive gener-
alisations from two examples, this is consistent with other
studies [14] which suggest that structure-based alignment
algorithms are the optimum choice only when sequence
identity is below 60%.

The tRNA dataset had only 6 nucleotides conserved across
all 12 sequences, and approximately 25% conserved
across at least 8 sequences. In contrast, the 5S rRNA data-
set had approximately 25% of the nucleotides conserved
across all sequences, and approximately 60% conserved
across at least 8; see Tables 1 and 2.

In an attempt to improve the quality of the initial align-
ments (and therefore the overall predictions), we also
considered methods to group the sequences by similarity,
so that the program aligns more closely related sequences
first, merging more diverse structures once the initial
alignments are established. The neighbour-joining tech-
nique, based on the pairwise alignment energy scores,
seems to be a promising approach to consistently produc-
ing a reasonably good guide tree. Although this approach
mimics the method in which Clustal builds its guide tree
for progressive primary sequence alignment, it should be
noted that while the pairwise scores in Clustal emphasize
similarity in sequence, the pairwise Dynalign scores are a
combination of similarity (the detail of the consensus
structure) and the predicted stability of the common
structures, so that highly stable structures are favoured to
anchor the alignment. However, there is also the possibil-
ity that the common structure predicted by Dynalign does
not reflect the true conserved structure.

Similarity in primary sequence can therefore lead to poor
initial alignments, since it increases the likelihood of a
common incorrect 'optimum' structure. For the tRNA data
set, which had very little conserved primary sequence, this
was not a problem, and the neighbour-joining technique
usually resulted in a good alignment and structure predic-
tion. However, for the 5S rRNA sequences, which had
greater sequence similarity, the partial alignments from
the neighbour-joining trees frequently included complex
but biologically irrelevant predicted structures for align-
ments of up to 5 sequences (data not shown). It was only
when the entire, diverse data set was aligned that the
improved positive predictive value of the multiple align-
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ment became apparent, but the incorrect early alignments
then resulted in a much reduced or nonexistent consensus
structure. Nonetheless, in the cases in which a structure
was predicted (at gap penalties of 4 or 6 kcal/mol), it was
more detailed than any of the other predictions, suggest-
ing that the intermediate alignments, if not the structure
predictions, were still better than if a random input order
had been used.

One limitation of using the neighbour-joining tree based
on pairwise Dynalign scores is that it can take a consider-
able amount of computational time to generate these
scores, especially as the size of the data set increases. For a
data set of k sequences, there are k(k - 1)/2 different pair-
wise alignments to compute, as compared to the k-1 pro-
file alignments used in the final tree. For this reason, we
also considered faster methods to approximate this struc-
ture.

The use of a phylogeny predicted by Clustal W (based
solely on primary sequence) was not successful: for both
data sets, the final result was no better than that for rand-
omized trees. Applying the neighbour-joining algorithm
to a set of pairwise Dynalign scores created with a time-
saving reduced maximum separation parameter was a
more successful option. Although these restricted pairwise
alignments may not detect all the conserved structure
between the most diverse sequences (for example, tRNA
sequences with and without inserts in the variable loop
region), they seem to be able to approximate the degree of
similarity between the various sequences.

Without a definitive method with which to design a guide
tree for the progressive alignment, the only way to guaran-
tee a good prediction seems to be to experiment with dif-
ferent possible arrangements. That does not necessarily
require an exhaustive series of complete alignments as was
done here. Instead, a 'branch-and-prune' approach could
be used, such that a number of the most promising pair-
wise alignments could be expanded into three- or four-
sequence alignments, and then these increased further, at
each stage dropping any partial alignments that showed a
sharp decrease in the detail of the prediction. This general
approach has been suggested before for RNA secondary
structure detection, particularly in cases where there is a
possibility of un-related sequences contaminating the
data set [15].

Because the eventual predictive value of a profile structure
is so high, selecting alignments by the number of basepa-
irs and/or the estimated structural energy would probably
be sufficient to guarantee optimal predictions. Mathews
has also recently introduced a newer version of Dynalign
which reports alternate alignments with sub-optimal
energy scores [16]; if this calculation could be incorpo-

rated into the profile version of the program, it would
allow for increased number of partial alignments from
which to select, without nearly as much time consumed as
for comparing two new profiles.

Finally, there remain a number of ways to optimize the
profile alignment algorithm, particularly in the way gaps
in the alignment are handled. For a primary sequence-
based alignment, each position in the profile has a distinct
identity. In contrast, for our structure-based alignment,
large section of the profiles are aligned at once in loop
regions of the structure; if these sections are of different
length, gaps must be added, but it is not always clear
where they should go. In our current version of the pro-
gram, we have maintained the original Dynalign's default
of placing the gaps at the end of the aligned regions, but
this usually results in gaps directly adjacent to the start of
a helix. This then causes difficulties in the next round of
the progressive alignment, because the energy calculations
for the stability of a helix include terms acknowledging
the stabilizing effect of certain 'stacked' nucleotides adja-
cent to the ends of the helix. At present, when a gap
appears as the adjacent 'nucleotide' in a profile, it is
treated as if it was a break in the sequence, resulting in
much poorer energy estimates (and very few predicted
basepairs directly adjacent to existing gaps).

One solution would be to scan the sequence to find the
true adjacent nucleotide, and use that in the calculations,
but this would interfere with the general logic of the near-
est-neighbour dynamic-programming model. Another
solution is to simply avoid placing gaps next to known
helices, whenever possible, by locating them in the mid-
dle of predicted loop regions.

Logically, it should also be preferable to place a gap at a
position where there are already gaps in the opposing pro-
file. This is accomplished in a primary-sequence align-
ment program simply by giving a neutral score to an
alignment of a gap against gap. Unfortunately, this
approach cannot be directly applied to the structure align-
ment, since the score we are optimizing is the sum of the
folding energy of each sequence rather than a sum of all
possible pairwise comparisons, and also because of gaps
assigned to a region of the profile rather than a particular
column.

A more complex solution would be to incorporate more
sequence information into the alignment process, such as
is used by more recent versions of the program Foldalign
[17]. Not only would this help to more accurately locate
gaps in the alignment, but it would also improve the
alignment of unstructured (loop) regions. This could
potentially improve the results of future rounds of the
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progressive algorithm, and possibly ameliorate the algo-
rithm's performance on high-sequence similarity datasets.

A final issue related to gaps is the optimization of the gap
penalty term. We knew, from the original Dynalign exper-
iments and from our work on X-Dynalign, that very small
or no penalty led to poorer predictions, but once an opti-
mum was reached, additional increases in the penalty
value only slightly reduced the results. We confirmed the
same general trends for the profile results, except that the
loss in prediction quality with too-small gap penalties
became exaggerated by the progressive alignment process.
We found that penalty values of between 1 and 4 kcal/mol
usually gave fairly consistent results, but that higher val-
ues are preferred when the primary sequences are highly
similar.

Although our method is certainly not at the point of being
a consistently useful automated tool for predicting RNA
secondary structure, we have found that the results it does
return are highly reliable. As mentioned, it was expected
from the beginning that for most data sets, even the best
possible consensus structure would not include all the
structural details of the individual structures. We have
shown how the high predictive value of the consensus can
be used to good effect in combination with the forced
constraints option of mfold to create predictions with
both sensitivity and reliability. However, we also discov-
ered that if the consensus constraints do not have suffi-
cient detail, they are less likely to improve on mfold's
initial prediction, so there is still a need to increase the
sensitivity of the profile structure predictions.

We have also shown how the structure-based alignments
generated by this method can be used as input for the
fixed-alignment covariance-based folding algorithm
RNAalifold; the resulting predictions are greatly
improved, relative to using a sequence-based alignment,
where there was low primary-sequence identity in the data
set (i.e. for the tRNA data set). However, in the case where
a fairly accurate alignment could be generated directly
from the primary sequence (i.e. for the 5S rRNA set),
applying the RNAalifold algorithm directly to this align-
ment produced better structure predictions than using the
Profile-Dynalign alignment.

4 Methods
4.1 Benchmark data sets
To benchmark the results of the programs, two different
sets of twelve related sequences were used. The first set
consists of tRNA sequences used by Mathews and Turner
in their original description of the performance of the
Dynalign program [5]. The second consists of bacterial 5S
rRNA sequences compiled to test the three-sequence
extended-Dynalign [12]. Both data sets emphasize

sequences which are poorly predicted by single-sequence
methods such as mfold, and both include sequences with
low relative sequence identity.

The sequences and reference structures for most of the
tRNAs were derived from the database maintained by
Sprinzl et al. [18,19], except for two (RE7681 and
RF6320) which were derived from the ERPIN training set
[20]. The reference alignment is from the Sprinzl data-
base, with the other two sequences added by hand. The
actual tRNA molecules include a number of modified
nucleotides: these have been replaced in the data set
sequences by a related canonical base.

The 5S rRNA sequences and reference structures and align-
ment are from the Comparative RNA Web Site [21,22].
Many of the sequences contain poorly identified bases at
the ends of the molecules: these have been maintained in
the test sequences, and the programs will not allow them
to participate in base-pairs.

The considerable time complexity of Profile-Dynalign
limits its application to short sequences. Furthermore,
Doshi et al. showed that free-energy minimization
approaches using nearest-neighbor energy parameters are
more reliable when the contact distance between base
pairs is 100 nucleotides or less [23].

4.2 Baseline predictions
For comparison purposes, structural predictions for each
sequence were made by the single-sequence nearest-
neighbour energy model program mfold (version 3.2
[24,25]). All default parameters were accepted, including
those that influence the number of sub-optimal structures
reported.

In addition, predictions for all possible pairwise compar-
isons using the Dynalign algorithm were calculated, for
seven gap penalty values: 0.0, 0.5, 1.0, 1.5, 2.0, 4.0, and
6.0 kcal/mol per inserted gap (the gap penalty values are
expressed in energy units since they are being added to the
empirical thermodynamic energy terms). A maximum
separation of 25 was used for the tRNA data set, while a
maximum of 15 was used for the 5S rRNAs; inserts within
helical regions (which can be prohibited in Dynalign)
were allowed. The calculations were made using the pro-
file implementation of Dynalign that we had created
(described in the next section), but the results should be
the same as for the original implementation with the
same parameters.

Experiments using PMcomp/PMmulti, RNAali-fold and
Clustalw were run according to the author's recom-
mended/default parameters.
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4.3 Profile-Dynalign
Three sets of recurrence equations define the objective
function: W, V and W5. Equations of the form W (i, j; k, l)
represent the minimum free-energy for the optimal align-
ment and structure prediction of S1[i..j] and S2[k..l], when
i and k are aligned, and j and l are also aligned, where S1
and S2 are the two sequence profiles being aligned and Si
[a..b] represents the fragment comprising the the columns
a, a + 1, ..., b of Si. Equations of the form V(i, j; k, l) repre-
sent the minimum free-energy assuming that i and j, and
k and l, are simultaneously aligned but also that i : j forms
a base pair, and k : l forms a base pair. Finally, W5(i, k)
represents the minimum free-energy for the prefix align-
ment of S1[1..i] and S2[1..k]. The algorithm has two steps:
fill and traceback. The matrices V and W are filled by con-
sidering every 5-mer (smallest hairpin structure), 6-mer,
7-mer, and so forth up to length |S1|. Whenever i : j or k :
l is a non-canonical base pair, then V is set to a large pos-
itive free energy value (infinity). If the two pairs i : j and k
: l can form canonical base pairs (A : U, G : C, or G : U)
then V is the minimum of three terms: the segment forms
a hairpin, the segment forms a single helix or the segment
forms a multi-branch loop structure. A detailed descrip-
tion of the different structural possibilities considered at
each stage of the Dynalign algorithm, and the correspond-
ing energy terms, is given by Mathews & Turner [5].

In order to convert the program to align profiles made
from pre-calculated sequence alignments, a number of
changes have been made. First, in order for a basepair
interaction to be considered between two points in an
profile, a canonical basepair must be possible between the
nucleotides at those points for all sequences in the profile.
Second, the estimated energy value for any potential struc-
ture (including an inserted gap in the alignment) is the
sum of the corresponding energy values for each sequence
in the profile when fit to that structure. Third, when an
existing gap is encountered in one of the input align-
ments, it is treated equivalent to an 'intermolecular linker'
character in the original program (used to model a single
structure made from more than one distinct molecule).

The profiles used as both input and output in the program
are in the Stockholm 1.0 alignment format (as defined in
[26]), which is an annotated sequence alignment format
which allows for multiple 'mark-up' lines describing the
file or individual sequences, including column-by-col-
umn annotation. Gaps in the alignment are indicated by
the '-' (hyphen) character.

Although the specifications for Stockholm format allow
for sequences that are wrapped across multiple lines, for
ease of file parsing the Profile-Dynalign program expects
each sequence to be on a single line. When reading in pro-
files, the program also looks for a file mark-up line of type

'ID' containing an identifier with which to describe the
profile as a whole in program output. When printing the
final alignment to file, the program adds additional mark-
up describing the parameters used by the program, the
number of sequences in the alignment, the calculated
energy values (both the overall optimized value and an
average structural energy which is independent of the
number of sequences or the gap penalty used), as well as
the predicted secondary structure in bracket notation. In
addition, the program also creates output files describing
the predicted structure for each individual sequence in
connect format. Note that the predicted structure from
one round of the program does not influence the next
round, except through the resulting sequence alignment.

4.4 Building alignment trees
A series of different scripts were created, which take as
input a set of sequences (in the format described above),
and arrange them into a binary tree structure to be used as
a guide for the progressive application of the Profile-
Dynalign program. We initially considered randomized
arrangements of the input sequences, fitting them to one
of two possible tree topologies: a balanced tree and a lin-
ear (degenerate) tree.

The balanced tree results in multiple alignments of a few
sequences each which are then paired together to create
larger alignments: at each stage, the number of sequences
in each input profile is equivalent (± 1 sequence). The lin-
ear tree, in contrast, starts with an alignment of a pair of
sequences, and then adds one sequence at a time to extend
the alignment. Three samples of each topology were run
for the data sets at each of the seven gap penalty values
used for the pairwise alignments.

We also explore heuristics for predicting an optimal guide
tree. As an initial approximation, we ran the Clustal W
program [4] (using an interface built into the EMBOSS
package of programs [27]), to predict a phylogeny for the
sequences, and used this tree as a guide for the progressive
structure predictions. This tree is not the same guide tree
which Clustal uses to build its own progressive alignment,
but rather a re-evaluated phylogeny based on the resulting
profile. However, because the algorithms Clustal uses to
build the alignment and to create the phylogeny both
only consider the degree of primary sequence conserva-
tion, the resulting tree is only a rough estimate of the true
relations between the sequences – after all, if primary
sequence alignment produced reliable results for struc-
tural RNAs, there would be no reason to calculate simul-
taneous alignment and structure predictions.

A more thorough approach to generating an optimal tree
structure was designed, using a complete set of pairwise
Dynalign alignments. The approach is similar to that used
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to create the internal guide tree in the Clustal algorithm,
in that the matrix of pairwise scores is used as the basis for
a neighbour-joining tree building algorithm. The neigh-
bour-joining tree ensures that, at each node of the final
tree, the average pairwise score for the sequences in the
sub-tree stemming from one branch of that node com-
pared with the sequences in the other branch, will be bet-
ter than their average score when compared against the
sequences in any other subtree stemming from a node
higher up in the tree. A key difference compared to the
Clustal guide tree is that, for Clustal, the best score is the
alignment score for the most similar primary sequences,
while for our program, the best score is the estimated
change in free energy of the predicted optimal consensus
secondary structure.

We also created progressive alignments from neighbour-
joining trees based on pairwise scores generated more
quickly using the much more restrictive maximum separa-
tion value of 5 (instead of 15 or 25).

4.5 Constrained re-folding using mfold
For a few sample consensus structures, we used the pre-
dicted basepairs for each sequence as a set of constraints
for additional mfold predictions, forcing the program to
only consider potential structures which include the con-
sensus basepairs. This technique was used previously by
our lab to re-assess the results from Seed, a program to
find common secondary structure motifs in a large data
set [28].

4.6 Implementation and availability
All the experiments for the tRNA data set were executed on
2.2 GHz AMD Opteron 248 processors with a Solaris 9
operating system and approximately 4 Gb RAM per proc-
essor. The 5S rRNA sequences were run on 900 MHz
UltraSPARC III processors, also with a Solaris 9 OS and at
least 4 Gb RAM per processor.

The Profile-Dynalign program is implemented as a shell-
based C++ program, and was compiled with the native
Solaris C++ compilers on the above-mentioned systems.
The routines to create tree structures and run the align-
ments in a progressive fashion were implemented as Perl
scripts. The source code as well as the scripts are made
available under the GNU General Public Licence [29].
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