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Abstract

Background: An important step in annotation of sequenced genomes is the identification of
transcription factor binding sites. More than a hundred different computational methods have been
proposed, and it is difficult to make an informed choice. Therefore, robust assessment of motif
discovery methods becomes important, both for validation of existing tools and for identification
of promising directions for future research.

Results: We use a machine learning perspective to analyze collections of transcription factors with
known binding sites. Algorithms are presented for finding position weight matrices (PWMs),
IUPAC-type motifs and mismatch motifs with optimal discrimination of binding sites from remaining
sequence. We show that for many data sets in a recently proposed benchmark suite for motif
discovery, none of the common motif models can accurately discriminate the binding sites from
remaining sequence. This may obscure the distinction between the potential performance of the
motif discovery tool itself versus the intrinsic complexity of the problem we are trying to solve.
Synthetic data sets may avoid this problem, but we show on some previously proposed benchmarks
that there may be a strong bias towards a presupposed motif model. We also propose a new
approach to benchmark data set construction. This approach is based on collections of binding site
fragments that are ranked according to the optimal level of discrimination achieved with our
algorithms. This allows us to select subsets with specific properties. We present one benchmark
suite with data sets that allow good discrimination between positive and negative instances with
the common motif models. These data sets are suitable for evaluating algorithms for motif
discovery that rely on these models. We present another benchmark suite where PWM, IUPAC
and mismatch motif models are not able to discriminate reliably between positive and negative
instances. This suite could be used for evaluating more powerful motif models.

Conclusion: Our improved benchmark suites have been designed to differentiate between the
performance of motif discovery algorithms and the power of motif models. We provide a web
server where users can download our benchmark suites, submit predictions and visualize scores
on the benchmarks.
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Background

Computational discovery of motifs in biological
sequences is an important challenge. It has in recent years
attracted much research interest, resulting in more than a
hundred different tools for motif discovery [1]. A motif
discovery method has three important elements: a motif
model that can capture the similarities of a diverse set of
binding sites for the same transcription factor, an objec-
tive function defining the ranking of potential motifs and
a search strategy for parameterisation of the motif model.
The first two elements can be given an abstract representa-
tion, but should probably be designed to utilize and
enhance biologically relevant information. The most
commonly used motif models are position weight matri-
ces (PWMs) [2,3], mismatch strings (MMs) [4,5] (consen-
sus string allowing some mismatches) and IUPAC strings
(IUPAGs) [6,7] (consensus string with degenerate sym-
bols).

Due to the large number of available tools, robust assess-
ment of motif discovery methods becomes important, not
only for validation of existing tools, but also for pointing
out the most promising directions for future research in
the field. A major difficulty is our limited knowledge
about the biological mechanisms of gene regulation at a
detailed level. Although collections of experimentally
determined transcription factor binding sites (TFBS) are
available, these collections do have inaccuracies and
biases. This has been shown e.g. by Fogel et al. in their
analysis of the TRANSFAC database [8], and by Bergman
et al. in their study of Drosophila gene regulation [9].

A recent article by Tompa et al. [10] used experimental col-
lections of TFBS to benchmark a large number of motif
discovery tools. This was an important and timely contri-
bution to the field, and it gave good guidance to biologists
regarding the level of performance that can be expected
with current tools. However, it gave less guidance to the
motif discovery field itself. That is, although the study
clearly showed a lack of correspondence between in silico
predictions and in vivo experiments, the authors were not
able to give much guidance with respect to how we can
identify the most promising motif discovery approaches.
Furthermore, due to the inherent complexities of the data
set, it was hard to distinguish between clever preprocess-
ing and method parameterization done by the expert user
on one hand, and the performance of the motif discovery
algorithms themselves on the other hand. We note that
one of the few clear differences that can be spotted from
the generally low performance values - the relatively high
score of Weeder - is in the paper partly attributed to judi-
cious choices regarding when to make predictions, while
nothing is concluded regarding any superiority of the
algorithm itself.
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Synthetic data sets may avoid many of these problems. By
ensuring that high motif discovery performance is at least
theoretically possible, the performance differences
between tools may be clearer and more consistent, thus
giving more guidance to developers. On the other hand,
the coupling may be too loose between the synthetic data
sets and the biological reality, introducing an artificial
bias. This bias may favor specific classes of tools in a way
that lacks biological relevance.

The performance of any motif discovery algorithm can be
measured by how well it is able to identify true binding
sites in a data set. However, the optimal performance that
can be achieved will depend upon the complexity of the
data set itself. Here we use a machine learning perspective
to analyse collections of TFBS with known binding site
locations, in order to estimate an upper bound to the
motif discovery performance that can be expected for a
given data set. We formulate the problem as a binary clas-
sification problem where all sequence windows corre-
sponding to binding sites are termed positive samples,
and all other windows are negative samples. Algorithms
are given for finding MM, TUPAC and PWM models with
optimal discrimination between positive and negative
samples.

We use this approach to analyze the experimentally based
benchmark data sets used in the recent assessment of
motif discovery tools by Tompa et al. We also analyze
some synthetic benchmark data sets proposed by Pevzner
et al. [11] and compare the results to those for the experi-
mental collections. Finally we show how the same
approach can be used to construct benchmark data sets
that combine advantageous properties of both experimen-
tally based and synthetic benchmarks. Data sets are
ranked according to the best possible discrimination score
as computed by our discrimination approach, and this
ranking is used to select subsets with specific properties.
We present one benchmark suite with data sets that allow
good discrimination between positive and negative
instances. This suite, the algorithm benchmark, is useful
for evaluating algorithms for motif discovery that rely on
the common motif models, as we know that it should be
possible to achieve good discrimination with these mod-
els. We present another benchmark suite for evaluating
motif models, the model benchmark. The data sets in this
suite are selected so that none of the common motif mod-
els are able to discriminate between positive and negative
instances in a reliable way. This suite is useful for evaluat-
ing novel and more expressive motif models, as we know
that it is not possible to achieve good discrimination with
the standard models.
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Results and discussion

We have used the discrimination algorithms described in
Methods to analyze motif occurrences in both experimen-
tally based and synthetic benchmark data sets. We present
an alternative way of constructing benchmark data sets
that uses the discrimination algorithms as a key compo-
nent.

Discrimination algorithms

We view a collection of binding sites in a machine learn-
ing perspective, where the goal is to find motifs that
achieve optimal discrimination of binding sites (at known
positions) from remaining sequence. Binding sites are
assumed to be of equal length, which may require some
alignment and truncation of related sites. Sequence win-
dows corresponding to binding sites are considered posi-
tive samples, and all other sequence windows are
considered negative samples. For each of the three com-
mon motif models, MM, TUPAC and PWM, algorithms
have been developed that find the motif that best discrim-
inates between the known positive and negative samples.
Discrimination is here defined as finding the single motif
that best separates true from false sites, and the discrimi-
nation score is the nucleotide-level correlation coefficient
(nCC) for this separation, using Formula 1 according to
Tompa et al. [10]. Details on the problem definition and
the individual algorithms are given in Methods and in
supplementary material (see additional file 1:
IUPAC_details.pdf).

Analysis of existing benchmark data

We used our discrimination approach to analyze the
benchmark suite of Tompa et al. For each data set we com-
puted the best possible discrimination between binding
sites and remaining sequence using the three motif mod-
els. As the binding sites are unaligned and of different
length within each individual data set, we had to align
and possibly truncate each set of binding sites as a pre-
processing step using a gapless alignment [12]. The result-
ing set of consensus-aligned, equal-length binding site
fragments is representative of what can be discovered by
standard motif discovery methods.

Figure 1 shows to what extent it is possible to discriminate
the set of binding sites from remaining sequence in each
of the 50 data sets with a given motif model. We see that
this varies a lot, some data sets allow a discrimination
score (nCC) of more than 0.8, while other data sets do not
allow discrimination score above 0.2 with any of the
models. These results are from the "real" data sets from
Tompa et al. (actual promoter regions), but the scores
were similar in the "generic" (binding sites implanted in
randomly selected promoter regions) and "Markov"
(binding sites implanted in Markov model backgrounds)
data sets (see Figure 2).
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Discrimination on data sets by Tompa et al. Nucle-
otide-level CC-score for discrimination between binding
sites and remaining sequence on data sets from Tompa et al.
Data sets (x-axis) are sorted individually for each model in
order of increasing nCC, making it easier to compare the
overall distributions of discrimination scores.

The ITUPAC model had the highest average score, followed
by PWM and MM. The score differences between models
were statistically significant using paired t-test with 95%
confidence level. However, the difference between IUPAC
and PWM was very small, and probably not of practical
relevance. On the other hand, the score for MM was con-
siderably lower than the others.

Although PWMs are more expressive than IUPAC models,
IUPAC scored slightly higher in our tests. PWMs were
restricted to either contain log-likelihoods based on
aligned binding sites, or to contain log-odds values taking
negative data into consideration through a Markov
model. All established PWM-based methods use log-like-
lihood or log-odds matrices, we therefore see this restric-
tion as a reasonable choice. We tried different pseudo-
count values and backgrounds with different Markov
order, and chose the values that gave best overall score.
On the other hand, the algorithms for the IUPAC and mis-
match models take negative data directly into considera-
tion, and this leads to slightly better classification
performance under certain conditions.

Although the discrimination algorithms return optimal
discrimination results on the data they are given, the ini-
tial alignment of binding sites in our pre-processing step
may be sub-optimal. Multiple alignment algorithms are
heuristic, and cannot guarantee optimal solutions. Also,
the criteria for optimality of an alignment may not ensure
a motif representation that is optimal for classification. As
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Discrimination on different data set versions by
Tompa et al. Nucleotide-level CC-score for discrimination
between binding sites and remaining sequence for the three
motif models on real, generic and Markov versions of data
sets.

the benchmarked motif discovery methods do not
depend on this initial alignment, they may in some cases
achieve a somewhat higher nCC-score than what we esti-
mate in the discrimination case (if they can find a better
alignment). However, from our experience this is a rela-
tively rare situation, and heuristic ungapped alignment
was in general found to perform well on the data sets ana-
lyzed here.

Cross-validation performance

Averaged prediction scores for the three motif models in a
leave-one-out cross-validation experiment on the bench-
mark data sets of Tompa et al. is given together with dis-
crimination and motif discovery scores in Figure 3. We
counted the sum of TP, TN, FP and FN for the test sets
across all folds, and calculated the nCC from these accu-
mulated numbers.

As expected, for all models the scores are much lower for
cross-validation based prediction than for discrimination.
With nCC-scores below 0.2, it shows that even when most
binding sites for a TF are known, it is still difficult to pre-
dict the location of unseen related binding sites (i.e. it is
difficult to generalize from training set to independent
test set). Using some strategy to avoid overfitting, e.g. add-
ing regularization terms, could improve the prediction
performance somewhat. Still, this means that even if bet-
ter objective functions [13] could bridge the gap between
unsupervised and supervised motif discovery, it would
only amount to a limited increase in prediction accuracy
on the Tompa benchmark suite. Representation of the
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Motif discovery scores from Tompa et al. nCC-scores
of 14 motif discovery methods given in the Tompa asses-
ment, compared to prediction and discrimination scores with
the three main motif models.

sequence similarity between related binding sites seems to
be a strong limiting factor. We also see that the IUPAC
scores are lower than PWM scores in the cross-validation,
confirming that the high IUPAC scores for the discrimina-
tion case were partly due to overfitting. Still, the difference
in prediction performance between the motif models is
very low. Our results thus indicate that the choice of motif
model should not be a major limiting factor on motif dis-
covery performance on the benchmark suite of Tompa et
al. This fits well with the observation that Weeder, which
internally uses the simple mismatch model during motif
discovery, is able to outperform the many PWM-based
methods on this benchmark.

Comparison of motif discovery methods

Figure 3 also shows the scores of different de novo motif
discovery methods on the benchmark suite of Tompa et
al., in addition to the average discrimination and predic-
tion scores for each of the three motif models. Although
the limited possibility for discrimination between bind-
ing sites and remaining sequence puts an upper bound on
motif discovery performance on the data sets, the bound
is still clearly above the actual scores of these de novo motif
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discovery methods. The discrimination score suggests that
motif discovery could be particularly difficult on many of
these data sets. We therefore looked at how the maximum
score across all motif discovery methods reported in
Tompa et al. correlated with the discrimination scores on
the different data sets. The scatter plot in figure 4 shows
that the discrimination score generally represents an
upper bound on the motif discovery score, with maxi-
mum motif discovery score for data sets typically distrib-
uted between zero and the bound given by discrimination
score. Only in rare cases may the bound be exceeded due
to suboptimal alignments, as already discussed. Most of
the motif discovery score values are well below the esti-
mated discrimination score, even though the motif dis-
covery scores we are looking at are maximums over the 14
methods considered in Tompa et al.

We also looked at how the total score of a typical motif
discovery method would change if data sets were removed
according to the discrimination score (Figure 5). We used
MEME as example, as it is a well-known method with rea-
sonable performance in the assessment by Tompa et al. If
only the 13 data sets with lowest discrimination score had
been included in the benchmark suite, the nCC-score for
MEME would have been just 0.004, compared to a nCC-
score of 0.33 if only the 6 data sets with highest discrimi-
nation score were used. The nCC-score for MEME on the
full benchmark suite was 0.07. We also wanted to explore
the remark by Tompa et al. that one reason for the good
performance of Weeder in the assessment was that the
Weeder group was conservative about making predic-
tions. The possible level of discrimination is of course
only one of several factors that could influence such a
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Figure 4

Motif discovery versus discrimination. Scatter plot of
maximum motif discovery score versus discrimination score
for the 50 data sets in the suite by Tompa et al.
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decision, but we wanted to see whether canceling predic-
tions based on discrimination scores alone could have
increased the score of MEME on this benchmark suite. We
found that the total score of MEME could indeed have
been increased slightly by not making any predictions on
the data sets with low discrimination score. If no predic-
tions were made on the 14 data sets with lowest discrimi-
nation scores, the nCC-score of MEME on the full
benchmark suite would have increased by 30%, from
0.076 to 0.099. Actually, because of the generally low per-
formance, MEME would have gotten higher total scores in
the assessment (when judged by nCC-score) even if they
had submitted blank predictions on all but the 6 data sets
with highest discrimination scores.

Analysis of synthetic benchmark data

Synthetic benchmark data sets avoid many of the prob-
lems associated with binding site collections, as the pre-
cise locations of synthetic binding sites are known and
consistent with the location of sequence consensus. Fur-
thermore, the level of discrimination that is possible to
achieve with a given motif model can be controlled.

The problem with synthetic benchmark data is that the
generation of synthetic binding sites must necessarily pre-
suppose a model of sequence variability between related
sites, for example in the way instances of a base consensus
sequence are "mutated" before being implanted in the
benchmark sequences. As different motif discovery meth-
ods rely on different models of sequence conservation,

0.20

S o0.10
=

0.05

—— Cancel hard predictions
—— Remove hard sets
—— Remove easy sets

0.005 5 10 15 20 25 30

Data sets

Figure 5

MEME scores after removals or erasures. Total MEME
score if the data sets with highest or lowest discrimination
scores, respectively, had been incrementally removed from
the Tompa benchmark, as well as total MEME score if predic-
tions on the data sets with lowest discrimination scores had
been incrementally erased.
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this will incur a bias towards methods using models sim-
ilar to the one used when generating data sets. Synthetic
benchmark data sets may therefore be suitable for com-
paring motif discovery methods using the same motif
model, but will not give a fair comparison between meth-
ods using different motif models.

Pevnzer and Sze [11] proposed the Challenge Problem for
motif discovery. A data set is constructed by implanting
one motif instance in each of 20 sequences, 600 bp long.
In the (15,4)-FM version (fixed number of mutations),
each motif instance is made by mutating 4 random posi-
tions of a 15 bp motif consensus. In the (15,4)-VM ver-
sion (variable number of mutations), each position of the
motif consensus is mutated with a probability of 4/15
when forming a motif instance. Both versions assume that
all positions are equally likely to be mutated, and that
every nucleotide is equally likely to be the result of a
mutation. These are the same assumptions as in the mis-
match model. A slight variation to the Challenge Problem
is proposed in Styczynski et al. [14], where experiments
are done on data sets with motif instances in only 15 out
of 20 sequences. Figure 6 shows the discrimination scores
of the three common motif models, averaged over 10 data
sets of 20 sequences randomly constructed according to
the three variants of the Challenge Problem. Contrary to
the results on annotated binding site collections, the MM
model gets very competitive discrimination scores on the
Challenge Problem data sets, only slightly lower than
PWM scores. The IUPAC model, which had the highest
average discrimination score on the data sets from Tompa
et al., gets the lowest score on the synthetic data sets. The
IUPAC model is the model that most clearly relies on
asymmetries in positional conservation and skewed posi-
tional nucleotide distributions, properties not present in
these synthetic data sets, although they are assumed to be
biologically relevant. Both the high empirical scores of the
mismatch model, and the low scores of the IUPAC model,
support the intuition that synthetic data sets may intro-
duce a bias towards a presupposed model.

Generation of improved benchmark data

Based on our analysis of existing benchmark data we pro-
pose a new strategy for the generation of benchmark
suites. Details are given in Methods. Basically binding site
fragments corresponding to known binding sites were
extracted from a suitable database (TRANSFAC) and rep-
resented either as real sequences (i.e. binding sites in their
original genomic context) or Markov sequences (binding
sites implanted in sequences generated with a third order
Markov model). Figure 7 shows the distribution of bind-
ing sites. The best sequence-based discrimination between
binding sites and remaining sequence was computed, as
shown in Figure 8. Based on the discrimination score two
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Figure 6

Discrimination on synthetic data sets. Discrimination
nCC-scores for motif models on three variants of synthetic
data sets: variable mutations (4/15), fixed mutations
(4_of_15) and fixed mutations with instances in 75% of the
sequences (4_of_15 zoops). For each variant, the scores of
each model are averaged over 10 randomly generated data
sets.

subsets were generated, an algorithm benchmark suite
and a model benchmark suite.

The algorithm benchmark suite

For our algorithm benchmark suite we selected all data
sets with discrimination score higher than 0.79 for the real
version and higher than 0.87 for the Markov version, giv-
ing 50 data sets of each version. Figure 9 compares the dis-
tribution of discrimination scores for this suite to the suite
by Tompa et al., showing that the binding sites are stand-
ing out from background much more clearly in our algo-
rithm benchmark suite.

This gives a benchmark suite where we know that it is pos-
sible to achieve good discrimination with standard motif
models. This suite will therefore mainly evaluate the per-
formance of the algorithms for motif discovery, as lack of
performance has to be caused by failure to find optimal
motifs, and not the motif model itself.

The model benchmark suite

The field would also gain from more powerful motif mod-
els that can better capture the variability between binding
sites and discriminate these from background. This will be
even more relevant as more examples of related binding
sites become available.
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Sequences per data set. Distribution of number of
sequences per data set.

For benchmarking of novel powerful motif models, we
propose a model benchmark suite with binding sites that
are hard to discriminate from background. The construc-
tion was similar to the preceding suite, except that for this
suite data sets were selected that only allow a low level of
discrimination with the common motif models. As pow-
erful models typically require the estimation of more
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Figure 8

Discrimination on all TRANSFAC-based data sets.
Nucleotide-level CC-score for discrimination between bind-
ing sites and remaining sequence on real and Markov version
of TRANSFAC-based data sets. For each data set, the highest
discrimination score achieved by any of the three motif mod-
els is selected. The distribution of scores are in sorted order
for real and Markov versions independently.
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Figure 9

Discrimination on algorithm benchmark suite. Nucle-
otide-level CC-score for discrimination between binding
sites and remaining sequence. Results are given for our algo-
rithm benchmark suite and the suite by Tompa et al., for both
real and Markov versions. For each data set, the highest dis-
crimination score achieved by any of the three motif models
is selected. The distribution of scores are in sorted order for
all versions independently.

parameters, we also filtered out data sets with few binding
sites. We selected 25 data sets with at least 18 binding sites
in each data set, and with discrimination score below 0.72
for the three common motif models. Figure 10 shows the
distribution of the number of binding sites and the maxi-
mum discrimination score with common models for each
data set in the model benchmark suite. Table 1 shows the
aggregated results in comparison to algorithm benchmark
suites. As more experimentally determined binding sites
become available in the future, the same methodology
could give benchmark suites with a larger number of
binding sites per data set, and even lower maximum dis-
crimination scores when using the common models.

For several data sets, some of the substrings marked as
binding site also had an exact unannotated duplicate in
another sequence. This means that without working with
longer motif length, or operating with a motif context
based on flanking sequence, it is not possible to achieve
perfect discrimination with any model. The distribution
of maximum discrimination scores possible with any
model without taking such measures, as well as the maxi-
mum discrimination possible with the currently common
motif models, is given in Figure 11.

Examples of benchmark runs
We ran MEME and Weeder on our proposed benchmark
suite to indicate the level of motif discovery performance
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Discrimination score and number of binding sites.
Distribution of discrimination scores (nCC) and number of
binding sites for each of the 25 data sets in the model bench-
mark suite.

that can be expected. Table 2 compares the scores of
MEME and Weeder with the discrimination scores of the
PWM model. As expected, the de novo motif discovery
scores are much lower than the upper bound given by the
discrimination score. Note that all motif discovery results
given on our benchmark suites have been achieved with
default parameters. Slightly higher scores might be
achieved by tweaking of parameters and clever post-
processing of results.

The average score of MEME is higher on the real Algorithm
suite than on the remaining real data sets. For Weeder this
difference was less clear. While MEME achieves slightly
higher scores on Markov version compared to real version
of Algorithm suite, Weeder performs better on the real ver-
sion. This might possibly be reflecting the different
approaches to estimation of background distribution in
MEME and Weeder.

Although the performance of both MEME and Weeder is
better than random even with default parameters on real
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sequences, the performance is still much lower than the
bounds given by the discrimination scores, leaving much
room for improvement in the development of objective
functions and search heuristics for motif discovery.

Conclusion

We have developed discrimination algorithms for the
common motif models and used these algorithms both
for analyzing an existing benchmark suite and for con-
structing new benchmark suites. The work has highlighted
several important points:

¢ Considering discrimination of known binding sites
from background separates the limitations of motif mod-
els from the limitations of objective functions and search
heuristics. Discrimination algorithms for common motif
models may be used to evaluate properties of data sets, for
instance in a filtering step when constructing benchmark
data sets.

* Motif discovery is very difficult on the data sets used in
the recent benchmark of Tompa et al. Algorithms reveal
large difficulties even with the basic task of discriminating
a set of known binding sites from remaining sequence.

¢ Improved benchmark data sets with controlled proper-
ties can be constructed from motif databases, e.g. TRANS-
FAC matrix alignments, using discrimination algorithms
for filtering. Using this approach, we propose one bench-
mark suite for evaluating the motif discovery process itself
with current models, and another benchmark suite with
data sets that could profit from more expressive motif
models.

Our main focus has been on the level of discrimination
that is possible for a given data set, and we have used the
maximum score across the three models to avoid intro-
ducing a bias towards a specific model during the evalua-
tion and filtering of benchmark data sets. Still, we have
observed some consistent differences between the dis-
crimination power of the common models: The IUPAC
model achieves the highest level of discrimination,
slightly above the PWM model, with the mismatch model
at a clearly lower level. On the other hand, synthetic
benchmark data sets rely on a chosen computational
method for generating variability among implanted bind-

Table I: Discrimination scores on model benchmark suite. Average nCC-scores of three motif models on our proposed model
benchmark suites; real and Markov algorithm suite, as well as real model suite.

Algorithm suite (Real)

Algorithm suite (Markov) Model suite (Real)

PWMs 0.89 0.90 0.48

IUPACs 0.87 0.87 0.50

MMs 0.67 0.64 0.33
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Discrimination score on model benchmark suite. Dis-
tribution of discrimination scores (nCC) for the 25 data sets
in the model benchmark suite. One curve shows the best
score of the three common motif models on the data set,
while the other curve shows the score possible with a more
expressive model that still do not consider the context of
binding sites.

ing sites. As expected, the motif models that are more
compatible with the generation model achieved better
discrimination scores on three versions of synthetic data
sets that were considered.

A main line of future work would be to increase the size
and quality of benchmark data sets by using our proposed
methodology on additional binding site collections. Also,
as time goes, more data of higher quality will be available
in the TRANSFAC database used in this work as well as in
other similar databases. A different line of research would
be to use a supervised learning approach as a first step in
exploring novel and more expressive motif models. After
the power of a new motif model has been determined by
its discrimination scores on training sets, and its generali-
zation ability has been determined by its prediction scores
on independent test sets, the more complex task of devel-
oping efficent methods for de novo discovery could be

http://www.biomedcentral.com/1471-2105/8/193

commenced. Supervised learning algorithms could be
developed for entirely new models, or for exploring
already proposed expressive models such as HMDM [15],
Bayesian nets [16,17], Markov-model motifs [18,19],
dinucleotide matrices [20,21] and SPSP [22].

Methods

Motif models

The most common models of motifs in DNA sequences
are PWM, TUPAC codes and mismatch strings. These are
considered as three different hypothesis spaces in our
work. Deciding on the hypothesis space is central to
machine learning [23]. A good hypothesis space for a
domain should be as small as possible while still contain-
ing a good hypothesis. The main motivation in this work
is to find the best hypothesis in the respective hypothesis
space of motif models. We have developed exhaustive
search algorithms to avoid any search bias. Since for large
model sizes exploring the whole search space becomes
impractical, the algorithms developed are optimized as
much as possible so as to scale well for moderate sizes.

Problem formulation

We assume that a number of upstream DNA sequences
with binding site locations are given. The locations are
positive examples while other oligos with the same length
in the same sequence set form the negative examples (Fig-
ure 12).

Let E be a set of N TFs, i.e., E = {TF,, TF,,...,TFy}. Associ-

ated with each TF is its binding site length k : E — , usually
ranging between 6 and 20 and assumed to be known. The

input space for TF; is X(TE)={A, C,G,T}k(TFi), ie {1,

2,..,N}. The output space Y = {0, 1}, indicating negative/
positive examples.

For TF;, let the learner be a function Ay, : {A, C,G,T}k(TFi)

— H , for a predefined hypothesis space H .

We restrict our hypothesis space set to = {H pyp
H upac: H pm) Tepresenting PWM, IUPAC and mis-

match string models.

Table 2: Discrimination and motif discovery scores on algorithm benchmark suite. Average nCC-scores for de novo motif discovery
with MEME and Weeder compared to best discrimination scores on our proposed algorithm benchmarks and remaining 64 datasets.

Algorithm suite (Real)

Remaining data sets (Real) Algorithm suite (Markov)

MEME 0.068 0.029 0.082

Weeder 0.11 0.10 0.052

Disc. 0.92 0.64 0.92
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We use correlation coefficient (CC) as our performance
metric. In the optimization, CC is calculated at the oligo
(sequence window) level, using oligos as individual sam-
ples as explained previously in this section. This differs
slightly from the CC at the nucleotide level (nCC), which
is the measure used in the results section to ensure consist-
ency with the results of Tompa et al.

TP-TN — FP-FN
JIP +EP)-(FP+1TN)-(IN + FN)-(FN + TP)

(1)

nCC =

Algorithms

Mismatch string model

The motif model for mismatch strings is a tuple, M,,,, =
<cs, d > where ¢s € {A, C, G, T}"is a consensus string of
length n and d € {0, 1,..., n} is the maximum Hamming
distance from cs. Typical values for n is 6 to 20 and that of
dis 1 to 4. Bounded values for n and d clearly suggests that
hypothesis space is finite, although large when n gets big-
ger.

For mismatch strings we have developed an algorithm
inspired by [24]. A main difference is that in our case, the
motif locations are assumed known, i.e., a supervised
case. The main idea is to enumerate every substring s
within a given Hamming distance d of each positive sub-
string in the data set. For each such substring s, matches

are determined as every substring s' of the sequences at a
Hamming distance of at most d from s.

The method described above clearly does not consider all
the hypothesis space explicitly, but the subset considered
is actually enough to find the best hypothesis among all.
Since the best hypothesis must cover at least one positive
instance, the algorithm is guaranteed to find the best
hypothesis even though not all hypotheses are explicitly
enumerated. Thus, it suffices to evaluate the score of this
subset of hypotheses. As this still involves scanning very
many different motifs against the same sequences, a ¢-
gram of the sequences is used to further accelerate match-
ing of short motifs (length < 7) against sequences, and the
algorithm of Yates et al. [25] for longer motifs.

IUPAC model

The motif model for IUPAC, M, ;p,c, is a degenerate string
ds of length n where each position is a non-empty subset
of {A, C, G, T}. These subsets correspond to the IUPAC
symbols for DNA sequences. For finite n, the hypothesis
space is finite but grows exponentially with n. A candidate
string s is said to be a hit (match) against ds if every posi-
tion of s is a subset of respective position in ds, otherwise
it is a non-hit (non-match).

Finding a IUPAC expression that perfectly separates posi-

tive and negative substrings of equal length is indeed
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straightforward if at all possible for a data set. IUPAC
expressions are a subset of regular expressions, and induc-
tion of regular expressions from sequence examples is well
studied. Each position of the motif is set to the union of
characters occurring at the respective position of the posi-
tive instances. To see that this is the only solution, note
that leaving out any symbol that occurs in a positive
instance at a given position leads to the motif not covering
the instance. Additionally, adding symbols not occurring
in any positive instance at that position may only intro-
duce hits in negative instances.

Perfect classification is generally impossible for the prob-
lem we consider. In our case, all degenerate strings should
be generated exhaustively and evaluated against a scoring
function. We have therefore developed an efficient algo-
rithm that avoids unnecessary exploration of the hypoth-
esis space. Our algorithm bears some similarities with the
SPEXS algorithm for de novo motif discovery [26], but dif-
fers in that it uses bit-strings and pre-computation for
optimization, calculates bounds and prunes subtrees, and
of course that it solves a classification problem with
known positive and negative instances instead of an unsu-
pervised data mining problem. The details of the algo-
rithm can be found in the supplementary material.

PWM model

The motif model for PWM is a tuple Mpy,,, = <M, t > where
M is a matrix of 4 x n where each column is a probability
distribution of the nucleotide vector <A, C, G, T >and n is
the length of the motif. A candidate string is considered to
be a hit if the sum of probabilities in respective rows are
greater than the threshold ¢, otherwise a non-hit. The
hypothesis space is infinite regardless of n.

PWMs used for motif discovery are not just arbitrary
matrices that best separates the motif occurrences from
the remaining sequences. On the contrary, a PWM has a
clear interpretation as a product multinomial probability
distribution, or as containing log-odds values of motif
versus background. In the supervised case we calculate the
PWM from symbol frequencies in known motif locations
for log-probability matrix. Additionally, background dis-
tributions are taken into account for log-odds PWM
matrix. As the PWM thus is a direct function of the posi-
tive (and negative) instances of the data set, it is calculated
easily and efficiently even for large data sets. We used the
highest scoring PWM version for discrimination score. In
motif discovery, the hypothesized motif locations used
for constructing a PWM can in general be any probability
distribution over all sequence locations. If the hypothe-
sized motif locations exactly match the annotated sites, it
corresponds to the solution in the supervised case.

http://www.biomedcentral.com/1471-2105/8/193

Although the PWM itself is calculated directly from
sequence data, there is more flexibility when it comes to
determining a PWM score threshold to be used when
determining binary hits of the PWM. Such score thresh-
olds are commonly used to get a list of motif locations,
instead of just a distribution on motif locations across the
whole sequence data. As there are many ways of determin-
ing score thresholds, we exhaustively find the threshold
that optimize the score of a given PWM.

We do this by exploiting the fact that the optimal thresh-
old must be equal to the PWM match score of a positive
instance. We therefore compute the classification score of
the PWM with each of these thresholds and choose the
threshold giving highest classification score. To see why
this is optimal, consider a threshold ¢ that is not equal to
the PWM score of any positive instance. Increasing this
threshold to the PWM score of the positive instance with
least margin to the threshold (¢') will give the same
number of TP. As the threshold is more stringent the
number of TN must be equal or higher. Thus, there exists
a threshold t', corresponding to the PWM score of a posi-
tive instance, with at least as high score as the threshold t.

Dataset generation

We extracted sets of binding site fragments for 213 differ-
ent TF matrices from the TRANSFAC database, version 9.4
[27]. A binding site fragment is the binding site region
that is used in the construction of a matrix in the TRANS-
FAC alignment. Both real and Markov data set versions
were constructed from the same fragment sets. For the real
version, binding sites were kept in their original genomic
sequence, which was truncated to a maximum length of
2000 bp. To make the data sets more coherent, we
removed binding site fragments that contained degener-
ate bases, that had gaps in the TRANSFAC alignment, that
were not located within the 2000 bp upstream of tran-
scription start site in the sequence linked to by TRANS-
FAC, or that had two or more occurrences in the 2000 bp
region. The binding sites used in a TRANSFAC matrix
alignment may occur on opposite strands. To simplify the
process of using these data sets we took the reverse com-
plement of linked sequences when the binding site
appeared on the negative strand. For the Markov version,
binding sites were implanted in sequences generated from
a third order Markov model inferred from all sequences of
the corresponding real data set. Both the lengths of the
Markov version sequences and the positions of the
implanted binding sites were kept equal to the corre-
sponding real sequences. Data sets with fewer than five
binding sites were removed, leaving us with 114 real and
114 Markov data sets. While most data sets had from 5 to
25 sequences, there were data sets with up to 78
sequences. We then computed the best possible discrimi-
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nation score, and used that for selecting the algorithm and
model suites, as described in the main text.

Parameter settings

For all our runs of MEME we used version 3.5.3, down-
loaded from [28]. To avoid incurring biases in our results,
we ran MEME with default DNA parameter values and
without any manual curation of output data. We think
this is realistic with regard to common usage of motif dis-
covery methods, although performance could probably
have been improved by tweaking parameters, pre-process-
ing data sets and post-processing output data. For all runs
of Weeder we used version 1.3 downloaded from [29]. We
also ran Weeder with default parameters and without any
manual curation. We used the large setting and the option
telling Weeder that each sequence should contain at least
one binding site. As Weeder requires the specification of
organism, we supplied for each data set the most frequent
organism.

Availability and requirements

Our proposed algorithm and model benchmark suites are
available for download at http://tare.medisin.ntnu.no/.
We have also implemented a web service for evaluating
predictions and visualizing benchmark results. The imple-
mentation of the discrimination algorithms for the com-
mon motif models is freely available as Python source
code at the same address.

Abbreviations
PWM: position weight matrix;

[UPAC: nomenclature for degenerate symbols as defined
by the International Union of Pure and Applied Chemis-

try;

MM: mismatch motif model;

TFBS: transcription factor binding site;

TP, TN, FP, FN: true/false positives/negatives;

nCC: nucleotide-level Pearson's correlation coefficient
(Formula 1)
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