BIVIC Bioinformatics momifcm

Software
Bio::NEXUS: a Perl API for the NEXUS format for comparative
biological data

Thomas Hladish!?2, Vivek Gopalan'!, Chengzhi Liang'!3, Weigang Qiu'l4,

Peter Yang! and Arlin Stoltzfus*15

Address: 'Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA, 2Section of Integrative Biology,
University of Texas at Austin, 1 University Station C0930, Austin, Texas 78712, USA, 3Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring
Harbor, NY 11724, USA, 4Department of Biological Sciences, Hunter College, CUNY, 695 Park Ave., New York, NY 10021, USA and >Biochemical
Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA

Email: Thomas Hladish - tjhladish@mail.utexas.edu; Vivek Gopalan - gopalan@umbi.umd.edu; Chengzhi Liang - liang@cshl.edu;
Weigang Qiu - weigang@genectr.hunter.cuny.edu; Peter Yang - pyang@alumni.rice.edu; Arlin Stoltzfus* - arlin.stoltzfus@nist.gov

* Corresponding author tEqual contributors

Published: 8 June 2007 Received: 28 February 2007
BMC Bioinformatics 2007, 8:191 doi:10.1186/1471-2105-8-191 Accepted: 8 June 2007
This article is available from: http://www.biomedcentral.com/1471-2105/8/191

© 2007 Hladish et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Evolutionary analysis provides a formal framework for comparative analysis of
genomic and other data. In evolutionary analysis, observed data are treated as the terminal states
of characters that have evolved (via transitions between states) along the branches of a tree. The
NEXUS standard of Maddison, et al. (1997; Syst. Biol. 46: 590-621) provides a portable, expressive
and flexible text format for representing character-state data and trees. However, due to its
complexity, NEXUS is not well supported by software and is not easily accessible to bioinformatics
users and developers.

Results: Bio::NEXUS is an application programming interface (APl) implemented in Perl, available
from CPAN and SourceForge. The 22 Bio::NEXUS modules define 351 methods in 4229 lines of
code, with 2706 lines of POD (Plain Old Documentation). Bio::NEXUS provides an object-oriented
interface to reading, writing and manipulating the contents of NEXUS files. It closely follows the
extensive explanation of the NEXUS format provided by Maddison et al., supplemented with a few
extensions such as support for the NHX (New Hampshire Extended) tree format.

Conclusion: In spite of some limitations owing to the complexity of NEXUS files and the lack of
a formal grammar, NEXUS will continue to be useful for years to come. Bio::NEXUS provides a
user-friendly APl for NEXUS supplemented with an extensive set of methods for manipulations
such as re-rooting trees and selecting subsets of data. Bio::NEXUS can be used as glue code for
connecting existing software that uses NEXUS, or as a framework for new applications.

Background as in the way that human genome annotation has relied
Evolutionary comparative analysis on comparisons with the mouse and chimp genomes.
In comparative biology, inferences are made from pat- Evolutionary biologists have developed a specialized
terns of similarities and differences. Contemporary = methodology for comparative analysis that draws on
genome analysis relies heavily on such comparisons, e.g, modern methods of statistical inference and that is (in

Page 1 of 10

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17559666
http://www.biomedcentral.com/1471-2105/8/191
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:191

principle) widely applicable to all sorts of biological data
- from molecular sequences and protein activities to mor-
phologies and behaviours [1].

The evolutionary approach provides a framework to con-
vert problems of how to analyze similarities and differ-
ences into well posed questions about rates of various
possible evolutionary transitions along the branches of a
tree (phylogeny). As genome analysis and other system-
atic types of comparative analysis mature, and researchers
seek to extract the maximum amount of useful informa-
tion from available data, these methods of "evolutionary
comparative analysis" have become increasingly impor-
tant [2,3].

The character-state data model

The methodological generality of evolutionary analysis
relies on what we refer to here as "the character-state data
model", a kind of Entity-Attribute-Value model. In the
character-state data model, observations or measurements
on a set of entities called "OTUs" (Operational Taxo-
nomic Units) are represented as the observed values,
called "states" (or "character states"), of a set of underly-
ing attributes, called "characters". For a protein sequence
alignment, for instance, each OTU (entity) is a protein,
the homologous characters (attributes) are the alignment
columns, and the state (value) of each OTU for a particu-
lar character is an amino acid or a gap (the latter often rep-
resented with the symbol "-"). Characters for which the
states are finite are discrete characters; continuous charac-
ters are also possible (e.g,. beak length, protein activity).
In biology, data sets often are incomplete, thus the state of
a character may be denoted as "missing" (often repre-
sented with the symbol "2").

The assignment of characters is based on homology indic-
ative of common ancestry. The presence of different states
for the same (ancestral) character thus implies historical
changes (transitions of state) from a common ancestral
state. The paths of change are not all independent, but fol-
low the branchings of a phylogenetic tree. That is, in evo-
lutionary analysis, hierarchical clustering of data is not
merely a heuristic tool, but reflects a generative model, an
explicit or implicit model of character-state transitions
that take place along the branches of a tree. The simplest
model is that any change from one state to another
observed state has the same probability or cost. More
complex models may introduce restrictions on allowed
transitions, or introduce non-uniform costs for possible
transitions, or may relate the rates of transitions to a
mechanistically inspired model (e.g., separate rate param-
eters for synonymous or non-synonymous changes).

The NEXUS format
NEXUS [4] is a data exchange file format for character-
state data and trees, used in software such as Mesquite [5],

http://www.biomedcentral.com/1471-2105/8/191

PAUP* [6], and MrBayes [7]. The terminology used in
NEXUS files, and in the NEXUS standard, draws on the
implicit character-state data model, e.g., columns of com-
parative data are referred to as "characters" (e.g., they are
stored in a "CHARACTERS" block, within which labels are
assigned via the "charlabels" command), for which each
OTU has a "state". Note, however, that the OTUs in a
NEXUS file are referred to as "taxa" (thus, a "TAXA" block
has a "taxlabels" command) rather than as "OTUs". Figure
1 depicts the relationship between an example NEXUS
dataset (Additional file 1) and the character-state-data
model.

While the name "NEXUS" is capitalized by convention,
NEXUS keywords are (with few exceptions) case-insensi-
tive. However, for purposes of clarity we capitalize the
keywords used to designate NEXUS blocks, such as TAXA,
CHARACTERS, and TREES.

Although NEXUS files initially were used mainly for mor-
phological data, the developers of NEXUS allowed for
diverse types of data, including provisions for such things
as frequency distributions of states (for each OTU), as well
as commands specific for molecular data, so as to specify

TREES TAXA

J Coclomate _Ecdysozoan \ KOGO011 (RAD23) \ J

CHARACTERS
Amino Acids {___Codons

1 Introns \

p_falciparum_23507918 " ™ KKKV~ -EVVLADMPSDKQKLIFSGKILKDEDKATDI-L
[A_thaliana_15221013"""]

" s_pombe_19113023""

> KKNTEDSQSKDNYPCGQQL L THNGKVLKDE TTLVENKY

|| KEKIQTQQN~--YEVERQKLIYSGRILADDKTVGEYNL

'S_cerevisiae_ 6320798 KTKLAQSISCEESQI -~ -KLIYSGKVLQDSKTVSECGL

[
N
\
\
\
\

£ €_elegans_17537797-""

< ‘ *H_sapiens_4826964

> KALVASEKG-DDYAPELQKLTYNGKILDDSVKVGEVGF
"1 KEKIEAEKGRDAFPVAGQKLTYAGKILSDDVPIRDYRT
“|™ KEKLHAESGL -AYPVDRQRLIYLGKIMEDDHLLSQYKL

> KKKIFEERGPE-YVAEKQKLIYAGVILTDDRTVGSYNV

L Alignment Score |

ASSUMPTIONS

2 "‘A,gambiae,ag('lfiQBlg' =
1 D_melanogaster_7304320-

Figure |

NEXUS and the character-state data model. Some
relevant terms and concepts are illustrated with a graphical
view of a small family of RAD23-related protein-coding genes
(KOGOOI I data provided in Additional file I). In molecular
sequence analyses, OTUs often are labelled with a token fus-
ing a species name with a database ID. In a NEXUS file, such
OTU labels are declared in a TAXA block. The TREES block
may contain one or more trees relating the OTUs, each tree
optionally having label (e.g., "Coelomate") and a numeric
weight (e.g., a probability). Trees may contain branch lengths
and support values. In the matrix of amino acid character
data shown here, the 4th character (i.e., the 4th alignment col-
umn), has the states "V","I","I", "L", "V", "I", "L", and "I". Such
character-state data are stored in a NEXUS CHARACTERS
block, which defines the type of data and the meaning of a
gap symbol such as "-". The ASSUMPTIONS block of a
NEXUS file provides the means to store a weight or other
numeric value for each character, such as the column-wise
alignment scores shown here. Many other types of informa-
tion not shown here can be stored in NEXUS files.

Page 2 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:191

codon locations and to define alternative genetic codes.
As a result, NEXUS continues to provide a rich way to rep-
resent diverse types of data that might be used in a com-
parative analysis of genes, proteins, or genomes. NEXUS
files often include several types of information, the most
common being:

e a discrete character matrix (e.g., a molecular sequence
alignment)

e a continuous character matrix

e one or more rooted or unrooted phylogenies, each with
(optional) name and weight

e 3 distance matrix

¢ a description of constraints on, or costs of, transitions
between states of characters

¢ other assumptions such as weights for characters

Within a NEXUS file, data are organized into blocks, such
that (in general) one block corresponds to one type of
data. The complete list of blocks is given (in order of
importance) in Table 1. The most commonly used blocks
are TAXA (to define the set of OTUs), CHARACTERS
(defining a set of character data) and TREES. The use of a
DATA block - essentially a CHARACTERS block for which
the OTUs have not been pre-defined via a TAXA block - is
deprecated.

Within a block, information is organized into commands
and their arguments, where arguments may either be data
or subcommands that refine the scope of the command.
For example, a CHARACTERS block could contain the
three command-argument pairs shown below, each end-
ing with a semi-colon:

Table I: NEXUS blocks and common commands

http://www.biomedcentral.com/1471-2105/8/191

BEGIN CHARACTERS;
DIMENSIONS nchar=12;
FORMAT datatype=protein gap=-;
MATRIX

Taxon1 ISPTCAP--RSV
Taxon2 EAPKCAPGVGLV
Taxon3 EAPKCAPGV-LV
Taxon4 QKPRCPPGVSLYV ;

END;

A NEXUS file seems well suited for use as both input and
output for the analysis of a single coherent data set with
an evolutionary history. For example, it would be appro-
priate to use a single NEXUS file to store all of the data
associated with a set of tubulin genes that are to be ana-
lyzed together in a family-wide analysis, including
sequences, species source, expression data, activity data,
and so on. However, if one is studying both the tubulin
gene family and the actin gene family, two NEXUS files are
appropriate.

The original NEXUS standard provides for extensibility via
"private" application-specific blocks. This idea, as success-
fully used in programs such as PAUP* [6], is that all of the
commands necessary for batch processing of a file can be
added to the file itself in a private application-specific
block (in the case of PAUP*, there is a "PAUP" block with
commands that only PAUP can understand).

Block name Commonly used commands

Typical content of block

TAXA dimensions, taxlabels
CHARACTERS dimensions, format, matrix
TREES tree, translate

tree

ASSUMPTIONS options, usertype, wtset

CODONS codonposset, geneticcode
SETS charset, taxset, treeset
NOTES text, picture

trees
DISTANCES dimensions, format, matrix Distance matrices
UNALIGNED dimensions, format, matrix Unaligned data
DATA! (see CHARACTERS)

Labels for OTUs (may be quoted strings)
A matrix of character-state data (e.g., aligned residues) of defined type, in a defined format
Rooted or unrooted trees in Newick format, with optional names and weights for each

Constraints on allowed changes; transition cost model; weights for characters
Description of a reading frame and the genetic code used to translate it

Named sets of OTUs (taxsets), trees, characters, states, or state transitions (changesets)
Annotations attaching text or pictures to sets of objects including OTUs, characters or

OTU labels and character data (deprecated)

I The DATA block format, though commonly used, is deprecated so as to encourage use of a separately declared list of OTUs in a TAXA block.

Page 3 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:191

Benefits of an open-source Perl interface to NEXUS

The NEXUS file format is used by several programs or
packages that molecular evolutionists find useful, includ-
ing Mesquite [5], MrBayes [7], and HyPhy [8]. As evolu-
tionary analysis becomes increasingly common in
bioinformatics workflows, the need will grow for formats
such as NEXUS that store data and trees together.

More importantly, the scope of evolutionary analysis —
not merely the number of users — continues to expand.
That is, while the mainstays of evolutionary analysis in the
past were molecular sequence characters and discrete
morphological characters, in recent years evolutionary
methods have been applied to the analysis of data on
genomic gene content [9], gene expression [10], and even
"function”, both at the level of a whole gene (or protein)
[2] and at the level of individual sites within a protein [3].
Thus, it is significant that the NEXUS file implements
(implicitly) a very flexible entity-attribute-value model
(the character-state data model), which means that it can
be applied to diverse types of data.

Existing software that uses NEXUS is mostly embedded in
applications code such as PAUP* [6]. Some exceptions are
the NEXUS methods provided by open-source toolkits
such as BioPerl [11], and by NCL [12], for "NEXUS Class
Library", a special purpose library written in C++. Most
such implementations provide limited coverage of the
NEXUS standard, and focus only on input and output of
files, without providing a toolbox of methods. More com-
plete implementations of NEXUS that provide a richer set
of functions are needed, as in the Java source code
included with Mesquite [5]. A Perl implementation would
be valuable due to the popularity of Perl with biological
programmers, who value its ease of use.

Implementation

Object-oriented Perl practices

Bio::NEXUS is written as a set of object-oriented (OO)
Perl modules. An OO interface is ideal for two major rea-
sons. First, NEXUS files are syntactically and organization-
ally complex, and OO Perl provides an easy-to-use
abstraction. Users, for example, can rename taxa through-
out a NEXUS file by using the rename_otus method and
providing a map of old names to new names, without
worrying about the details of how that object is structured
or where the names are stored. By allowing Bio::NEXUS to
handle the file formatting, users can focus on manipulat-
ing and interpreting data. Second, An OO implementa-
tion is also useful when data can be organized
hierarchically. For example, a Bio::NEXUS::Tree (a phyl-
ogeny) is part of a Bio::NEXUS::TreesBlock, which is a
Bio::NEXUS::Block, which is part of a Bio::NEXUS object.
In this way, all block types can inherit generic functions
(methods) from the Bio::NEXUS::Block class. The OO

http://www.biomedcentral.com/1471-2105/8/191

structure also means that a Bio:NEXUS object "knows"
what it comprises, so that when a method is called (such
as to remove some OTUs), the API automatically calls all
the necessary methods at lower hierarchical levels (such as
removing the OTUs from the character matrices, the trees,
and so on).

The Bio:NEXUS API contains 22 modules in 22 files,
organized in a way that reflects the structure of
Bio::NEXUS objects: within the "Bio" directory (at the top
level of the library) are the NEXUS base package and a
directory called "NEXUS", which in turn contains the
remaining 21 packages that define parts of the NEXUS
class. In most cases, these 21 packages represent different
block types, although there are some exceptions, e.g. there
are separate tree and node classes that allow tree methods
to be separated from the complexities of NEXUS files.

The 22 Bio:NEXUS modules define 351 methods, of
which 250 are public methods, meaning they provide the
API. The modules contain 4229 lines of code, 2706 lines
of POD (Plain Old Documentation), and 391 lines of
embedded comments for a total of 7326 non-whitespace
lines.

NEXUS parsing and the NEXUS standard
NEXUS files may be thought of as a series of commands,
where each command ends with a semicolon:

<command_word> [<subcommand>] [<arguments>|;

The one exception is that NEXUS files must begin with the
string '#NEXUS', without quotation. NEXUS commands
may be as simple as 'END;', which is used to indicate the
end of a block, or as complex as the MATRIX command,
which can take an entire multiple sequence alignment as
its argument list. The Bio::NEXUS parser reads in an entire
NEXUS file and breaks it into tokens, thereby making
whitespace unimportant except as a delimiter. Spaces,
tabs, and newlines are treated equivalently as delimiters,
and multiple consecutive whitespace characters are
treated as one. It is therefore possible for an entire NEXUS
file, including a multiple sequence alignment and tree, to
be on one line. The rare exception is that users who wish
to store an interleaved multiple sequence alignment must
use newlines to denote the end of each alignment row.

Interpreting the NEXUS file format requires a sophisti-
cated, context-sensitive parser. In the NEXUS standard, a
token is defined as a word (an unbroken sequence of non-
punctuation, non-whitespace characters) or a single punc-
tuation character (()[[{} /\,;:=*"""+ - <>). Single or
double quotation marks, however, cause the enclosed to
be treated as a single 'word', such as 'Human (alpha tubu-
lin) [20-94]". The underscore is taken to be synonymous

Page 4 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:191

with a single space; therefore, 'Human alpha tubulin' and
Human_alpha_tubulin are indistinguishable to the
Bio::NEXUS parser, although the latter format is always
used for output.

When not quoted, square brackets denote comments,
therefore, the string

Human (alpha tubulin) [20-94]

if unquoted, would be interpreted as three words and one
comment. Comments may be nested, as in [this [exam-
ple]], in which case all square brackets must be paired,
although nested comments have no special meaning per
se. Bio::NEXUS attempts to keep track of the location of
comments and reassociate them with the correct block
when writing output. However, as Bio:NEXUS can be
used to add, remove, and alter blocks or commands, it
may be impossible to place a comment adjacent to its
original command or block. For this reason (and others),
comments should not be used as an ad hoc method of stor-
ing data.

The NEXUS format often is extended by application-spe-
cific or "private" blocks as allowed in the original format
description [4]. If the Bio:NEXUS parser encounters an
unfamiliar block type (e.g., a private block generated by
MrBayes or PAUP*), an UnknownBlock object is created
that stores (verbatim) the content of the unfamiliar block;
this content is then included appropriately in the output
stream whenever the Bio::NEXUS object is written out.

If the parser encounters an unfamiliar command (within
a familiar type of block), however, an error results. This
behavior is desirable for two reasons. First, unfamiliar
commands often represent syntax errors or misspellings.
Second, commands may be used to change how data are
interpreted, thus ignoring an unfamiliar command with-
out throwing an error could mislead users to assume that
the data have been interpreted correctly.

Structure of Bio::NEXUS objects

The structure of Bio::NEXUS objects reflects the organiza-
tion of the NEXUS file format, as well as the implicit data
models used in bioinformatics. For this reason, some
information is stored literally, such as the order of blocks
in a file or the taxa listed in a TaxaBlock, while some infor-
mation is interpreted, such as the New Hampshire (a.k.a.,
Newick) tree string in a TreesBlock. The handling and
placement of comments in NEXUS files is defined ambig-
uously by the standard. Bio::NEXUS keeps track of com-
ment order and position relative to blocks, rather than
relative to commands or the data they may contain. The
exception is the case of tree strings, where square-brack-
eted strings are used to store node-associated data (by

http://www.biomedcentral.com/1471-2105/8/191

convention, branch-support or bootstrap values are stored
as square-bracketed strings after nodes in a tree string; the
NHX standard [13] described in the Discussion takes this
convention further, allowing various types of data to be
stored within square-bracketed strings within the tree
string).

At the topmost level, a Bio::NEXUS object comprises an
ordered list of block objects and block-level comments
(comments found outside of blocks). Block objects may
contain comments, simple attributes (e.g. alignment
length and gap character in a CharacterBlock object), and
objects (e.g. a Tree object within a TreesBlock object).
Objects are used for data with complex structure or when
data may require complex manipulations. Both are true of
trees.

The organization of the Bio:NEXUS object is based on
specific data models. A set of data is defined by a list of
OTUs ("taxa" in the NEXUS language), or unique identifi-
ers, provided in a TaxaBlock object. All other data provide
either relationships between OTUs (e.g. trees, taxsets spec-
ifying sets of OTUs), or attributes of specific OTUs (e.g.
protein sequences, intron positions). Some components
of Bio:NEXUS objects are also based on specific data
models. For example, Tree objects implicitly represent
directed acyclic graphs, and therefore are represented by a
hierarchy of Node objects with parent-child relationships.
CharactersBlock objects are based on the character-state
data model already described: each taxon ("entity") is
stored as a TaxUnit object that has an associated sequence,
or one state ("value") for each character ("attribute").
Characters that are polymorphic (denoted in a NEXUS file
using parentheses, e.g. "TCA(AG)C") or unresolved
(denoted using curly braces) may have multiple states for
each character. If a frequency distribution is known for
characters with multiple states, that is also stored.

Results

Examples of utility code: re-naming, re-rooting, and
format conversion

Bio::NEXUS facilitates rapid development of utility scripts
and "glue code" for typical bioinformatics tasks such as
creating formatted files, manipulating data in files, con-
verting formats, and developing wrappers. Below we pro-
vide several examples based on the file "example.nex" (see
Additional file 2), which consists of the following text:

#NEXUS

BEGIN TAXA;
DIMENSIONS ntax=4;
TAXLABELS A B C D;

Page 5 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:191

END;
BEGIN CHARACTERS;
DIMENSIONS nchar=25;
FORMAT DATATYPE=protein;
MATRIX
A IKKGANLFKTRCAQCHTVEKD GGNI
B LKKGEKLFTTRCAQCHTLKEGEGNL
C STKGAKLFETRCKQCHTVENGGGHV
D LTKGAKLFITRCAQCHTLEGD GGNI
END;
BEGIN TREES;
TREE my_tree = (((A:2,B:3):1,C:1):1,D:1)root;
END;
In the course of carrying out a scientific analysis, research-
ers will often wish to carry out complex operations that
edit, transform or otherwise manipulate data stored in a
file. While such steps often can be done "by hand" using
a text editor, software tools reduce errors and allow auto-
mation. Bio::NEXUS facilitates developing glue code for
these operations because, in addition to providing muta-
tors and accessors for the elements of NEXUS objects, it
also provides higher-level methods that perform a com-
posite of operations or that carry out a non-trivial manip-
ulation of data.
Re-rooting a tree is a common manipulation that typically
is far too complex to carry out by editing a tree string
directly with a text editor. In the example of re-rooting
shown below, a Bio::NEXUS object is constructed, the
manipulation is performed, and the altered object is writ-
ten out to a new file.
use Bio::NEXUS;
my $nexus_obj = new Bio::NEXUS('example.nex');

$nexus_obj = $nexus_obj->reroot('A');

$nexus_obj->write('rerooted.nex');

http://www.biomedcentral.com/1471-2105/8/191

Datasets can contain multiple trees, in which case this
procedure would affect the default tree, unless a different
tree is specified by name (in the NEXUS standard, each
tree can have a name).

In the example of naming below, a Bio:NEXUS object is
constructed, and a translation hash is defined. Single letter
names are replaced with more meaningful names by call-
ing the rename_otus method. Finally, the object is written
out to a new file.

use Bio::NEXUS;
my $nexus_obj = new Bio::NEXUS('example.nex');

my %translate = ('A' => 'Xenopus laevis', 'B' => 'Mus mus-
culus', 'C' => 'Pan paniscus', 'D' => 'Homo sapiens');

$nexus_obj->rename_otus(%translate);
$nexus_obj->write('renamed.nex’);

Format conversion is a common problem in bioinformat-
ics. Formats commonly encountered in evolutionary bio-
informatics include PHYLIP, FASTA, MEGA, GCG
(PileUp), and ClustalW. Although Bio::NEXUS does not
does not include high-level methods that directly parse or
output formats other than NEXUS, it simplifies format
conversion considerably given that NEXUS is the most
complex format commonly encountered. For instance, in
the example below, the protein sequence alignment from
example.nex is extracted and written out in FASTA format:

use Bio::NEXUS;
$nexus_obj = new Bio::NEXUS('example.nex');
$char_block = $nexus_obj->get_block('characters');
open(FASTA, '> example.fasta');
foreach $otu (@ { $char_block->get_otus()}){
print FASTA ">", $otu->get_name(), "\n";
print FASTA @ {$otu->get_seq()},"\n";

}

In the example below of converting to the format used by
the PHYLIP [14] package, an additional line of code is
required to get and print the number of taxa (OTUs) along
with the length of the alignment (using get ntax and
get_nchar). Also, inside the foreach loop that prints the
alignment itself, a more complex print command is used

Page 6 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:191

to ensure that OTU names occupy no more than ten char-
acters, as per the PHYLIP [14] standard (the new names
become Pan_panisc, Xenopus_la, Homo_sapie and
Mus_muscul).

use Bio:NEXUS;
$nexus_obj = new Bio::NEXUS('example.nex');
$char_block = $nexus_obj->get_block('characters');

open(PHYLIP, '> infile'); # "infile" is the filename PHYLIP
requires

print PHYLIP $char_block->get_ntax(). ' ' . $char_block-
>get_nchar() . "\n";

foreach my $otu (@{ $char_block->get_otus() }) {
printf PHYLIP "%-10.10s ", $otu->get_name();
print PHYLIP @ {$otu->get_seq,()}, "\n";

}

By calling additional methods, more complex scripts can
be developed. For instance, the restriction on name
lengths in PHYLIP files may create a problem if the trun-
cated names are non-unique (e.g., the first 10 characters of
Anolis_tubA and Anolis_tubB are the same). The problem
of preserving long names while using PHYLIP programs
can be solved by writing a Bio::NEXUS wrapper that uses
NEXUS as its input and output format: internally the
wrapper would use rename_otus to convert OTU names
to a temporary set of short identifiers (e.g., otu_1, otu_2,
.. .), interface with the PHYLIP package, add the PHYLIP-
generated results to the NEXUS object, then wuse
rename_otus again to convert back to the original names
before writing out the modified object to a new NEXUS
file.

Example of a stand-alone tool: nextool.pl

From the lack of available software tools and the high fre-
quency of non-compliant files in the user community, it
is apparent that NEXUS users typically manage and edit
their data files manually using a text editor. However, this
is not practical for larger data sets and for large numbers
of files. For instance, to re-root a tree by manipulating the
tree string directly with a text editor is a daunting task that
invites human errors. Safe removal of an OTU is equally
daunting as it is not merely a matter of searching for the
OTU label and deleting it along with any associated data.
As the NEXUS standard allows taxa to be referenced by a
number representing the order in which they were
declared, the data for an OTU are not always associated

http://www.biomedcentral.com/1471-2105/8/191

syntactically with the OTU label; for the same reason,
removing an OTU changes the system of referencing for
all subsequent OTUs. Furthermore, if the OTU is the first
shown in a character matrix, then--following a convention
widely used with sequence alignments - its character
states may be used as a reference states such that, for other
OTUs listed below it, only differences are shown (with
similarities indicated typically by the "matchchar" sym-
bol, typically a "."). In such cases, deleting the OTU is not
possible without semantic processing and rewriting of the
character matrix.

Indeed, the burden imposed by the complexity of the
NEXUS format coupled with the lack of suitable editing
tools may be one reason for the under-utilization of
NEXUS files.

To address this problem, we have developed nextool.pl, a
script that automates various tasks typically involved in
managing, curating and editing data sets in NEXUS for-
mat. The nextool.pl script is found in the exec/directory of
the Bio::NEXUS package, and is typically installed in the
user's executable path during an automated installation. It
operates as a command editor with the syntax:

nextool.pl <input_file> [<output_file>]
[<arguments>]]

[<command>

That is, an output file is generated by carrying out some
command on the contents of the input file. Useful com-
mands include rewrite (to rewrite a file in standard for-
mat), rename_otus (using, as a command argument, a
string that maps old names to new ones, or the name of a
file with such a mapping), reroot (to reroot a tree on a
named node or OTU), select, exclude and makesets. The
select and exclude commands may operate on blocks,
columns (characters), trees, subtrees or OTUs. For
instance, the command

nextool.pl. infile outfile select columns "1-3, 8, 10-45"

creates an output file "outfile" with only columns (charac-
ters) 1-3, 8, and 10-45 selected from the input file
"infile". The command

nextool.pl infile outfile makesets bycharstate "isotype
A'="124 H"

would add an OTU set named "isotype A" including only
those OTUs that have the character state "H" for character
number 124. This named set then could be referenced in
subsequent operations such as select or exclude. Sets can
also be referenced in set operations, so that (for instance),
we could define a set consisting of all OTUs that have "H"
for character 124 but do not have "E" for character 271.

Page 7 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:191

Example of a web-based application: Nexplorer
Bio::NEXUS plays a key role in Nexplorer, a web-based
program for interactive browsing and manipulation of
character state data and trees [15]. Nexplorer has a 3-tiered
design: the front end consists of JavaScript, HTML and
images, the back end consists of NEXUS files along with a
database of taxonomic information, and the middle layer
consists of CGI and Bio::NEXUS, which is used to access
and manipulate the data in NEXUS files. To generate cus-
tom views of data or to create subsets of data for further
analysis, users need only to upload a properly formatted
NEXUS file to Nexplorer. The server responds by generat-
ing an image of the data and by mapping such things as
JavaScript pop-up menus to the nodes of tree that allow
the user to re-root a tree, exclude or select a subtree, and
SO on.

Discussion and conclusion

Comparison with other implementations

As Lewis [12] suggests, developing a library to support
NEXUS fully is difficult due to the flexibility built into the
standard. According to Maddison et al. [4] writing in
1997, "no program can understand more than about 60%
of the elements described" by the standard.

To measure the degree of implementation precisely, we
have used the Backus-Naur formalization of NEXUS pro-
vided by Iglesias, et al. [16] to generate a list of keywords.
The keywords are reserved tokens representing commands
and subcommands (or command modifiers), some of
them (e.g., "interleave") used in several different blocks.
The total number of keyword-block combinations is 119.
Currently Bio::NEXUS provides some support for 80% (8
of 10) of the block types (all but NOTES and CODONS)
and 68% (81/119) of the keyword-block combinations.
The latter number is reflected in the current version
number (0.68) of the Bio::NEXUS release.

Other currently available software libraries to support
NEXUS include NCL [12] and the code available in vari-
ous Bio* toolkits [17]. According to the documentation,
NCL implements TAXA, TREES and DISTANCES com-
pletely, and implements CHARACTERS and ASSUMP-
TIONS partially. Other implementations typically focus
on TAXA and TREES block, and support common uses of
CHARACTERS blocks without implementing various for-
mat options. Bio::Phylo by Rutger Vos [18] focuses on
TAXA, TREES and CHARACTERS. BioPerl supports TAXA,
TREES, and CHARACTERS blocks, but writes data only in
the deprecated DATA block format. The BioJava NEXUS
parser handles DATA, CHARACTERS, DISTANCES,
TREES, and TAXA blocks. The Mesquite project [5], also in
Java, provides a documented NEXUS API with support for
all standard blocks except UNALIGNED.

http://www.biomedcentral.com/1471-2105/8/191

Extensions to the NEXUS standard

Bio::NEXUS implements a few extensions to the NEXUS
standard. One of these is the convention used in Mesquite
project files of allowing multiple blocks of the same type,
with linking-by-name between blocks. The title com-
mand is used to assign a name to a block, and the link
command is used to refer to another block by its title, e.g.,
a TREES block with trees inferred from the data in a
CHARACTERS block entitled "gene data" could have the
command

link characters = "gene data";

Bio::NEXUS also implements the NHX (New Hampshire
Extended) standard of Zmasek and Eddy [13]. NHX
expands the original "Newick" or "New Hampshire"
standard, wherein the clades of a phylogeny are repre-
sented by pairs of nested parentheses (see the examples in
Results above). NHX tree strings incorporate special
NEXUS comments that contain tags specifying additional
information about nodes of a tree. The syntax of an NHX
comment is [R&NHX:<tag>=<value>|, the comment fol-
lows the node, and each tag is responsible for carrying
specific information about the given node. For example,
the "B" tag refers to the branch support (e.g., bootstrap)
value at the given node, and "T" tag refers to the NCBI tax-
onomy ID. The Bio::NEXUS::NHXCmd module provides
the support for reading, manipulation, and writing of the
NHX comments. Methods in the Bio::NEXUS::Node class
provide the capacity to add, remove, and edit specific
NHX tags and the corresponding values.

Future challenges for NEXUS, Bio::NEXUS and
evolutionary informatics

NEXUS files have been in use for many years. Users and
developers presumably choose NEXUS because it is the
preferred or required input file for valuable programs
(e.g., PAUP*), because of the capacity to store trees with
data, and because of the expressivity that allows diverse
kinds of data to be represented along with constraints or
assumptions. As integrative and evolutionary approaches
to biological analysis become more common, there will
be a growing need for formats that provide the function-
ality of NEXUS.

Yet serious problems have emerged from the complexity
of the standard and the historical lack of software support.
First, the standard is so complex that users and developers
commonly misunderstand it (a substantial fraction of
NEXUS files in current use violate the standard; several
software applications generate or expect poorly formed or
deprecated file formats). Because there is no generalized
NEXUS editor, users apparently hand-edit their files using
text editors or word processors, leading to typographic
errors and to poorly formed files. Second, the standard is

Page 8 of 10

(page number not for citation purposes)

BMC Bioinformatics 2007, 8:191

so extensive, with so many options and so many varia-
tions in syntax, that no developer has attempted a com-
plete implementation, except for the developers of a
Prolog-based parser [16]. Indeed, some applications sup-
port only the deprecated DATA block format. Finally, the
NEXUS grammar is more like that of a natural language
and cannot be parsed using conventional scanning-pars-
ing routines, due to the inability to resolve ambiguous
tokens prior to extensive semantic processing [16]. The
next-generation standard to replace NEXUS should be
defined in a formal language, and it should i) be more eas-
ily parsed; ii) make use of available technology that facil-
itates crucial tasks such as validation and editing (e.g., as
for an XML-based standard such as PhyloXML [19]); iii)
import ontologies for character data (e.g., nucleotide or
amino acid states); and perhaps iv) utilize a process-spec-
ification language to describe steps in an analysis (both
previous steps and subsequent ones to be carried out).

Nevertheless, as there is no replacement currently on the
horizon, it seems clear that NEXUS files will continue to
be used for years to come. A robust and easy-to-use API
such as Bio::NEXUS will make it easier to manage NEXUS
files, to maintain legacy data and convert it to other forms,
and- when combined with greater community attention
to standards for integrative analyses — will facilitate the
transition to future technologies to achieve integration.
Future plans for Bio::NEXUS, intended to facilitate the
ongoing use of NEXUS and to protect legacy data, include
offering 100 % support for the standard and common
extensions, validation capacity, and object integration
with BioPerl [11].

Awvailability and requirements

Bio::NEXUS requires Perl 5.x, available for free download
from CPAN [20]. The current release of Bio:NEXUS is
available as an installable package from CPAN [20]; the
current development version of the source code is availa-
ble from SourceForge [21]. The CPAN package includes
Perl code, test files, documentation, some useful scripts
(e.g., nextool.pl), and examples. On UNIX-like systems
(Mac OS X, Linux, UNIX, or Cygwin running within Win-
dows) Bio::NEXUS can be installed using "perl -MCPAN -
e 'install Bio::NEXUS"; or on Windows systems using
ppm (Perl Package Manager). The test suite (implemented
with Perl's "Test" module) comprises over 30 test scripts
implementing over 460 subtests. The documentation,
written in POD (Plain Old Documentation) format,
includes a user manual and a tutorial (see below for exam-
ples). The code files also are annotated with POD, hence
references for Bio:NEXUS modules and their methods
can be generated on the fly using the standard perldoc
command.

http://www.biomedcentral.com/1471-2105/8/191

Authors' contributions

TJH helped to design and implement the code, to write
the documentation, and to draft the manuscript; CL and
WQ helped to design and implement early versions of the
library and tools; PY and VG carried out testing and aided
in implementation; AS participated in design, implemen-
tation and testing, helped to draft the manuscript, and
oversaw all aspects of the project; all authors read and
approved the manuscript.

Additional material

Additional file 1

figurel.nex. The NEXUS file corresponding to Figure 1.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-191-S1.nex]|

Additional file 2

example.nex. A simple NEXUS file used in the tutorial examples.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-191-S2.nex]|

Acknowledgements

The authors thank John Bradley, Mark Holder, Aaron Mackey, Eugene
Melamud, and Paul Lewis for suggestions and bug reports, and Mikhail Bez-
ruchko for his his work on the test suite. This work was supported by the
Computational Biology Program of the National Library of Medicine (NIH
grant RO1-LM07218 to A.S), the Biological Sciences Department of Hunter
College, the Howard Hughes Medical Institute Undergraduate Science Edu-
cation Program in Biology, and a Research Centers in Minority Institutions
award (NIH RR03037 to W.Q.). The identification of specific commercial
software products in this paper is for the purpose of specifying a protocol,
and does not imply a recommendation or endorsement by the National
Institute of Standards and Technology.

References

. Harvey PH, Pagel MD: The Comparative Method in Evolution-
ary Biology. In Oxford Series in Ecology and Evolution Oxford , Oxford
University Press; 1991:285.

2. Eisen JA: Phylogenomics: improving functional predictions for
uncharacterized genes by evolutionary analysis. Genome Res
1998, 8(3):163-167.

3. Gaucher EA, Gu X, Miyamoto MM, Benner SA: Predicting func-
tional divergence in protein evolution by site-specific rate
shifts. Trends Biochem Sci 2002, 27(6):315-321.

4, Maddison DR, Swofford DL, Maddison WP: NEXUS: an extendi-
ble file format for systematic information. Systematic Biology
1997, 46:590-621.

5. Maddison W, Maddison D: Mesquite: A modular Programming
System for Evolutionary Analysis. NA edition. 2000 [http://spi
ders.arizona.edu/mesquite]. http://spiders.arizona.edu/mesquite , Uni-
versity of Arizona

6. Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony
(*and Other Methods). 4th edition. 1999 [http://www.Ims.si.edu/
PAUP]. Sunderland, Mass. , Sinauer Associates

7. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of
phylogenetic trees. Bioinformatics 2001, 17(8):754-755.

8. Kosakovsky Pond SL, Frost SD, Muse SV: HyPhy: hypothesis test-
ing using phylogenies. Bioinformatics 2005, 21(5):676-679.

Page 9 of 10

(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-191-S1.nex
http://www.biomedcentral.com/content/supplementary/1471-2105-8-191-S2.nex
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12069792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12069792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12069792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11975335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11975335
http://spiders.arizona.edu/mesquite
http://spiders.arizona.edu/mesquite
http://www.lms.si.edu/PAUP
http://www.lms.si.edu/PAUP
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15509596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15509596

BMC Bioinformatics 2007, 8:191

18.
19.

20.

21.

Gu X, Huang W, Xu D, Zhang H: GeneContent: software for
whole-genome phylogenetic analysis. Bioinformatics 2005,
21(8):1713-1714.

Oakley TH, Gu Z, Abouheif E, Patel NH, Li WH: Comparative
methods for the analysis of gene-expression evolution: an
example using yeast functional genomic data. Mol Biol Evol
2005, 22:40-50.

Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C,
Fuellen G, Gilbert]G, Korf I, Lapp H, et al: The Bioperl toolkit:
Perl modules for the life sciences. Genome Res 2002,
12:1611-1618.

Lewis PO: NCL: a C++ class library for interpreting data files
in NEXUS format. Bioinformatics 2003, 19(17):2330-2331.
Zmasek CM, Eddy SR: ATV: display and manipulation of anno-
tated phylogenetic trees. Bioinformatics 2001, 17(4):383-384.
Felsenstein |J: PHYLIP (Phylogenetic inference package).
3.57th edition. Seattle, WA , Department of Genetics, University of
Washington; 1995.

Gopalan V, Qiu WG, Chen MZ, Stoltzfus A: Nexplorer: phylog-
eny-based exploration of sequence family data. Bioinformatics
2006, 22(1):120-121.

Iglesias JR, Gupta G, Ranjan D, Pontelli E, Milligan B: Logic Program-
ming Technology for Interoperability between Bioinformat-
ics Software Tools. Volume Lecture Notes in Computer Science
#1990. Springer-Verlag; 2001:153-168.

Mangalam H: The Bio* toolkits--a brief overview. Brief Bioinform
2002, 3(3):296-302.

Vos R: Bio::Phylo. [http://search.cpan.org/dist/Bio-Phylo/].
Zmasek C, Cannon E: phyloXML ¢ an XML language for phylog-
enies. [http://www.phyloxml.org].

Comprehensive Perl Archive Network (CPAN) [htep://
www.cpan.org]

SourceForge [http://sourceforge.net]

http://www.biomedcentral.com/1471-2105/8/191

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 10 of 10

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15356281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15356281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15356281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16267087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16267087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230038
http://search.cpan.org/dist/Bio-Phylo/
http://www.phyloxml.org
http://www.cpan.org
http://www.cpan.org
http://sourceforge.net
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Evolutionary comparative analysis
	The character-state data model
	The NEXUS format
	Benefits of an open-source Perl interface to NEXUS

	Implementation
	Object-oriented Perl practices
	NEXUS parsing and the NEXUS standard
	Structure of Bio::NEXUS objects

	Results
	Examples of utility code: re-naming, re-rooting, and format conversion
	Example of a stand-alone tool: nextool.pl
	Example of a web-based application: Nexplorer

	Discussion and conclusion
	Comparison with other implementations
	Extensions to the NEXUS standard
	Future challenges for NEXUS, Bio::NEXUS and evolutionary informatics

	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

