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Abstract

Background: The wide use of Affymetrix microarray in broadened fields of biological research
has made the probeset annotation an important issue. Standard Affymetrix probeset annotation is
at gene level, i.e. a probeset is precisely linked to a gene, and probeset intensity is interpreted as
gene expression. The increased knowledge that one gene may have multiple transcript variants
clearly brings up the necessity of updating this gene-level annotation to a refined transcript-level.

Results: Through performing rigorous alignments of the Affymetrix probe sequences against a
comprehensive pool of currently available transcript sequences, and further linking the probesets
to the International Protein Index, we generated transcript-level or protein-level annotation tables
for two popular Affymetrix expression arrays, Mouse Genome 430A 2.0 Array and Human
Genome UI33A Array. Application of our new annotations in re-examining existing expression
data sets shows increased expression consistency among synonymous probesets and strengthened
expression correlation between interacting proteins.

Conclusion: By refining the standard Affymetrix annotation of microarray probesets from the
gene level to the transcript level and protein level, one can achieve a more reliable interpretation
of their experimental data, which may lead to discovery of more profound regulatory mechanism.

Background based. As evident in the probe annotation file provided by

Microarray technology was invented to rapidly profile the
quantities of mRNA transcripts in a particular cellular con-
text [1-3]. Its application has become universal in bio-
medical researches. Although it is mRNA that is actually
detected by microarray experiments, and it is mRNA that
has the direct relationship with protein, the methodology
and algorithms for data analysis are commonly gene

Affymetrix, gene-level annotation is widely accepted even
though it fails to discriminate multiple mRNAs tran-
scribed from the same gene. As a result, the analysis results
are usually summarized at the gene level, such as differen-
tially expressed genes [4-6] or gene-sets [7,8]. Even in the
recent works that integrate protein-protein interaction
data and microarray data [9-11], the analysis unit is
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reduced to the gene instead of mRNA. This practice could
be attributed to the fact that most of the functional knowl-
edge is at gene level instead of transcript level, and the
functional differences between mRNA variants tran-
scribed from the same gene are seldom clear. Although the
gene-level analysis ignores the difference among mRNAs
variants, this strategy is still biologically meaningful con-
sidering that the diversity of genes is much higher than
that of transcripts encoded by the same gene.

It has been well established that alternative splicing
increases mRNA diversity, and over 60% of human genes
are involved in this mechanism [12]. In addition, other
RNA processing events, such as RNA editing, also account
for the increased diversity at the mRNA level [13]. Since
these events enable one gene to encode multiple proteins
which might be functionally heterogeneous, we feel it
necessary to separate transcript-level synonymous
probesets from gene-level synonymous ones. The
probesets that hybridize to more than one transcript vari-
ant of the same gene are referred to as gene-level synony-
mous probesets; while the ones that hybridize to a single
variant are named as transcript-level synonymous
probesets. It has been noticed that transcript-level synon-
ymous probesets tend to have similar expression profiles,
while gene-level synonymous probesets may have distinct
expression profiles [14,15]. In fact, individual reports
demonstrated that the expression of transcript variants
could be totally different [16,17]. These phenomena indi-
cate that the gene-level strategy of microarray data analysis
is imprecise enough that one may overlook the expres-
sional inconsistencies among gene-level synonymous
probesets.

As a matter of fact, Affymetrix suffixes their probeset ID
according to the probeset's specificity. For example,
probesets that recognize unique transcript variants are suf-
fixed with _at, and probesets that recognize multiple alter-
native transcripts from a single gene are suffixed with
_a_ator_s_at, and so on. This suffix system gives a hint on
the varied specificities of the probesets, and could be con-
sidered as an endeavor trying to do away with customers'
worry about the gene-level data analysis strategy. How-
ever, the correctness of the suffix system has been in doubt
[14,18]. Therefore it is not reliable to perform transcript-
level analysis on the basis of this imperfect suffix system.
As the standard annotation files and most of the analysis
algorithms are gene-oriented, analysts often average out
the expression heterogeneity of the same gene when deal-
ing with probeset level data [19].

In this paper, we linked the probesets of two widely used
Affymetrix arrays with the International Protein Indexes
(IPIs) [20,21] through proper association and rigorous
alignment procedures, and demonstrated the statistically
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significant advantage of interpreting microarray data at
the transcript-level or protein-level. Our results can be
viewed as a more precise annotation of Affymetrix array's
probesets, with which one may achieve a more reliable
interpretation of their experimental data. Moreover, the
application of this new annotation substantially increased
the expression correlation between interacting proteins.

Results

Transcript-level or protein-level annotation of Affymetrix
probesets

Two Affymetrix arrays, MOE430A_2 and HG-U133A,
were chosen for this study, in which 21,097 and 16,213
putative protein-coding probesets for the two arrays were
subject to the alignment investigation (Table 1). Candi-
date probeset-mRNA relationships were compiled based
on the probeset-gene mapping information specified in
the standard Affymetrix annotation files and gene-mRNA
mapping relationships provided by separate mRNA tran-
script sources. Rigorous blast procedure similar to that
described in [22] were performed to filter these candidate
probeset-mRNA relationships. Finally, the mRNA targets
passing the filtering criteria were linked to protein IDs in
the IPI database.

Through the rigorous association and alignment, we
obtained precise annotations for 18,894 and 15,288
probesets in Affymetrix arrays MOE430A_2 and HG-
U133A respectively (see Additional file 1). These annota-
tions discriminate alternative mRNA variants transcribed
from a same gene, thus are at transcript level as opposed
to the standard gene-level annotation files provided by
Affymetrix. It is worth noting that since the transcript data
we used were quite redundant, a conceptual transcript var-
iant may be represented by multiple redundant transcript
accessions in the transcript database. In our transcript-
level annotation file, each conceptual transcript is identi-
fied with one IPI ID, as we only investigated the probesets
associated with protein-coding transcripts.

Statistics on the non-control, investigated and annotated
probesets, together with the number of involved genes
and proteins, are shown in Table 1. It is evident that the
proportion of genes covered by our annotated probesets
to those covered by all non-control probesets ('gene
retaining percentage' in Table 1), 95.2% for MOE430A_2
and 85.4% for HG-U133A, are higher than the corre-
sponding probeset retaining percentages, 83.5% and
68.8%, indicating that the gene coverage has only been
slightly reduced by our filtering procedures. This observa-
tion is in support of our primary goal, that is to refine
gene-level probeset annotations to transcript-level, but
not to simply remove the poor-quality gene-level annota-
tions.
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Table I: Summary of probesets, genes and proteins covered by probesets.

MOE430A_2 HG-UI33A
All probesets 22690 22283
Non-control probesets 22626 22215
Probesets associated with protein-coding 21097 16213
mRNAs (Investigated probesets)
Probesets passing BLAST (Annotated 18894 15288

probesets)

(probeset retaining percentage: 83.5% of the
non-control, 89.6% of the investigated)

(probeset retaining percentage: 68.8% of the
non-control, 94.3% of the investigated)

Genes covered by non-control probesets 13259 12849

Genes covered by investigated probesets 12853 11286

Genes covered by annotated probesets 12626 10976
(Gene retaining percentage: 95.2% of the non-  (Gene retaining percentage: 85.4% of the non-
control) control)
(Gene coverage: 45.1% of all protein-coding (Gene coverage: 43.2% of all protein-coding
genes¥) genes¥)

Proteins covered by annotated probesets 21512 22740

(Protein coverage: 42.0% of all proteins*)

(Protein coverage: 40.8% of all proteins*)

*As indicated by the statistics of IPl database (release 3.17), there are totally 51,251 mouse protein entries encoded by 27,992 genes, and 55,782

human proteins encoded by 25,393 genes.

Furthermore, we classified the probesets based on the way
they linked to proteins. By checking the alignment results,
the probesets in our annotation tables were divided into
two groups, namely one-to-one and one-to-many. In our
annotation table, a one-to-one probeset was linked to
only a single protein, while a one-to-many probeset was
linked to multiple proteins due to alternative splicing of
one gene. The rest of the investigated probesets that were
not linked to any protein were categorized into the third
group of “one-to-null”. The statistics of these three groups
are shown in Table 2. As we know, Affymetrix suffixes
their probeset ID according to the probeset's specificity.
The over ten types of probeset suffixes can be categorized
into three groups: transcript-specific, with '_at', gene-spe-
cific, with '_a_at' or '_s_at, and other suboptimal
probesets that may cross-hybridize with unrelated
sequences. The first two groups are comparable to our
one-to-one and one-to-many probesets respectively.
However, we found that, out of a total of 21,097 and
16,213 investigated probesets in MOE430A_2 and HG-

U133A respectively (Table 1), our one-to-one type
accounts for only 53.7% and 43.3%, which were signifi-
cantly lower than that of _at probesets, 74.0% and 72.6%,
in the respective arrays. This suggests that some of _at
probesets are not really specific for a transcript.

To further clarify the issue of probeset specificity, we
grouped the investigated probesets with the wvaried
Affymetrix suffixes as well as our own categorizing system
(Table 3). It is evident that overall one-to-one and one-to-
many take up the majority of the _at group and the _a_at/
_s_at group respectively, but there are some disagree-
ments between the two classifications. For example, the
Affymetrix _at group has 30.1% one-to-many probesets
and 11.7% one-to-null probesets, suggesting that these
so-called 'transcript-specific' probesets do not have the
expected high specificity, and that they should be treated
with caution in data analysis. On the other hand, the
Affymetrix _a_at/_s_at group contains 42.0% one-to-one
probesets. We attributed this mainly to the trimming of

Table 2: One-to-one and one-to-many probesets in our annotation tables.

Investigated probesets

MOE430A_2 HG-UI33A

Annotated probesets One-to-one probesets

11327 (53.7% of investigated)

7014 (43.3% of investigated)

One-to-many probesets 7567 8274
Sum 18894 15288
One-to-null probesets 2203 925
Total (Investigated probesets) 21097 16213
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the originally false transcripts during the update of
sequence information, as they may lead to the absence of
the transcript targets of some probesets. Similarly, there
are a large number of one-to-one probesets in the so-
called Affy others group, 1,206 out of 2,619 for
MOE430A_2 and 476 out of 1,555 for HG-U133A. These
probesets, however, might not be really one-to-one map-
ping to the identified transcript targets, as our strategy was
based on the premise that most probesets were specific for
certain genes, and our blast was limited to the candidate
transcripts associated with the probesets, but not the
entire transcript pool.

These subgroups of the investigated probesets with differ-
ent Affymetrix suffixes indicate the imperfection of the
Affymetrix suffix system, thus affirming the necessity of
our transcript-level or protein-level probeset annotations.
In fact, several other research groups have addressed the
misleading nature of the Affymetrix suffix system and the
imperfection of its standard annotation file, including
some re-annotation works for array HG-U133
[14,18,19,23]. We will discuss these related works in
detail in next section.

Verification of the protein-level annotation and
comparison with related annotations

Since the probesets were linked to transcripts and proteins
through rigorous association and alignment procedures,
the expression profiles of transcript-level synonymous

Table 3: Comparison of the Affymetrix suffix categorization and
our classification of probesets.

Affy Suffix Classification MOE430A_2 HG-UI33A
_at One-to-one 8473 4048
One-to-many 4384 3035
One-to-null 1697 625
Subtotal 14554 7708
(% of Total) (69.0%) (47.5%)
_a at/_s at One-to-one 1648 2490
One-to-many 2232 4363
Not passing 44 97
Subtotal 3924 6950
(% of Total) (18.6%) (42.9%)
others One-to-one 1206 476
One-to-many 951 876
Not passing 462 203
Subtotal 2619 1555
(% of Total) (12.4%) (9.6%)
Total 21097 16213
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probesets were supposed to be more consistent than those
of gene-level synonymous probesets [14,15]. This was
taken as the basis for the evaluation of our annotations.

We downloaded 30 expression datasets assayed with
MOE430A_2 from the Gene Expression Omnibus data-
base (GEO) [24,25], and calculated the Pearson correla-
tion coefficients (PCCs) of expression profiles of
synonymous probesets at gene level and transcript level.
Since transcript-level synonymous probesets in our work
recognized a single protein-coding transcript variant iden-
tified with a unique IPI ID, transcript-level synonymous
probesets were also named as protein-level synonymous
ones. Practically, we grouped gene-level synonymous
probesets according to gene ID, and protein-level ones
according to IPI ID. The probeset-protein mapping tables
provided at NetAffx, the official protein-level annotation
of Affymetrix probesets [26], was used as comparison.
Probesets corresponding to a single protein according to
NetAffx were designated as 'Affy-protein' level synony-
mous probesets, which was a third level of synonymy.
Within each synonymous group, all pair-wise PCCs were
calculated and then summarized to one value indicating
the expression correlation of this group. The expression
correlations of all synonymous groups at one level were
then averaged into an overall value for a dataset (see
Method section for details). The correlations of synony-
mous groups for 30 datasets at three different levels were
depicted in parallel in Figure 1A. It is noticeable that the
synonymous probesets at Affy-protein level show higher
correlations than those at gene level, but the synonymous
ones based on our protein level annotation show even
higher correlations consistently over 30 datasets (p < 0.05
for 30 datasets under student's t-test, see Additional file 2
for details). The comparison proves the rationality and
necessity of our protein-level probeset annotation.

These results support the argument that it is more reliable
to interpret microarray data at transcript level than at gene
level. The inferiority of the Affy-protein level annotation
to our annotation could be attributed to the technical
details in their alignment and association procedures
[26]. First, they used the representative mRNA sequence
(‘consensus' or 'exemplar' sequence of each probeset),
instead of the probe sequences themselves, as the query
sequence in the alignment. Second, they aligned against
the GenBank non-redundant protein database, rather
than a comprehensive pool of mRNA sequences. In
microarray experiment hybridization takes place between
the probe sequences immobilized on the array and the
cDNA sequences from the sample, so one can deduce that
the alignment between the representative mRNA
sequences and the protein sequences cannot precisely
simulate the hybridization between probes and mRNAs.
Finally, NetAffx filtered the blast results according to a cut-
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Expression correlations of synonymous probesets. X
axis indicates expression dataset IDs, Y axis shows the Pear-
son Correlation Coefficient (PCC) of synonymous probesets
summarized for each dataset. A) Expression correlations
were calculated for the MOE430A_2 array based on 30
expression datasets. Synonymous probesets were compiled
at three different levels: gene level, Affy-protein level, and
our protein level. B) Expression correlations were calculated
for the HG-UI33A array based on 28 expression datasets.
Synonymous probesets were compiled at four different lev-
els: gene level, Affy-protein level, our protein level, and Har-
big-protein level (according to Harbig et al.'s annotation
work).

off of E-value, which indicates the likelihood of the
observed alignment by chance [27]. Although frequently
adopted for sequence homology analysis in closely related
species, E-value is not sensitive enough to grade the many
well aligned targets from the same species. In our practice,
we took the probe sequences as the query and the mRNA
sequences as the alignment targets, and adopted the
matching nucleotide proportion as the filtering criterion
(see Methods).

http://www.biomedcentral.com/1471-2105/8/194

A similar comparison was conducted for HG-U133A
array, involving another transcript-level annotation by
Harbig et al. [14]. Across the whole 28 datasets, the anno-
tation by Harbig et al. showed advantage over Affy-pro-
tein-level annotation, while our transcript-level
annotation performed best (p < 0.05 for 18 datasets under
Student's t-test, see Figure 1B and Additional file 2). As
our work was done two years later than Harbig et al.'s, the
updated mRNA sequences in the probe-mRNA alignment
is one of factors contributing to the increased perform-
ance. The other contributing factor is different approach
we used to identify the mapping of probes to mRNA tar-
gets. Harbig et al. performed a two-phase blast: first, blast
probeset target sequences against mRNA sequence pool,
and then blast probe sequences against the retrieved
mRNA sequences. Efficient as it was, this two-phase-blast
strategy reduced the alignment precision as compared to
our direct probe-against-mRNA blast strategy. Moreover,
Harbig et al. accepted the mRNA with the highest average
probe matches as the target of a probeset, even if the high-
est value could be suboptimal.

According to our data, the puzzling fact that probesets for
one gene may show variable expression profiles can be
clarified when viewing the data at the protein level. Such
genes are likely to involve alternative transcript variants
which are constitutively different in expression levels. We
looked at two genes as examples. Shown in Figure 2A,
three probesets in GDS1277 dataset, 1448556_at,
1421382_at and 1451844 _at, were mapped to the mouse
Prlr gene (GenelD: 19116), with the first probeset corre-
lating to protein IPI00321091, or PRL-R3, and the other
two correlating to protein IP100408593, or PRL-R2. The
Prlr gene was reported to encode at least seven isoforms of
prolactin receptor precursor in mouse [16]. The two
probesets corresponding to the same protein
IP100408593, showed similar expression profiles as
expected, with a PCC value of 0.6738 (P = 4.57e-6); while
the probeset corresponding to another isoform,
IPI00321091, showed a significantly different expression
profile, with PCCs of 0.2530 and -0.0331 separately for
1421382_at and 1451844 _at (Figure 2A). These data were
consistent with the previous report that these two iso-
forms were predominantly expressed in liver and kidney,
where PRL-R3 was highly expressed and PRL-R2 was
weakly expressed [16]. We noticed that the shape of the
expression curve of PRL-R3 seemed to be somewhat com-
parable to those of PRL-R2, although PRL-R3 probeset
presented an overall higher expression level. These phe-
nomena may suggest that PRL-R3 and PRL-R2 are partially
co-regulated so that they show a comparable expression
pattern, but they are expressed at different levels probably
due to diverse roles of the regulatory elements.

Shown in Figure 2B, three probesets in GDS1076 dataset,
1419114 _at, 1419115_at and 1419116_at, were mapped
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Expression profiles of synonymous probesets. A)
Three probesets on the array MOE430A_2 are associated
with the mouse gene Prir. Probeset 1448556_at correlates
to protein IPI00321091, or PRL-R3; probesets 1421382 _at
and 1451844 _at both point to protein IPI00408593, or PRL-
R2. GEO dataset GDS1277 was analyzed. B) Three probesets
on the array MOE430A_2 are associated with the mouse
gene Algl4. Probesets 149114_at and 1491 15_at both point
to protein IPI00132168; probeset 14191 16_at correlates to
protein IPI00405947. GEO dataset GDS1076 was analyzed.

to the mouse gene Algl4 (GenelD: 66789), with the
former two corresponding to IPI00132168 and the latter
one corresponding to IP100405947. Both proteins were
indicated in IPI as homologs of yeast asparagine-linked
glycosylation 14 without any further information. We
notice two interesting phenomena in this case. First, the
two probesets correlating to a same protein do not show
similar expression profiles. Instead, they behave like the
probesets correlating to different variants characterized by
a PCC value of 0.4080 (P = 0.0415). This issue might be
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due to some factors causing microarray hybridization effi-
ciency shift. Secondly, according to our calculation, the
expressions of these two variants are negatively correlated
with PCC values of -0.7740 (P = 5.04e-5) for 1419116_at
and 1419115_at, and -0.4402 (P = 0.0296) for
1419116_at and 1419114 _at. So far there are no reports
on expression regulation of these two transcript variants
of gene Alg14, and no function reports of the correspond-
ing protein isoforms. This negative correlation suggested
that these two proteins might perform different roles thus
should be distinctly annotated.

Application of our new annotations the evaluation of the
expression correlation between interacting proteins

In recent years, considerable efforts have been devoted to
identifying and characterizing protein-protein interaction
(PPI). Besides investigations on the molecular events
involved in PPI, functional annotation of an unclassified
protein according to its interacting partners is also an
important topic [28]. Since it is too bold to infer protein
functions according to the "majority rule" that utilizes
only the PPI network structure [29,30], many studies inte-
grate other data sources into the functional characteriza-
tion of PPI, among which the gene expression data is the
favorite [9,31,32]. All these works assumed that interact-
ing protein pairs were characterized with higher expres-
sion correlation than random ones. However, previous
investigations indicated that the relationship between
expression correlation and PPI was weak on a genomic
scale [33-35] although a recent work strengthened the
association by integrating cross-species conservation
information [10].

We noticed that in these genome-scale studies PPI infor-
mation was always first converted to gene pairs, after
which the Pearson correlations of the probeset pairs cor-
responding to the gene pairs were evaluated. That is, the
analysis targets were expanded from real interacting pro-
tein pairs to all possible cross-gene protein pairs for which
interaction may not always exist. As illustrated in Figure 3,
suppose we have gene a (abbreviated to Ga) and gene b
(Gb), with Ga encoding protein al (Pal) and protein a2
(Pa2), Gb encoding protein bl (Pbl) and protein b2
(Pb2). Among these protein variants, only proteins Pa2
and Pb1 interact with each other, while the other three
possible cross-gene interactions, including Pal-Pb1, Pal-
Pb2 and Pa2-Pb2, do not really happen. The four
probesets, Pst_al, Pst_a2, Pst_b1, and Pst_b2, recognize
transcript variants Tal, Ta2, Tb1 and Tb2 respectively,
producing proteins Pal, Pa2, Pb1 and Pb2. In the conven-
tional genome-scale studies mentioned above, besides the
probeset pair (Pst_a2, Pst_b1) corresponding to the real
interacting protein pair, the other three cross-gene pairs,
(Pst_al, Pst_b1), (Pst_al, Pst_b2) and (Pst_a2, Pst_b2),
were also included, which would blunt the expression cor-
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relation between the real interacting entities according to
our preceding observations. We propose that this might
partly explain the weak coherency between PPI and
expression correlation.

In order to validate our proposition, we investigated the
relationship between protein interactions and expression
correlation at both gene-level and protein-level perspec-
tives, using 1,037 interacting protein pairs from the HPRD
[36] and 28 microarray datasets assayed with HG-U133A
from the GEO. As depicted in Figure 3, the probeset pairs
corresponding to all possible cross-gene protein pairs are
termed as GGI pairs, out of which only the probeset pair
corresponding to the real PPI, such as Pst_a2-Pst_b1, is a
PPI pair. We calculated PCCs of both PPI pairs and GGI
pairs for all available 1,037 interactions, evaluated the sta-
tistical significances of these PCC values under one-tailed
t-test, and estimated the corresponding false discovery
rates (FDR) using the SPLOSH FDR estimation method
[37].

For all datasets, we observed strengthened expression cor-
relations between interacting proteins under the PPI
schema relative to the GGI schema. Taking the GDS987
dataset including 41 arrays as an example (Figure 4A and
Additional file 3), while it is difficult to tell the distribu-
tion of GGI PCC values from that of the random ones, the
PPl PCC values exhibit a distinguishable distribution
biased to larger absolute correlation values. We compared
the distributions for positive correlations and negative
correlations separately. Out of the 1037 interactions, 575
PPI PCC values were positive with a mean value of
0.2924, which was significantly larger than the mean of
the 574 positive GGI PCC values, 0.2387 (Kolmogorov-
Smirnov test p value is 8.2E-8); On the other hand, the
mean values of the other 462 negative PPI PCC values and
the 463 negative GGI PCC values were -0.2263 and -
0.153, respectively, and the former was significantly
smaller than the latter (Kolmogorov-Smirnov test p value
is 9.9E-12). Summarizing the comparisons at the positive
side and the negative side, we conclude that the expres-
sion correlation between interacting proteins is strength-
ened when the non-interacting protein pairs are excluded
from the interacting gene pairs, that is, with the PPI PCC
calculation in place of the conventional GGI PCC calcula-
tion.

In Figure 4A, we notice that the negative correlation is also
strengthened by the PPI PCC calculation as well as the
positive correlation. That is to say, PPI pairs seem to be
either positively correlated or negatively correlated, but
not exclusively 'co-expressed' as previous publications
reported [10]. This phenomenon is more evident when
we examine the PCC values for each coupled PPI pair and
GGl pair. Figure 4B shows a scatter plot of the PPI PCC
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A) Interacting Proteins and related
entities: genes, mRNAs, probesets
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Figure 3

lllustration of Entities and terminologies involved in
protein-protein interaction. A) Relationship among
genes, transcripts, proteins and probesets. B) Two types of
pairs mentioned in the text. PPl pair indicates the probeset
pair correlating to a real interacting protein pair; while GGl
pairs are those probeset pairs correlating to all possible
cross-gene pairs. PPl may not exist in all cross-gene pairs.

values versus the corresponding GGI PCC values. It is evi-
dent that most points fall into the 1st and the 3rd quad-
rants, indicating that each pair of PPI PCC value and GGI
PCC value tends to have the same signs. The scatter plot
suggests a linear relationship between the PPI PCCs and
GGI PCCs, and indeed we get a linear regression formula,
y = 0.5612x + 0.0046, at high confidence (p < 2e-16).
Since the estimated coefficient, 0.5612, is far less than 1,
we may conclude that the absolute PCC values of PPI
pairs are often larger than those of the corresponding GGI
pairs. So the PPI PCC calculation preserves the original
positive or negative correlation tendency revealed by the
conventional GGI PCC calculation, and strengthens it
with larger absolute correlation values. Such correlation
tendencies between interacting proteins, especially those
negative ones, would very likely be submerged under the
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Figure 4

Pearson correlation coefficients of PPl pairs and cor-
responding Gene-Gene Interaction GGl pairs. 1,037
interacting protein pairs from the HPRD were analyzed
based on the GEO dataset GDS987. A) Distributions of PCC
values for PPI pairs, GGI pairs and random pairs. The two
arrows indicate the regions where expression correlations
were strengthened by the PPl PCC calculation. (B) Scatter
plot of PCC values of PPI pairs vs. those of corresponding
GGl pairs. X-axis indicates the PCC values of PPI pairs, and
y-axis indicates the PCC values of the corresponding GGl
pairs. A linear regression resulted in a regression line and a
regression formula, which were shown in green. Totals
within each quadrants were marked with black numbers at
the four corners.

background correlations of random pairs if the non-inter-
acting protein pairs are included in the analysis.

Similar observations were made over all datasets (see
Additional file 4 and Additional file 5). Given the results
from all 28 datasets, we were also able to compare the PPI
PCC calculation and GGI PCC calculation at a higher
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Table 4: Number of significantly correlated PPls or GGls found
from each dataset.

GEO Significant Significant
Data Set PPIs GGils
GDS1023 42 2
GDS1036 70 13
GDS1062 148 13
GDS1064 46 20
GDS1067 167 86
GDS1096 248 28
GDSI1209 344 68
GDS1220 297 36
GDS1257 54 26
GDSI1259 20 4
GDS1282 84 24
GDsSI1321 121 18
GDSI331 18 2
GDS266 7 0
GDS268 3 0
GDS395 476 35
GDS558 160 26
GDS564 13 0
GDS596 737 455
GDS690 462 163
GDS715 866 754
GDS737 7 |
GDS760 109 19
GDs810 33 4
GDS914 13 |
GDS946 22 5
GDs987 464 115
GDS999 263 56
GDS999 263 56

Protein pairs with the false discovery rate of PCC value less than 0.1
were deemed as significantly correlated pairs. 'Significant PPIs' are
pairs detected by the PPI calculation; 'Significant GGIs' are those
detected by the GGl calculation.

level. Under a FDR threshold of 0.1, the list of significant
PPI pairs or GGI pairs from each dataset was determined.
Based on these lists, we counted the significantly corre-
lated PPIs or GGIs (termed 'significant PPIs' or 'significant
GGls') over each dataset, and the datasets on which a PPI
or GGI demonstrates significant correlation (termed 'PPI-
significant datasets' or 'GGl-significant datasets'). The
former is a 'twenty-eight by two' table, shown in Table 4;
the latter is a '1,037 by two' table, shown fully in Addi-
tional file 4 and partly in Table 5. In both summary tables,
we find that the statistics of PPI PCC calculation are
mostly larger than the counterparts of GGI PCC calcula-
tion, indicating that PPI PCC calculation can detect more
correlated PPI pairs in a certain experiment setting (Table
4), and that it can detect the correlation tendency across
more experiment settings (Table 5).

The same experiments were also implemented with 274

PPI pairs extracted from the IntAct database [38], and sim-
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Table 5: Number of datasets on which a PPl or GGl demonstrate significant correlation.

IPII P12 Genel Gene2 PPI-significant datasets GGl-significant datasets
IPI00003326 IPI00015161 ARL2 PDE6D 15 7
IPI00003894 IPI00019930 RNFI | UBE2DI 17 |
IPI0000741 | IPI00021831 AKAPI | PRKARIA 15 2
IP100008529 IP100008527 RPLP2 RPLPI 25 5
IPIOOOI I 118 IP100026689 RRM2 CDC2 17 16
IPI00013871 IPIOOOI 1118 RRMI RRM2 14 10
IPI00015952 IP100029012 EIF4G2 EIF3S10 14 3
IPI00016910 1P100290460 EIF3S8 EIF354 16 10
IPI00018350 IPI00184330 MCM5 MCM2 16 I5
IP100021700 IP100026689 PCNA CDC2 14 13
IP100022865 IP100026689 CCNA2 CDC2 16 15
IPI00026689 IPI00015105 CDC2 CKS2 15 13
IPI00027462 IPI00007047 S100A9 S100A8 23 17
IP100028266 IP100026689 CCNB2 CDC2 17 I5
IPI00165506 IPI00025616 POLDIP2 POLD2 14 2
IP100246058 IPI00025277 PDCDéIP PDCDé6 16 |
IP10029046 | IP100029012 EIF3SI EIF3S10 15 4
IP100291006 IP1000 18206 MDH2 GOT2 16 I
IP100294696 IP100026689 CCNBI CDC2 17 14
IPI00306708 IP100026689 PBK CDC2 16 14
IPI003281 18 IP100026689 SPAG5 CDC2 15 10
IPI00604664 IP100291006 NDUFSI MDH2 18 10
IPI00647217 IP100552920 SKiIvaL2 EXOSC8 18 2

A PPI-significant dataset is a dataset where the false discovery rate of the PCC value for the PPI pair is less than 0.1, while a GGI-significant dataset
is a dataset where the false discovery rate of the PCC value for the GGI pair is less than 0.1. Only PPI pairs with more than 14 'PPI-significant

datasets' datasets are shown. The full table is provided in Additional file 4.

ilar conclusions were obtained. More details can be found
in Additional file 6 and Additional file 7.

Discussion

In this work, we re-annotated the probesets of two widely
used Affymetrix arrays, MOE430A_2 and HG-U133A, via
proper association and rigorous alignment procedures in
a transcript perspective, and demonstrated the necessity
and advantage of exploring microarray data at the tran-
script or protein level, instead of the conventional gene
level.

Although Affymetrix utilized the most complete informa-
tion available at the time of array design, tremendous
progress in genome sequencing and annotation in recent
years renders existing probeset designs and target identifi-
cations suboptimal. In recent years, there have been con-
tinuous reports on systematic false expression signals of
Affymetrix probesets [39], spurious expression correlation
caused by cross hybridization [18], and expressional
inconsistency among different microarray platforms or
even different generations of one platform [40-43]. A few
research groups performed probe-against-mRNA blast
similar to ours [22,42,44], but mostly they centered
around UniGene [45] and therefore improved the accu-
racy of annotation only at gene level. A major trend

among these efforts was to redefine probesets so that
probes matching the same molecular target were placed
into custom probesets, as proposed by [19,23,39,42], but
as the authors of [19] pointed out, 'these transcript-tar-
geted probesets are not transcript-specific, as probesets
targeting transcripts from the same gene may share many
or even all probes'. Thus the probe re-organization strat-
egy may be used to make distinction at the level of genes,
but not at the level of transcripts or splice variants [18].
Besides, this strategy takes the probe-level intensity file
(the CEL file) as a prerequisite, however only around half
of the expression datasets deposited in public databases
like GEO were found with CEL files.

In order to make distinction precisely at the transcript
level, we preserved the classical Affymetrix probesets, but
distinguished them among their alternatively spliced tran-
script targets according to the consistent alignments of
probes against up-to-date mRNA sequences. Our annota-
tion table clearly divides the Affymetrix probesets into
three groups with increased transcript-level specificity
(reliability): one-to-null probesets that do not recognize
any transcript, one-to-many probesets that hybridize to
multiple alternative transcript variants of the intended
gene, and one-to-one probesets that hybridize to unique
alternative transcript variants of the intended gene. We
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discriminate the intended alternative transcript variants of
Affymetrix probesets based on the NetAffx's gene-level
annotation for the first time. Given the fact that existing
solutions are accompanied with imperfections and no
consensus has been reached on an overwhelming strategy,
our alternative solution to the problematic standard
annotation points out a new way to improve the interpre-
tation and exploitation of Affymetrix microarray data.

Although the transcript collections were not identical and
the reannotation strategies differed more or less, we made
out some similar discoveries to previous reports. For
example, Harbig et al. found that a number of probesets
did not detect any transcript and attributed this phenom-
enon to the elimination of the target sequence in the proc-
ess of sequence update [14]. In our study, altogether
16.5% and 31.2% of non-control probesets in the
MOE430A_2 and HG-U133A arrays were not found with
any transcript targets in the pool of GenBank, RefSeq and
Ensembl. Using newer and larger collection of transcript
sequences, we even obtained a quite similar statistics of
the percentage of 'multiple-targeting' probesets to that
estimated in a foregoing study [18], specifically 54.6% for
MOE430A_2 and 54.1% HG-U133A (see Table 2). The
significant mutual agreement among the related
researches justifies the necessity to set up an improved
annotation mechanism of the Affymetrix probes in the
face of the continual growth of genomic and transcrip-
tomic knowledge, ideally at transcript or protein level.

Over the past few years, the analysis of alternative splicing
has emerged as an important new field in bioinformatics,
and several recent large-scale studies have shown that
alternative splicing can be analyzed in a high-throughput
manner using DNA-microarray methods [46,47]. Most of
these studies used arrays particularly manufactured for
analyzing alternative splicing, such as genomic tiling array
and exon-exon junction array. Constructed without any
priori knowledge of the possible exon content of a
genomic sequence, the genomic tiling array [48,49] is in
principle capable of detecting novel alternative splicing
events of diverse types, but it is in doubt whether their
data will be readily interpretable as successful experiences
remain insufficient [46]. On the other hand, although
designed particularly to address the alternative splicing
issue, exon and exon-exon junction arrays [49] were
reported to be plagued by problematic probe specificity
and unsatisfying hybridization efficiency because of the
necessity of probe coverage across the full length of the
gene (including 5' end) [5]. Many questions about the
reproducibility of the amplification protocol, the quanti-
tative accuracy, and the data analysis need to be addressed
as a prerequisite to reliable quantitative analysis using
these splicing arrays [50]. Given the current imperfection
of splicing array techniques and inconvenience in deci-
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phering their generated data, it is an economic way to do
large-scale investigations of alternative transcribing events
with standard gene expression arrays, provided that the
recognizing targets of the probes can be rigorously defined
at the transcript level. Hu et al. proposed a primitive anal-
ysis method to explore alternative splicing with Affymetrix
3' gene expression arrays, though they regretted that only
alternative splicing biased toward the 3'end of the gene
can be detected in their way [51]. In the present paper, we
conducted a large-scale alignment of the probe sequences
in traditional gene expression arrays against the currently
most comprehensive collection of transcript sequences,
highlighting the probesets mapping to unique alternative
transcripts unambiguously. For each of the two Affymetrix
expression arrays tested in this study, we found over 40%
of all probesets could be mapped to transcripts in a one-
to-one manner, so our work strongly validate that it is fea-
sible to analyze alternative splicing using traditional gene
expression arrays. While the foregoing work contributed
by Hu et al. remains as a qualitative analysis method aim-
ing at detecting novel alternative splicing events, our work
gives explicitly the relationship between the probesets and
the currently known alternative transcript variants, which
can be immediately exploited to facilitate quantitative
analysis of alternative variants. As our mapping relation-
ships are defined for the standard probesets of the tradi-
tional gene expression arrays, they can be conveniently
exploited as the standard NetAffx annotation informa-
tion, without any ad hoc influence on the widely applied
experiment protocols or the routine data processing algo-
rithms. In the demonstrative implementations of the
novel annotation tables, we actually observed several
examples of negatively correlated alternative variants (see
Figure 2B for one of them), which will shed light on fur-
ther studies of expression regulation of alternative tran-
script variants.

Conclusion

To sum up, we re-annotated two popular Affymetrix gene
expression arrays, MOE430_2 and HG-U133A, in a tran-
script-level perspective, aiming at identifying probesets'
detecting targets precisely at the transcript level. Although
previous works addressed similar issues
[14,15,18,19,22,23], we are the first to rigorously link
existing Affymetrix probesets to their specific transcript
targets and their corresponding proteins. Armed with this
new annotation, we re-examined a number of previous
studies, 30 datasets for MOE430_2 and 28 datasets for
HG-U133A from GEO, and revealed increased expression
consistency among synonymous probesets and closer
expression correlation among interacting proteins. This
transcript-level annotation of Affymetrix probesets allows
for a more reliable gene expression data analysis and a
more accessible protein-level correlation study.
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Methods

Sequences and related information of Affymetrix
probesets

The Affymetrix 3' eukaryotic gene expression analysis
arrays MOE430A_2 and HG-U133A were selected for this
study. Probe sequence files and corresponding annotation
files, 'Mouse430A_2_annot_csv.zip' (annotated on 2005-
12-19) and 'HG-U133A_annot_csv.zip' (annotated on
2006-04-11), were downloaded from Affymetrix website
[52]. Also downloaded there were the NetAffx probeset-
protein mapping files for MOE430A_2 (file
'Mouse430A_2_blast_csv', updated on 2005-12-18) and
HG-U133A ('HG-U133A.na21.blast.csv.zip', updated
2006-04-11), which were the blast results of the represent-
ative mRNA sequence of probes against protein sequence
databases [26].

Sources of mRNA transcripts

GenBank: mRNA sequences from CoreNucleotide divi-
sion of NCBI Nucleotide database were obtained via the
Entrez Nucleotide search [53] on April 10%, 2006. For
mouse, this dataset comprises 1,582,211 sequences, with
1,521,234 from DDBJ, 6,506 from EMBL and 54,471
from GenBank. For human, there are totally 201,206
sequences, with 41,128 from DDB]J, 62,701 from EMBL
and 97,377 from GenBank. File 'gene2accession'
(updated on 2006-03-28), downloaded from Entrez Gene
[54], provides the mapping relationship between the
CoreNucleotide sequences, Entrez Gene IDs, and protein
sequence accessions.

RefSeq: 55,832 mouse mRNA sequences and 40,530
human mRNA sequences were obtained from the RefSeq
database [55]. Mapping relationships between RefSeq
mRNA accessions, RefSeq protein accessions, and Entrez
GenelDs were extracted from related flat files
'mouse.rna.gbff.gz' and 'human.rna.gbff.gz', which were
downloaded from RefSeq in April 2006.

Ensembl transcripts: 37,854 mouse transcript sequences
were obtained from the Ensembl database (release 38)
[56]. Mapping tables between Ensembl Gene ID, Ensembl
Transcript ID, and Ensembl Peptide ID were obtained
from Ensembl martview [57].

IPI entries and their mappings to external sequence
accession numbers

IPI entries and their mappings to external protein acces-
sion numbers were acquired from the International Pro-
tein Index (IPI) database [21] (release 3.17). Also
obtained there were the mapping relations between IPI
numbers and transcript IDs (GenBank, RefSeq, and
Ensembl). The counterpart file for human was down-
loaded there too (release 3.16).
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Expression datasets from Gene Expression Omibus
Microarray datasets were downloaded from the Gene
Expression Ominibus on April 15, 2006. Array
MOE430A_2, indexed as GPL339, was associated with
2,276 samples in GEO, ranking the second among all reg-
istered Affymetrix mouse arrays. All 31 GDS datasets pro-
filed with MOE430A_2 were used in the analyses except
for GDS1057, which contains only two samples. Array
HG-U133A, indexed as GPL96, was associated with 8,698
samples in GEO, ranking the first among all registered
Affymetrix human arrays. For our analysis, we down-
loaded 31 GDS datasets with largest sample sizes, and
used 28 of them in our analyses, excluding GDS534,
GDS1329, and GDS1324 as they are in a data format
inconsistent with the others. Details about the used data-
sets can be found in our Additional file 8.

PPI datasets from IntAct and HPRD

Two well-known databases, IntAct [58] and HPRD [59],
provide the PPI information for this study. We down-
loaded 68,035 human PPIs from HPRD (updated 2006-
06-01) and 12,301 from IntAct (updated 2006-05-12),
respectively.

An alternative annotation of the Affymetrix Ul33 Plus 2.0
array

A recently proposed transcript-level annotation of the
Affymetrix U133 plus 2.0 array was obtained from the H.
Lee Moffitt cancer center and research institute [60],
which was used for comparison with our transcript-level
annotation of HG-U133A array.

Generation of a new transcript-level annotation table for
Affymetrix array

Out of the total 22,690 and 22,283 probesets in arrays
MOE430A_2 and HG-U133A, respectively, 64 and 68
control probesets were firstly removed. The remaining
probesets were associated with genes according to the
probeset-gene mapping information provided in Affyme-
trix's standard annotation file. The probeset-transcript
mapping relationships were obtained based on the gene-
mRNA mapping tables from GeneBank, RefSeq and
Ensembl. In the process, we only included probesets that
were identified with one Entrez Gene ID or one Ensembl
gene ID. We ignored the probesets that were associated
with multiple entities or no entity in the two gene-centric
databases, since their gene-level specificity appears doubt-
ful in the standard annotation file. This filtered out 3.2%
and 5.2% of non-control probesets in MOE430A_2 and
HG-U133A, respectively. For the rest of the probesets, we
linked the candidate transcript targets to their correspond-
ing protein entries in IPI database. IP1 is currently the least
redundant yet most complete protein database for fea-
tured species, with one protein sequence matching each
transcript variant. Those probesets of which transcript tar-

Page 11 of 15

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:194

gets do not have any protein counterparts were also
excluded from the following blast validation in order to
focus our attention to the transcripts with well-character-
ized functions at protein level. The remaining probesets,
21,097 for MOE430A_2 and 16,213 for HG-U133A, were
selected for the BLAST procedure.

We then filtered the candidate probeset-mRNA mapping
relationships by aligning probe sequences in these
probesets against their corresponding transcripts. Probes
were blasted against their candidate mRNA targets using
the bl2seq program [61], and the probe to transcript
matches were accepted if no more than one mismatch was
found. At the level of probesets, the probeset to transcript
matches were accepted only if more than 90% of all
probes within a probeset (over 10 probes for the typical
11-probeset) were mapped to the transcript in the same
orientation.

The probeset-transcript-protein links related to the above
probesets passing BLAST filter were retrieved. After reduc-
ing the redundancy information of multiple transcripts
corresponding to the same IPI, we finally obtained rigor-
ous probeset annotation files for Affymetrix arrays
MOE430A_2 and HG-U133A. There are two types of
probesets in the new annotation file: one-to-one
probesets, where one probeset maps to only one IPI ID;
and one-to-many probesets, where one probeset maps to
two or more IPI IDs. Only the one-to-one probesets were
used in the subsequent analyses.

Evaluating expression consistencies within synonymous
probesets

We grouped gene-level synonymous probesets according
to gene ID (gene-level), and protein-level ones according
to IPI ID (protein-level). Additionally, probesets corre-
sponding to a single protein according to NetAffx
probeset-protein mapping tables (see Materials) are
grouped as 'Affy-protein' level synonymous probesets. In
the case of the HG-U133A array, we included a fourth
level, the 'Harbig-protein level', for comparison. The Har-
big-protein level reflects the probeset-protein association
transformed from a recent alternative annotation of the
Affymetrix U133 plus 2.0 array [14], also proposed in a
transcript-level perspective. The downloaded annotation
file mapped 33,579 probesets to 287,791 GenBank
mRNA accessions, among which 21,669 were found on
HG-U133A array, mapped to 186,085 GenBank mRNA
accessions. The probeset-mRNA associations related to
HG-U133A array were further linked to IPI IDs, finally giv-
ing rise to 26,960 probeset-IPI mapping relationships
among which 12,146 were one-to-one. The following
treatments were the same as those implemented to the
standard gene-level annotation, the NetAffx Protein anno-
tations, and our novel annotations.
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30 and 28 expression datasets were selected from GEO
respectively for MOE430A_2 and HG-U133A, and the
original intensity data within each GEO dataset (GDS)
were transformed to log 2 base and normalized to a con-
stant median across all samples. For a synonymous group,
if the expression values of all probesets in all samples were
no larger than the constant median value, the probesets in
this group were regarded not moderately expressed, and
their expression profiles not informative enough. There-
fore, we only kept the synonymous groups with at least
one expression value above the constant median value,
similar to the filtering procedure used by Tian et al. [62].
For the remaining synonymous groups, Pearson correla-
tion coefficients (PCCs) were calculated for the expression
profiles of each probeset pair. The minimum value of
these PCCs was taken as a measurement of the expression
coherence of this group. We used the minimum aggrega-
tion because the gene level synonymous probesets gave
rise to within-protein PCCs (which are theoretically
higher) and across-protein PCCs (which are theoretically
lower), and the former was identical to the result of the
protein-level synonymous group. In such a setting, the
maximum did not result in any difference, and the average
aggregation was not as sensitive as the minimum in terms
of differentiating the two groups, so we adopted the min-
imum aggregation.

Finally, the mean of the expression coherences of all syn-
onymous groups over a dataset was calculated. In this way
we obtained an evaluation of expression consistencies
within synonymous probesets for a microarray dataset,
and may compare the expression consistencies at the three
levels over different microarray datasets.

Investigating expression correlations between interacting
protein pairs

Given protein-protein interaction data from HPRD or
IntAct, we first transformed the binary relations of protein
accessions to IPI-IPI pairs, and also got the corresponding
Gene-Gene pairs. For each PPI, we assembled the PPI
probeset pairs and the GGI probeset pairs as illustrated in
Figure 3, where PPI pairs are those associated with the
interacting IPI IDs while GGI pairs are those associated
with the corresponding Gene IDs. For all probeset pairs
associated with the IPI-IPI pair (PPI pairs) and those asso-
ciated with the corresponding gene-gene pair (GGI pairs),
the PCCs were calculated and averaged into a PPI PCC
and GGI PCC, respectively. These PCCs of interacting
pairs were further calculated to obtain the accompanying
false discovery rates using the SPLOSH FDR estimation
method.

The distributions of the PPI PCCs and the GGI PCCs were
plotted in a same figure to show the contrast (Figure 4A).
In addition, a background distribution of the PCCs of ran-
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dom probeset pairs was overlaid on the same figure. We
let the number of random pairs equal to the number of
PPI or GGI pairs, but repeated the process of calculating
random PCC distribution 20 times and averaged over the
20 separate random distributions in order to cut down on
random fluctuation. Within each run of calculating ran-
dom PCC distribution, we randomly compiled 2 x n (n =
1037 or 274, for HPRD or IntAct, respectively) pairs of
probesets, where each two probeset pairs formed a group.
The two PCCs of each group were firstly averaged into a
group-level PCC, and the distribution was calculated over
the n group-level PCCs. The group-level averaging was
devised to mimic the counterpart operation in PPI PCC or
GGI PCC calculation.
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