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Abstract
Background: The Significance Analysis of Microarrays (SAM) is a popular method for detecting
significantly expressed genes and controlling the false discovery rate (FDR). Recently, it has been reported
in the literature that the FDR is not well controlled by SAM. Due to the vast application of SAM in
microarray data analysis, it is of great importance to have an extensive evaluation of SAM and its associated
R-package (sam2.20).

Results: Our study has identified several discrepancies between SAM and sam2.20. One major difference
is that SAM and sam2.20 use different methods for estimating FDR. Such discrepancies may cause
confusion among the researchers who are using SAM or are developing the SAM-like methods. We have
also shown that SAM provides no meaningful estimates of FDR and this problem has been corrected in
sam2.20 by using a different formula for estimating FDR. However, we have found that, even with the
improvement sam2.20 has made over SAM, sam2.20 may still produce erroneous and even conflicting
results under certain situations. Using an example, we show that the problem of sam2.20 is caused by its
use of asymmetric cutoffs which are due to the large variability of null scores at both ends of the order
statistics. An obvious approach without the complication of the order statistics is the conventional
symmetric cutoff method. For this reason, we have carried out extensive simulations to compare the
performance of sam2.20 and the symmetric cutoff method. Finally, a simple modification is proposed to
improve the FDR estimation of sam2.20 and the symmetric cutoff method.

Conclusion: Our study shows that the most serious drawback of SAM is its poor estimation of FDR.
Although this drawback has been corrected in sam2.20, the control of FDR by sam2.20 is still not
satisfactory. The comparison between sam2.20 and the symmetric cutoff method reveals that the relative
performance of sam2.20 to the symmetric cutff method depends on the ratio of induced to repressed
genes in a microarray data, and is also affected by the ratio of DE to EE genes and the distributions of
induced and repressed genes. Numerical simulations show that the symmetric cutoff method has the
biggest advantage over sam2.20 when there are equal number of induced and repressed genes (i.e., the
ratio of induced to repressed genes is 1). As the ratio of induced to repressed genes moves away from 1,
the advantage of the symmetric cutoff method to sam2.20 is gradually diminishing until eventually sam2.20
becomes significantly better than the symmetric cutoff method when the differentially expressed (DE)
genes are either all induced or all repressed genes. Simulation results also show that our proposed simple
modification provides improved control of FDR for both sam2.20 and the symmetric cutoff method.
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1 Background
Determination of significantly differentially expressed
genes from replicated microarray data using nonparamet-
ric approaches has attracted much attention in recent
years. A comprehensive review of earlier methods for
processing and analyzing gene expression data generated
using microarrays can be found in [1]. Generally speak-
ing, the statistical methods used to detect differentially
expressed genes can be classified into two categories: the
parametric methods and the nonparametric methods. The
most commonly used parametric method is the two sam-
ple t-test and its variations [2]. Other parametric
approaches include the analysis of variance approach [3],
a regression approach [4] and the empirical Bayes meth-
ods [5-7], among others. A semiparametric hierarchical
mixture method for detecting differentially expressed
genes was considered in [8].

Recently, there is growing interest in developing nonpara-
metric methods in microarray data analysis due to the
availability of replicated microarray data as a result of the
reduced cost in doing microarray experiments. One of the
most often used nonparametric methods for analyzing
microarrays is SAM [9]. Other popular nonparametric
methods include the nonparametric empirical Bayes
method [10,11], and the mixture model method (MMM)
[12], among others. In general, the nonparametric meth-
ods can be further classified into two categories: 1) meth-
ods such as SAM which provide direct control of FDR, and
2) methods such as MMM which provide control on the
family wise error rate (FWER).

The focus of this paper is on SAM and its R-package
(sam2.20) developed at Stanford University Labs [13]. As
we will show later in the paper, the algorithm used in
sam2.20 is actually different from that of SAM. Currently,
a new version (Version 3.0) is available. However, it
seems that there is no change in the algorithm used in
sam2.20 and Version 3.0 (pages 27–31 of [13]).

Recent studies have found that SAM does not control FDR
well [14-16]. In one class case, it has been observed in [14]
that the null scores of the DE genes generated from the
one class version of the SAM statistic (1) are more dis-
persed than the null scores from the equivalently
expressed (EE) genes. Such over-dispersion may lead to
over-estimation of FDR. In the two experimental condi-
tion comparisons as we are considering in this paper, the
same over-dispersion problem was also observed and dis-
cussed in [12,15,17,18]. Larson et al. [19] argued for cau-
tion when using the Excel version of SAM. The over-
dispersed null scores show that the SAM statistic when
being used as the null statistic does not have the true null
distribution. In addition to the over-dispersion problem,
our study also found that the distinct feature of SAM: the

use of the displacement between the ordered test statistics
and the expected null scores to look for the cutoffs, may
lead to biased and even conflicting results when the DE
and EE genes are not well separated.

The above mentioned problems of SAM also apply to
sam2.20. Nevertheless, SAM has one much worse prob-
lem: its method for estimating FDR, which we will show
does not produce meaningful results. This method has
been abandoned in sam2.20. The discrepancies between
SAM and sam2.20, combined with their potential prob-
lems, are the motivation of this paper. The objective is to
provide a thorough evaluation of SAM and sam2.20 and
analyze the pitfalls of the two methods. Our findings
show that the performance of SAM and sam2.20 can be
improved by looking into the following two aspects: 1)
using a null statistic which can generate the null scores
which have the true null distribution of the SAM statistic;
and 2) avoiding the use of the order statistics in search of
the cutoffs. It turns out that the correction of Aspect 1
requires construction of totally different test and null sta-
tistics [20], which is beyond the scope of the current
paper. For this reason, we will only focus on the correction
of Aspect 2 in this paper. The paper is organized as fol-
lows. Section 2 gives a review of the algorithms of SAM
and sam2.20. The discrepancies between them will be
pointed out and the impacts of these discrepancies will be
studied. In Section 3, we discuss the potential problems of
SAM and sam2.20. In Section 4, we re-visit the conven-
tional symmetric cutoff method. Simulations carried out
in Section 5 show that the symmetric cutoff method has
advantage over sam2.20 when the number of induced
genes in the microarray data is not too different from that
of repressed genes while sam2.20 is a better choice if there
are overwhelmingly more induced genes than repressed
genes (or vice versa). To overcome the over-estimation
problem, we further propose a modified version of the
FDR correction method [14]. For comparison, the same
idea was also applied to sam2.20. Numerical results show
that such modification provides improved control of FDR
for both sam2.20 and the symmetric cutoff method.
Finally, both methods were applied to the leukaemia data
[21] to compare their performance.

2 Results
2.1 A review of SAM
Let Xij be the expression level of gene i under experimental
condition 1 in the jth replicate and Yik be the expression
level of gene i under experimental condition 2 in the kth
replicate, where i = 1, ..., n, j = 1, ..., J, and k = 1, ..., K. The
SAM statistic is defined as follows:

d i
X Y

s i s
i i( )

( )
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−
+ 0
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where  and  are the averages of expression levels for

gene i under experimental conditions 1 and 2. The gene-
specific scatter s(i) is defined as

where a = (1/J + 1/K)/(J + K - 2). The constant s0 is chosen
to minimize the coefficient of variation of d(i).

The null scores are obtained by permuting the pooled data
{Xi1, ..., XiJ; Yi1, ..., YiK} and then treating the first J expres-

sion levels as the observations under experimental condi-
tion 1 and the remaining K as the observations under
experimental condition 2. For a particular permutation b,

denote the permuted data by  and .

Then, the null scores, db(i), i = 1, ..., n, for permutation b
are calculated from the following formula:

where  is the sample mean of ,  is the

sample mean of , and the gene-specific scatter is

calculated by

The SAM algorithm proposed in [9] can be stated as fol-
lows:

(a) Order the test statistics d(i), i = 1, ..., n according to
their magnitudes as d(1) ≤ d(2) ≤ � ≤ d(n).

(b) For each permutation b, compute the ordered null
scores, and denote them by d(1)(b) ≤ d(2)(b) ≤ � ≤ d(n)(b),
b = 1, ..., B, where B is the total number of permutations
used.

(c) Calculate the expected null scores by

.

(d) Plot the ordered test statistics d(1), d(2), �, d(n) against

the expected null scores .

(e) For each possible threshold ∆, a gene is called signifi-
cant if

Then, the total number of genes declared significant is

(f) Denote the set of significant genes declared in (e) by T.

The FDR is estimated by , where

The two values δU, δL used in (6) are the horizontal cut-
offs. They are defined as the smallest d(i) among the signif-
icant positive genes and the largest d(i) among the
significant negative genes.

The above SAM algorithm was also illustrated in [10]
except that they proposed to estimate the number of FP
by:

where .

2.2 A review of sam2.20

Comparing the above SAM algorithm with that used in
sam2.20 [13], we see that there are two differences on
Steps (e) and (f). The difference on (e) is on how a gene is

declared significant. For a fixed threshold ∆, starting at the
origin, and moving up to the right find the first i = i1 such

that d(i) -  > ∆. All genes past i1 are called "significantly

positive". Similarly, starting from the origin, move down

to the left and find the first i = i2 such that d(i) -  < -∆.

All genes past i2 are called "significant negative"; see Steps

6 and 7 on Page 28 of [13]. Denote δL = , δU = .

This process can be expressed as

(e') For each possible threshold ∆, a gene is called signifi-
cant positive if d(i) > δU, or significant negative if d(i) <δL.

The total number of genes declared significant is

 = #{1 ≤ i ≤ n: d(i) > δU or d(i) <δL}. (8)
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The difference on Step (f) is in the estimation of FP and
FDR. Note that SAM estimates the FP only using the null
scores from the genes called significant in Step (e).
sam2.20 uses the null scores from all the genes to estimate
the FP:

where (b) = #{1 ≤ i ≤ n: db(i) > δU or db(i) <δL, b = 1, ...,

B. Subsequently, the FDR is estimated by

, where  is the estimated proportion

of non-DE genes. A natural spline based estimator  is

used in sam2.20 [22].

2.3 The impact of the change of algorithms
2.3.1 The impact of the difference between Step (e) of SAM and 
Step (e') of sam2.20

In Step (e) of SAM, only those genes with displacement

from  larger than ∆ are called significant. This means

that, if gene i is called significant positive (or significant
negative), it does not imply that gene j with d(j) > d(i)
(resp. d(j) <d(i)) will be called significant as well. Because
of this, it is claimed in [9] that the genes identified as sig-
nificant by SAM do not necessarily have the largest relative
changes in gene expression. To better understand how
SAM and sam2.20 work differently, we carried out the fol-
lowing simulation. In the simulation, the data were gen-
erated from the following model:

Xij = µi + εij and Yik = ηi + ωik for i = 1, ..., n, j = 1, ..., J, k = 1, 
..., K, (10)

where n = 5000, J = K = 4 and εij and ωik are the i.i.d. ran-
dom errors from N(0,1). For the first 100 genes, µi = 0 and
ηi ~ N(1,1), and for the last 100 genes, µi = 0 and ηi ~ N(-
1,1). The middle 4800 genes were generated with µi = ηi =
0. Hence, there are in total 200 differentially expressed
genes.

Figure 1 reports the findings from SAM. In Figure 1, the
points in red are the genes declared significant by SAM.
There are in total 5 points with displacement larger than
∆, of which 4 are called significant positive and 1 is called
significant negative. The cutoff δL(= -1.649701) is the
value of the test statistic of the only significant negative
gene, and δU(= 1.3068) is the minimum value of the test
statistics of the 4 significant positive genes. It can be
clearly seen from Figure 1 that many points (black dots)
beyond the horizontal cutoffs are not called significant by
SAM. The reason is that these points, although having test
statistics of greater magnitudes than the relevant cutoff, do
not have displacement larger than the threshold ∆.

However, this feature has been changed in the algorithm
used in sam2.20 due to the use of Step (e'). Figure 2 is the
plot obtained from sam2.20 under the same setup as that
of Figure 1. By checking Figure 2, we see that two changes
have happened. The first change is the cutoffs. Note that
the cutoffs from SAM are -1.6497 and 1.3068, respec-
tively. Nevertheless, Figure 2 shows that the cutoffs from
sam2.20 have become -1010 and 1.3068. The lower cutoff
was arbitrarily set at -1010 since the only point having dis-

placement greater than does not satisfy d(i) -  < -∆. The

second change is the number of significant genes. Step (e')
of sam2.20 declares all the genes with the test statistics
exceeding the cutoffs as significant. Since there are in total

24 points exceeding the upper cutoff δU = 1.3068,

sam2.20 declares all these 24 points as significant posi-
tive. Note that no point in Figure 2 is declared significant
negative since there is no point with value below the
lower cutoff -1010.

2.3.2 The impact of the difference between Steps (f) of SAM and 
Step (f') of sam2.20

The change from Step (f) of SAM to Step (f') of sam2.20 is
a desirable change. The problem with Step (f) of SAM is
that it only uses the genes identified as significant to esti-
mate the number of FP. Although in the definition of FDR

( ’) ( ), , ( ) ,f  medianFP FP FP B= ( )1 (9)

FP

FDR FP TP= ˆ /π0 π̂0

π̂0

d i( )

d i( )

The SAM plot obtained by using the SAM algorithmFigure 1
The SAM plot obtained by using the SAM algorithm. 
The red points are the points declared significant by SAM. 
The two horizontal lines refer to the lower cutoff δL (=cutlo) 
and the upper cutoff δU (=cutlup) from SAM. The threshold 
used is ∆ = 0.099.
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the number of FP refers to those among the genes declared
significant, SAM ignored the fact that the FP genes among
the significant genes are actually the genes which are
falsely identified as significant among all the EE genes in
the experiment. Hence, Step (f) of SAM which only calcu-
lates the number of FP among the genes called significant
would severely under-estimate the true number of FP.
However, note that Step (f') of sam2.20 actually uses all
the genes instead of only those non-DE ones to estimate
the FDR. This would certainly lead to over-estimation if

no adjustment is done. As a result, the ratio /  is

multiplied by a factor of  to provide a reasonable esti-

mate of FDR.

3 Potential problems of SAM and sam2.20
3.1 SAM's use of different standards to declare significance 
and its poor estimation of FDR
In addition to showing the difference between SAM and
sam2.20, Figures 1 and 2 actually raise concerns about the
use of SAM and sam2.20 in practice. Figure 1 shows that
there are genes with test statistics exceeding δL and δU
which are not identified as significant by Step (e) of SAM
since they do not have displacement larger than the
threshold ∆. However, Step (f) of SAM shows that such
genes are considered as significant in the estimation of
FDR. Hence, SAM used different standards to declare sig-
nificance. The reason for SAM's use of different standards
can be explained by the results of a simulation described
as follows. The data used in the simulation were generated
from model (10) under the same setup as that used in pro-
ducing Figures 1 and 2, except that we used µi = 0 and ηi ~
N(3,1) for the first 100 genes, and µi = 0 and ηi ~ N(-3,1)
for the last 100 genes.

Table 1 reports the results obtained from 100 simulations
under the above described setup. Column 1 reports the
average number of genes called significant by sam2.20
from 100 simulations. Column 2 reports the average
number of true FP among the genes declared significant in
each simulation. Columns 3–5 report the mean of esti-
mated numbers of FP from SAM, (7) and sam2.20. Note
that (7) uses the same rule as Step (e) of SAM to declare
significance. The results from (7) should reflect what
would happen if SAM had used the same standard (4) to
declare significance for both test and null scores. It can be
seen from Table 1 that (7) under-estimates the numbers of
true FP significantly except in the last case (see the bottom

row of Table 1). Among the 3 different mean values of 
reported in Table 1, the most relevant one is probably the

case when mean  = 203.67 since it is closest to the true

number (200) of DE genes. In this case, mean  from
(7) is about 6 which is approximately 1/4 of the mean
number of true FP.

The above discussion shows that formula (7), which uses
the displacement between the order null scores and the

FP TP

π̂0

TP

TP

FP

Table 1: Estimated numbers of FP from SAM, (7) and sam2.20, s0 default choice of SAM. Table 1 displays the average numbers of , 

true FP and the estimated FP from SAM, formula (7) and sam2.20 from 100 simulations at different levels of estimated TP.

Mean 
Mean of true FP

Mean  from SAM Mean  from (7) Mean  from sam2.20

248.31 59.32 20.73 7.96 68.71
203.67 24.06 12.37 6.21 28.98
152.03 4.61 5.55 4.34 5.41

TP

TP FP FP FP

The sam plot obtained from sam2.20Figure 2
The sam plot obtained from sam2.20. The red points 
are the points declared significant by sam2.20. The horizontal 
line refers to the upper cutoff δU (=cutlup) from sam2.20. 
The horizontal line corresponding to the lower cutoff δL 
(=cutlo) does not show up in the plot since δL = -1010. The 
threshold ∆ used is the same as that used in producing Figure 
1.
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expected null scores to declare significance, does not gen-
erally provide meaningful estimates of the number of true
FP. This is probably what motivated SAM to use (6),
instead of (7), to declare significance of the null scores.
Column 3 of Table 1 reports the FP estimates obtained by
using (6). Unfortunately, it can be seen that the same
under-estimation problem also exists for (6), although to
a lesser degree. As explained in Subsection 2.3.2 below,
the underestimation of (6) is caused by the use of only
predicted DE genes in the estimation of FP. This issue has
been resolved in sam2.20 by switching to (9) of Step (f').
The last column of Table 1 shows the results from
sam2.20. The improvement made by sam2.20 is obvious
despite the obvious over-estimation problem. Due to the
obvious weakness of SAM, our future discussion will be
focused on sam2.20.

3.2 The conflicting results of sam2.20 due to the use of 
asymmetric cutoffs

A re-visit of Figures 1 and 2 reveals that sam2.20 may pro-
duce conflicting results. For example, the point (see the

red point outside the interval  ± ∆ at the lower left cor-

ner of Figure 1)) is not considered significant negative (see
Figure 2) by sam2.20 since the point is above, instead of

below, the band  ± ∆ despite the fact that it has dis-

placement larger than ∆. If the same logic applies, the last
2 points (see the red points on the upper right corner

below  - ∆, Figure 1) should not be considered signif-

icant positive, either. However, sam2.20 declared these

two including all the other 21 points within the band 

± ∆ significant since they are larger than the upper cutoff

δU = 1.3068 (Figure 2). Such contradiction makes the

interpretation of the results very difficult. As a matter of

fact, if one uses a slightly higher threshold ∆, all these 24

points above δU = 1.3068 will be declared non-significant,

hence, causes a sudden big drop in the number of signifi-
cant genes. Such phenomenon is often seen in the output
of sam2.20.

Ideally, one would expect that the ordered test statistics

stay above or below the band  ± ∆ once they cross it.

However, Figures 1 and 2 show that such an ideal scenario
may not always happen. This un-predictability of the
ordered test statistics is caused by the larger variability of
the ordered test statistics d(i) for i near 1 or n. Denote the

probability density function and the cumulative distribu-
tion function of a random variable d by f and F, respec-

tively. Then, for the ith order statistic d(i), it can be shown

[23] that

Figure 3 shows the values of Var[d(i)] (i = 1, ..., 500) for
500 observations from the t-distribution with 5 degrees of
freedom. It can be seen that the variability of the ordered
statistics at both ends are significantly larger than that of
the ordered statistics in the middle.

The same variability was also observed in [12] by numer-
ically comparing d(i) with the true expected order statistics.

The significantly larger variability of the order statistic d(i)

for i near 1 and n may cause such genes to have a higher
probability of being falsely claimed significant. Since the

threshold ∆ is not directly applied on the test statistics,
another side-effect of using the displacement of the
ordered test statistics from the expected null scores is that
sam2.20 cannot provide FDR estimates for consecutive

values of . This is related to the previous discussion on
the possible sudden drop in the number of significant
genes which sam2.20 declares.

Note that the only function of using the displacement of
the ordered test statistics from the expected null scores in
sam2.20 is to obtain the cutoffs. Such cutoffs are often
asymmetric. It was claimed in [9] that the asymmetric cut-
offs have the advantage over the conventional symmetric
cutoff method. The reason is that the induced and
repressed genes may behave differently in some biological
experiments. To verify this claim, we carried out simula-
tions in which different probability distributions were
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used for the induced and repressed genes (Setups 2–3 of
Table 4). The simulation results show that the asymmetric
cutoffs do have advantage over the symmetric cutoff
method under Setups 2 (i) and 3(i). However, the advan-
tage in this case is not caused by the asymmetric distribu-
tions of the induced and repressed genes, but by the fact
that the DE genes are either all induced or all repressed
genes under these two setups. For a dataset with equal
number of symmetrically distributed induced and
repressed genes, the asymmetric cutoffs may result in sig-
nificantly asymmetric numbers of significant positive and
negative genes. Table 2 illustrates such a scenario. The
data used in producing Table 2 were generated according
to model (10) under the same setup as that used in
obtaining Figures 1 and 2, in which 100 induced and 100
repressed genes were symmetrically generated on the pos-
itive and negative sides. A total of 100 simulations were
carried out to examine the numbers of significant positive
and negative genes identified by sam2.20 given the
threshold ∆ = 0.035. The total numbers of significant
genes at this threshold ranges from 17 to 854 with mean
207.67. In each simulation, we counted the number of
significant positive and negative genes. The mean num-
bers of significant positive and negative genes from 100
simulations are 106.77 and 100.9, respectively. This dif-
ference does not show strong evidence of asymmetry in
the numbers of significant positive and negative genes.
However, checking the numbers of significant positive
and negative genes from each simulation reveals that
sam2.20 can be very unpredictable in identifying signifi-
cant positive and negative genes. Take Column 7 (Simula-
tion 6) for example, sam2.20 reported 380 significant
positive and only 14 significant negative genes even when
the number of total significant genes is as large as 394.

3.3 The complications caused by the use of the same SAM 
statistic as both the test and null statistics
An immediate effect of the use of the same SAM statistic as
both the test and null statistic is the over-dispersed null
scores. In the two experimental condition comparisons, a
simple permutation is applied to the K + J expression lev-
els of a gene, and the first K expression levels will be
treated as the observations under experimental condition
1 and the last J expression levels as the observations under
experimental condition 2. Then, the SAM statistic is
applied to the permuted data to obtain the null scores.

By definition, a null distribution should be irrelevant of
the experimental conditions. Hence, the null distribution
under model (10) should have mean zero regardless of
the experimental conditions. Note that the first K and last
J expression levels in the permuted data are usually the
mixtures of expression levels under both experimental
conditions, respectively. The set of null scores generated
from such permutation may have a non-zero mean, hence
leading to over-dispersed null scores. In some cases, it was
suggested to only use the sets of null scores generated
from certain appropriate permutations. For example, the
concept of balanced permutation was proposed in [9,11]
to insure the null scores generated to have mean 0. How-
ever, this suggestion was only specific to the ionizing radi-
ation response experiment considered in those papers. No
general rules were provided.

Since the original ordering {1, ..., J; (J + 1), ..., (J + K)} is
one of the permutations used in sam2.20, the use of such
permutation and the use of the same SAM statistic as both
the test and null statistic would count an estimated TP

case as an FP case in the estimation of FDR. Actually 

is the maximum value of the  values whose median is

used in the estimation of . A permutation not too dif-

ferent from {1, ..., J; (J + 1), ..., (J + K)} would give 

similar to . This shows that the 90th  reported in
sam2.20 would significantly over-estimate the true 90th
FP and is not much informative. This also explains why

sam2.20 uses the median  (instead of the mean) of

all the  values from all the permutations as the esti-

mate of FDR. The use of the mean  value would lead
to a much inflated estimate of FDR.

The use of the same SAM statistic as both the test and null
statistic has another complication. Note that the numera-
tor and the denominator of the SAM statistic are inde-
pendent under the assumption that the data obtained in
the microarray experiment are normally distributed.
However, such independence is lost when the SAM statis-
tic is applied to the permuted data to generate the null
scores. The loss of the independence may cause under-
estimation of FDR (Figure 5).

TP

FP

FDR

FP

TP FP

FDR

FDR

FDR

Table 2: Numbers of significant positive and negative genes identified by sam2.20 at ∆ = 0.035. Table 2 displays the numbers of 
significant positive and negative genes from 10 simulations under the same setup as that used in producing Figures 1 and 2.

Simulation 1 2 3 4 5 6 7 8 9 10

Number of sig. genes 230 158 294 75 468 394 41 168 74 206
sig. pos 73 27 140 75 285 380 34 86 26 129
sig. neg 157 131 154 0 183 14 7 82 48 77
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4 The symmetric cutoff method
The discussion in Section 3 shows that the contradictory
results of sam2.20 can be avoided without the use of the
order statistics in searching for the cutoffs. Note that the
theoretical null distribution is symmetric about 0 under
the mild assumption that the errors in model (10) are
symmetric about 0. This means that the use of symmetric
cutoffs in declaring significance actually makes more
sense than the use of asymmetric cutoffs. This motivates
us to re-visit the conventional symmetric cutoff method.
For simplicity, we shall call it the symmetric cutoff
method. For clarity, we describe the algorithm of the sym-
metric cutoff method below.

In practice, it is quite common that scientists have certain
knowledge about a reasonable range of the number of dif-
ferentially expressed genes. Denote the minimum and
maximum numbers of significant genes the scientist
would like to consider by M0 and M1, respectively. Assume
that we have obtained s0 as in sam2.20, the symmetric cut-
off method uses the following algorithm:

1. Calculate the test statistics d(1), ..., d(n) from (1) for all
genes.

2. Given any  = M ∈ [M0, M1], declare the M genes with

the largest test statistics in their absolute values as the sig-
nificant genes.

3. Define the symmetric cutoffs δU = -δL = ν, where ν is the
smallest value among the absolute values of the test statis-
tics from the genes declared significant.

4. The FDR is estimated by /M, with

where (b) = #{1 ≤ i ≤ n: db(i) > δU or db(i) <δL} (b = 1,

..., B) and db(i), i = 1, ..., n, are the null scores calculated
from (3) corresponding to permutation b and B is the
total number of permutations used.

In the above algorithm, we still use the same SAM statistic
and the same simple permutations as those used in
sam2.20. However, as discussed before, the use of the
same SAM statistic and the use of simple permutations
may cause over-estimation of FP. To correct the over-esti-
mation problem, following the idea of [14], we propose
the following formula to estimate FDR:

5. The FDR is estimated by /M, where

where (b)= #{i ∈ T': db(i) > δU or db(i) <δL} (b = 1, ...,

B) and the set T' in (12) is the set of all genes after remov-
ing the genes declared significant in Step (2).

The symmetric cutoff method with the use of (12) will be
called the symmetric cutoff method with FP correction.
For comparison, we also applied (12) to the results from
sam2.20.

5 Numerical results
In this section, we provide a comparison between
sam2.20 and the symmetric cutoff method under different
setups. Our numerical comparisons are organized as fol-
lows. Under each setup, we generate n (= 5000) genes
from model (10) with J = 4 and K = 4. Then, we calculate
the true FDR, the estimated FDR and the estimated FDR
with FP correction, given a specific number (M) of signif-
icant genes. It is obvious that the performance of FP cor-
rection (12) depends on the magnitude of M. If M is much
larger than the number of true DE genes in the microarray
data, the exclusion of the M genes will cause significant
under-estimation of the true number of FP (and FDR). On
the other hand, if M is much smaller than the true number
of DE genes, FP correction (12) will have little effect on
correcting the over-estimation problem. However, it is

TP

FDR FP= π̂0

FP FP FP B= ( )median ( ), , ( ) ,1 (11)

FP

FDR FP= π̂0

FP
n

T
FP FP B=

′
′ ′( )

#
( ), , ( ) ,

of genes in 
median 1

(12)

FP′

Comparison between sam2.20 and the symmetric cutoff method under Setup 2(i)Figure 5
Comparison between sam2.20 and the symmetric 
cutoff method under Setup 2(i). The histogram and the 
parallel boxplots in Figure 5 are defined the same as in Figure 
4. The histogram shows that sam2.20 produces significantly 
smaller number of true FP than the symmetric cutoff method 
among all 100 simulations. The first two boxplots at the right 
of Figure 5 show that sam2.20 under-estimates the true FDR 
and FP correction (12) made the under-estimation even 
worse. The last two boxplots at the right of Figure 5 show 
that the symmetric cutoff method over-estimates the true 
FDR and the over-estimation has been corrected by FP cor-
rection (12).
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reasonable to expect a proposed FP correction to perform
well when M is close to the number of true DE genes. Due
to this consideration, we decided to choose M as the
number of the true DE genes in the simulations. Since it is
not always possible for sam2.20 to find the threshold ∆
that gives exactly M significant genes, the actual values of
M realized may vary from simulation to simulation. This
process is repeated 100 times. Table 3 provides a summary
of the setups used in the simulations.

The results obtained from the simulations are summa-
rized in Table 4. To be consistent with the results reported
in the boxplots of Figures 4, 5, 6, we reported the medians
instead of means in Table 4. It can be seen that the per-
formance of the symmetric cutoff method and sam2.20 is
very similar under Setup 1 with the same true FDR until
the fourth digit after the decimal point. It can also be seen
that both sam2.20 and the symmetric cutoff method over-
estimate the FDR significantly. The difference between the
performances of sam2.20 and the symmetric cutoff
method and the effect of FP correction (12) can be seen
more clearly in Figure 4. The histogram at the left of Figure
4 shows that, among 100 simulations, the two methods

have exactly the same number of true FP for 76 times and
sam2.20 has higher numbers of true FP for 19 times (one
more FP for 17 times, 2 more FP twice) while the symmet-
ric cutoff method has one more FP for 5 times. This shows
that the symmetric cutoff method in general provides
smaller number of true FP than sam2.20. The boxplots at
the right of Figure 4 demonstrate the power of FP correc-
tion (12). For both methods, the correction has success-
fully corrected the over-estimation problem.

Table 4 also shows that sam2.20 works better only if the
ratio of induced to repressed genes is far from 1:1 (see the
results under Setups 2(i, ii) and 3(i)). Otherwise the sym-
metric cutoff method has advantage over sam2.20. Notice
that the advantage of the symmetric cutoff method over
sam2.20 under Setup 1 is not as obvious as that observed
under Setups 2(iv) and 3(iv). This means that the relative
performance of the symmetric cutoff method to sam2.20
is dependent on the distributions of induced and
repressed genes. On the other hand, the results under Set-
ups 2(ii) and 3(ii) show that the relative performance of
the symmetric cutoff method to sam2.20 is also affected
by the ratio of DE to EE genes.

Table 4: Results obtained under Setups (1) – (3). The medians reported in the table were calculated from 100 simulations. The median 
est.FDR values reported in Column 4 were obtained from sam2.20 and the symmetric cutoff method directly. The median est.FDRc 
values reported in Column 5 are the estimated FDR with FP correction (12).

Setup Median M Median true FDR sam2.20/sym.cutoff Median est.FDR sam2.20/sym.cut Median est. FDRc sam2.20/sym.cut

1 199 0.1005/0.1005 0.1188/0.1238 0.0981/0.1020
2 (i) 210.5 0.7082/0.7779 0.6959/0.8130 0.6875/0.7945

(ii) 211.5 0.6699/0.6748 0.6730/0.7219 0.6331/0.6933
(iii) 207 0.6578/0.6533 0.6738/0.7039 0.6376/0.6616
(iv) 200 0.5025/0.4371 0.5305/0.4846 0.5004/0.4403

3 (i) 399 0.0599/0.0800 0.0596/0.1017 0.0598/0.0779
(ii) 399 0.1827/0.1754 0.1874/0.2135 0.1862/0.1758
(iii) 399 0.2130/0.1989 0.21750/.2462 0.2168/0.2007
(iv) 400.5 0.4913/0.3950 0.5067/0.4511 0.4975/0.3994

Table 3: Simulation setups. Under each setup, there are 5000 genes. Table 3 shows how the genes were simulated. For example, under 
setup 1, the first 100 genes were generated from N(0,1) and N(3,1) under experimental conditions 1 and 2, respectively, the middle 
4800 genes were generated from N(0,1) regardless of experimental condition and the last 100 genes were generated from N(0,1) and 
N(-3,1) under experimental conditions 1 and 2, respectively. The third column displays the ratio of induced to repressed genes. If the 
number of repressed genes is 0, the ratio is defined as ∞.

Setup Genes First/middle/last Ratio Experimental condition 1 Experimental condition 2

1 100/4800/100 1/1 N(0,1)/N(0,1)/N(0,1) N(3,1)/N(0,1)/N(-3,1)
2 (i) 200/4800/0 ∞

(ii) 167/4800/33 5/1
(iii) 160/4800/40 4/1
(iv) 100/4800/100 1/1 N(0,1)/N(0,1)/N(0,1) N(1,1)/N(0,1)/N(-3,1)

3 (i) 0/4600/400 0
(ii) 66/4600/334 1/5
(iii) 80/4600/320 1/4
(iv) 200/4600/200 1/1
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To get more insight into how sam2.20 and the symmetric
cutoff method perform differently under different setups,
we obtained Figures 5 and 6 under Setups 2(i) and 3(iv).
Figure 5 shows that the symmetric cutoff method can have
as many as 30 more FP than that from sam2.20 among
200 genes called significant. On the other hand, Figure 6
shows that sam2.20 can have as many as 54 more FP than
the symmetric cutoff method among 400 significant genes
under Setup 3(iv). The boxplots at the right of Figure 5
show that sam2.20 actually under-estimates the true FDR
slightly and FP correction (12) has caused more severe
under-estimation in this case. We have not observed any
under-estimation problem for the symmetric cutoff
method in the simulations we carried out. It can be seen
from Figure 5 that, although it provides smaller median
true FDR than sam2.20, the un-corrected symmetric cutoff
method has a much more serious over-estimation prob-
lem than sam2.20. Nevertheless, the over-estimation
problem has been largely corrected by FP correction (12).

Finally, we applied sam2.20 and the symmetric cutoff
method to the well-known leukaemia data of Golub et al.
[21], which studied the classification of acute leukaemias
into those arising from lymphoid precursors (acute lym-
phoblastic leukaemia, ALL) or from myeloid precursors
(acute myeloid leukaemia, AML). We used all 27 of ALL
and 11 of AML samples in our calculation. For each sam-
ple (or array), the original data were pre-processed by first
subtracting its median and then this difference was
divided by its quartile range (the difference between the

first and third quartiles). The results from both methods
are reported in Table 5.

Table 5 shows that the performance of the two methods is

quite similar, except for the case when  = 316 in which
the estimated FDR from the symmetric cutoff method is
significantly smaller than that from sam2.20. It can also
be seen from Table 5 that the numbers of genes being
declared significant positive are much higher than those
of genes being declared significant negative for both
methods. The results from the bottom row of Table 5
shows that there are no genes with test statistics below -
5.5678 (the only significant negative gene has test statistic
equal to -5.5678) while there are 22 genes with test statis-
tics larger than 5.5678. This means that the distribution of
the test statistics is right skewed, hence resulting in a larger
number of induced genes detected as significant.

Table 5 also shows that the asymmetric numbers of
induced and repressed called significant by sam2.20 are
greatly affected by the asymmetric cutoffs. For example, at

 = 92, sam2.20 reported 87 significant positive genes
and only 5 significant negative genes, compared to 73 and
19 significant positive and negative genes declared by the
symmetric cutoff method. It is obvious that the extremely
small number (= 5) of significant negative genes from
sam2.20 is caused by the use of the lower cutoff (cutlo = -
5.1595), which is much larger in its absolute value than

TP

TP

Comparison between sam2.20 and the symmetric cutoff method under setup 3(iv)Figure 6
Comparison between sam2.20 and the symmetric 
cutoff method under setup 3(iv). The histogram and the 
parallel boxplots in Figure 6 are defined the same as in Figure 
4. It is clear from the histogram that sam2.20 tends to pro-
duce significantly higher number of true FP than the symmet-
ric cutoff method. The parallel boxplots show that both 
methods over-estimate the true FDR. It can also been seen 
that the over-estimation for the symmetric cutoff method is 
more serious than that of sam2.20. The second and fourth 
boxplots at the right of Figure 6 show that the over-estima-
tion has been corrected by FP correction (12) for both 
methods.
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Comparison between sam2.20 and the symmetric cutoff method under Setup 1Figure 4
Comparison between sam2.20 and the symmetric 
cutoff method under Setup 1. The histogram at the left 
of Figure 4 shows the number of true FP from sam2.20 sub-
tracted by the number of true FP from the symmetric cutoff 
method. The parallel boxplots at the right of Figure 4 are the 
boxplots of the values of 1) est. FDR from sam2.20 – the 
true FDR (sam.diff), 2) est. FDR from sam2.20 with FP cor-
rection – the true FDR (sam.diffc), 3) est. FDR from the sym-
metric cutoff method – true FDR (sym.diff) and 4) est. FDR 
from the symmetric cutoff method with FP correction – true 
FDR (sym.diffc).
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the upper cutoff (cutup = 4.0787). We cannot find a rea-
sonable explanation why one should make the declara-
tion of a gene being significant negative much more
difficult than being significant positive.

The effect of FP correction (12) can not be observed for
both methods in this example. The FDR estimates with FP

correction for  = 316 are even higher than the original
ones. It is not clear why this has happened. Since we do
not know which genes are truly DE genes and which genes
are truly EE genes for a real data example such as the leu-
kaemia data, it is impossible to know which method
indeed works better. However, the paper of Golub et al.
[21] provided a list of 15 genes which biologists consid-
ered as informative in the classification of leukaemia as
ALL or AML. These genes are: CD11c, CD33, MB-1, the lep-
tin receptor, zyxin, Cyclion D3, Op18, MCM3, Rbap48,

SNF2, TFIIEβ, c-Myb, E2A, HOXA9 and TOP2B. The first
three genes encode cell surface proteins for which mono-
clonal antibodies have been demonstrated to be useful in
distinguishing lymphoid from myeloid lineage cells. The
leptin receptor provides a new marker of acute leukaemia
subtype while the zyxin gene has been shown to encode a
LIM domain protein in cell adhesion in fibroblasts. The
other genes in the list have been shown to be related to
cancer pathogenesis. In Table 5, we reported the numbers
of the genes in the list which are included in the genes
declared significant by each method at different levels of

threshold ∆. It can be seen that the symmetric cutoff
method consistently identified more genes from the list
than sam2.20 except in the first and last cases.

6 Discussion and conclusion
In this paper, we have provided a comprehensive evalua-
tion of SAM, and its R-Package sam2.20. The discrepan-
cies between the algorithms of SAM and sam2.20 are
identified. We have also discussed potential drawbacks of
SAM and sam2.20. Through comparisons, we have pro-
vided a detailed study on the performance of sam2.20 and
the symmetric cutoff method and discussed their relative
strength. However, it should be pointed out that our com-
parison was based on the true FDR each method produces
given that they identified the same number of significant
genes. In practice, the only way of controlling FDR is
through its estimated value. Unfortunately, as seen from
the simulations, both sam2.20 and the symmetric cutoff
method may significantly over-estimate the true FDR. Fig-
ures 5, 6 show that the over-estimation problem of the
symmetric cutoff method without FP correction is even
more severe than sam2.20 under certain situations. This
shows the importance of using the proposed FP correction
in order to provide efficient control of FDR. It can be seen
from the simulations that our proposed FP correction
(12) can efficiently correct the over-estimation problem.
Nevertheless, there are still some concerns about the use
of FP correction (12). One concern is that it may make the
under-estimation problem worse if the original method
under-estimates the true FDR. Another concern is that the
under-estimation problem may become a common prob-
lem if the number of genes excluded in the estimation of

FDR is too large (namely, if  is too large). Such under-

estimation would make scientists to report  which is
significantly smaller than the true FDR, hence lead to

TP

TP

FDR

Table 5: Results obtained for the leukaemia data. Table 5 reports the number of significant positive and negative genes (columns 2, 6), 
the cutoffs (columns 3, 7), the estimated FDR (FDR) and the estimated FDR with FP correction (FDR-c) from sam2.20 and the 
symmetric cutoff method (columns 4, 8). Column 5 reports the number of genes found significant by sam2.20 and the symmetric 
cutoff method from the list of informative genes [21].

sam2.20 # of genes from Golub et al.'s list The symmetric cutoff method

sig. pos cutup FDR sam2.20 sig. pos cutup FDR
sig. neg cutlo FDR-c sym.cut sig. neg cutlo FDR-c

316 227 3.2023 0.0065 14 215 3.3073 0.0043
89 -3.3888 0.0068 14 101 -3.3073 0.0045

191 154 3.8648 0.0036 9 143 3.9612 0.0036
37 -4.2450 0.0037 11 48 -3.9612 0.0037

92 87 4.0787 0 7 73 4.1906 0
5 -5.1595 0 9 19 -4.1906 0

29 29 5.3143 0 5 27 5.3685 0
0 -Inf 0 6 2 -5.3685 0

23 23 5.5514 0 5 22 5.5678 0
0 -Inf 0 5 1 -5.5678 0
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over-estimation of the number of true DE genes among
the genes identified as significant by the method. A possi-
ble remedy is to find a reasonable estimate of the number
of DE genes and then remove those genes in the estima-
tion of FP. Another possible approach is to use the
weighted permutation approach or to use the rank scores
to reduce the influence of the over-dispersed null scores
on the estimation of FDR [15,24]. However, a detailed
comparison of these approaches is beyond the scope of
this paper. We will investigate the performance of such
methods in the future research.

7 Methods
Data sets
The simulated data under Setups 1–3 were generated
using R [25]. The leukaemia data of Golub et al. were
downloaded from the data link provided in [21].

SAM analysis
SAM analysis was performed according to the algorithm
described in [9].

sam2.20 analysis
sam2.20 analysis was performed using the SAM R-package
(Release 2.20) downloaded from the SAM website [26].

The symmetric cutoff method
The algorithm of the symmetric cutoff method was
described in Section 4 of this paper.
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