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Abstract
Background: Three-color microarray experiments can be performed to assess drug effects on
the genomic scale. The methodology may be useful in shortening the cycle, reducing the cost, and
improving the efficiency in drug discovery and development compared with the commonly used
dual-color technology. A visualization tool, the hexaMplot, is able to show the interrelations of
gene expressions in normal-disease-drug samples in three-color microarray data. However, it is not
enough to assess the complicated drug therapeutic effects based on the plot alone. It is important
to explore more effective tools so that a deeper insight into gene expression patterns can be gained
with three-color microarrays.

Results: Based on the celebrated Hough transform, a novel algorithm, HoughFeature, is proposed
to extract line features in the hexaMplot corresponding to different drug effects. Drug therapy
results can then be divided into a number of levels in relation to different groups of genes. We apply
the framework to experimental microarray data to assess the complex effects of Rg1 (an extract
of Chinese medicine) on Hcy-related HUVECs in details. Differentially expressed genes are
classified into 15 functional groups corresponding to different levels of drug effects.

Conclusion: Our study shows that the HoughFeature algorithm can reveal natural cluster
patterns in gene expression data of normal-disease-drug samples. It provides both qualitative and
quantitative information about up- or down-regulated genes. The methodology can be employed
to predict disease susceptibility in gene therapy and assess drug effects on the disease based on
three-color microarray data.

Background
Microarray experiments can produce expression data of
thousands of genes simultaneously. They are useful for
disease diagnosis, prognosis and treatment planning as
well as the discovery and development of novel pharma-
ceutical products [1-11]. However, these experiments,
which commonly use two colors, are costly and time-con-
suming, thus there is a need to improve the technology.

By adding blue Alexa 594 as a dye-label, a three-color
microarray experiment can be carried out. According to
recent experimental and statistical analysis, there is no evi-
dence that the inclusion of Alexa594 as the third dye-label
causes additional noise or unexpected results in the data
[12,13]. A three-color microarray experiment requires
fewer arrays, saves samples, and simplifies the experimen-
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tal process, leading to a reduction of costs and time with-
out compromising gene expression data [12-14].

However, three-color microarrays have not been used
widely yet partly because of the lack of data analysis tools.
Existing data analysis methods are usually borrowed from
those for dual-color microarrays and they may not be able
to deal with complicated patterns in three-color data.
Thus, it is important to develop new and more effective
tools.

In [14], Zhao (the first author of this paper) et al first pro-
posed the hexaMplot to demonstrate the interactions of
gene expressions and used the method to assess drug
effects based on three-color microarray data. The compli-
cated expression patterns in three dyed samples, as dem-
onstrated in Figure 1, can be simplified by the special
coordinates of the hexaMplot. As summarized in Figure 2,
the three lines, six regions, and the origin of the hexaM-
plot provide a lot of useful information about the altera-
tion in the gene expression data. A more detailed
description of the hexaMplot is provided in Methods.

Although the hexaMplot provides a number of useful fea-
tures, it is not enough to determine drug therapeutic
effects with only one plot. In [14], the correlation coeffi-
cient (CC) is used to infer the binary hypothesis of drug
effects. This approach has several limitations. Firstly, sta-

tistical testing is largely dependent on the assumption of
the Gaussian probability distribution, but microarray data
does not follow this distribution very well [15]. So there is
uncertainty in the results of the performance testing [16].
Secondly, more than two binary hypotheses (equal or
not) should be used in the testing since there should be
more than two cases involved in three-color microarray
data [14]. Genes do not function separately but together
and drugs also work on different groups of genes in differ-
ent ways [17]. So it is more reasonable to divide drug
effects into several levels. Finally, the testing ignores the
inherent noise and variation in microarray data [18].

In order to ameliorate the previous drawbacks, a novel
algorithm, HoughFeature, is developed in this paper to
assess drug effects based on three-color microarray data.
In the proposed algorithm, lines passing through the ori-
gin of the hexaMplot are used to characterize the drug
effects on gene expressions. The direction of a line can be
used to determine whether the drug has positive or nega-
tive effect on a group of genes and the line slope value can
be used to measure the drug effect level. To make these
assessments, a key step is to find multiple lines in the hex-
aMplot. The Hough transform (HT) is especially useful for
this task as it has been used successfully for the detection
of lines and even arbitrary curves in noisy images [19-22]
and has recently been applied to microarray data biclus-
tering [23,24]. The HoughFeature algorithm can be used
to analyze gene expression data from normal-disease-drug

An example of the hexaMplotFigure 2
An example of the hexaMplot. Three lines divide the two-
dimensional plane into six regions, corresponding to different 
drug effects on disease-related genes.
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Overview of expression patterns in normal-disease-drug samplesFigure 1
Overview of expression patterns in normal-disease-drug 
samples. There are 13 possible cases of gene expression pat-
terns in three-color cDNA microarray data.
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samples systematically. Naturally, the method can be gen-
eralized to deal with more than three colors if additional
colors can be used and are beneficial in microarray exper-
iments.

In this paper, we present the methodology and applica-
tion of three-color microarray data analysis to assess the
complex effects of Rg1 (an extract of Chinese medicine)
on Hcy (homocysteine)-treated HUVECs (Human Umbil-
ical Vein Endothelial Cells). We classify the susceptible
genes in disease and drug-treated cells into different levels
according to the slopes of rays detected using our algo-
rithm. We show that the proposed method is effective for
the analysis of therapeutic and side effects of drugs on a
disease. The Matlab programs of our algorithm are
included in the attached files.

Results
The HoughFeature algorithm
In order to identify significant features in the hexaMplot,
we propose the HoughFeature algorithm to assess drug
effects in three-color cDNA microarray data. In our algo-
rithm, we firstly identify differentially expressed genes
under disease or drug-treated conditions. We apply the HT
to the gene expression data, to detect lines passing the ori-
gin in the hexaMplot. Then the drug effects on groups of
genes characterized by different lines are quantified
according to their slopes. The algorithm consists of the
following steps [see Additional file 1 and 2].

Input: Gene expression matrix ENxn; Quantization step
size in the parameter space δ; Minimum number of genes
on a line d; and the algorithm that identifies significant
genes ALG:

HoughFeature (E, δ, d, ALG)

Step 1: Perform ALG(E) to identify the up- and down-reg-
ulated significant genes in E, denoted as U and D respec-
tively. ||U|| (||D||) denotes the number of elements in the
set U (D).

Step 2: Apply the HT (see description in Methods) with
quantization step size δ to U (D) in the hexaMplot. Cor-
responding to ||U|| (||D||) points in the data space, there
are ||U|| (||D||) sinusoidal curves in the polar parameter
space. In addition, the origin of the data space is trans-
formed to the line ρ = 0 in the parameter space. Thus, we
can detect lines passing through the origin in the data
space by examining the Hough accumulator arrays for ρ =
0. We retain a line for further analysis only if it has at least
d votes, corresponding to d genes, in its accumulator.

Step 3: Assuming that the detected lines are li (i = 1, 2, ...,
p) and their slopes are si (i = 1, 2, ..., p), we can then quan-
tify the drug effects as follows:

Case 1: si < -1, the drug shows significant therapeutic effect
with some positive side effects on the genes on line li (in
regions II and V in Figure 2);

Case 2: si = -1, the drug shows significant therapeutic effect
with no side effect on the genes on line li (on the slant axis
in Figure 2);

Case 3: -1 <si < 0, the drug shows significant therapeutic
effect with some negative side effect on the genes on line
li as (in regions III and VI);

Case 4: si > 0, the drug shows significant side effect with lit-
tle therapeutic effect on the genes on line li (in regions I
and IV).

Furthermore, the closer to -1 si is, the higher the therapeu-
tic effect with lower side effect the drug has.

Step 4: Delete the genes on the detected lines from U to
update the set and repeat Step 2 until the value of every
remaining accumulator is less than d.

Application of the HoughFeature algorithm
A three-color cDNA microarray experiment was con-
ducted in the Biomedical Laboratory of Hong Kong Bap-
tist University to study the effect of Rg1 (a predominant
compound of the total extract of ginsenosides in ginseng)
on Hcy (homocysteine)-treated HUVECs (Human Umbil-
ical Vein Endothelial Cells). The cDNA probes of the nor-
mal HUVECs are labeled with Cy5 (Red), these of the Hcy-
related HUVECs with Cy3 (Green) and these of the Hcy-
related HUVECs following treatment with Rg1 with
Alex549 (Blue). Thus, there are three groups of compari-
sons that can be made, including normal vs. Hcy-related
samples (disease group), Rg1 vs. normal (drug-related
group), and Hcy vs. Rg1 group (drug-following-disease
group). We can study the three groups in a single three-
color microarray experiment, but would need three dual-
color cDNA microarray experiments for the same task. We
can see that three-color microarray experiment is indeed
economical, efficient, and has potentials for other appli-
cations.

Microarray data are always subject to variations from sys-
tem bias other than the biological difference between
samples. So the original microarray data must be normal-
ized to remove the systematic bias. Both experimental
studies and statistical analyses have been carried out in
[12,13] to verify that standard normalization methods are
still applicable to three-color microarray data. In the
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experiment presented in this paper, we choose the non-
linear Loess method [28] to normalize the data [see Addi-
tional file 3].

We show a hexaMplot of the normalized expression data
in Figure 3. The data are distributed long along a line that
slightly deviates from the slant axis. First, we apply the
commonly-used SAM algorithm to identify differentially
expressed genes [29]. In our analysis, we employ the
paired data format of SAM, considering the expression
data measured before and after the drug treatment. In Fig-
ure 3, 202 significant genes are selected with FDR = 0.05,
in which 139 are up-regulated and 63 down-regulated.
They are marked with red stars in Figure 3. Most of the sig-
nificant genes are in the second and fourth quadrants in
the hexaMplot, supporting the biological view that Rg1
has been proven to promote the angiogenesis in Hcy-
related HUVECs in many medical experiments.

We analyze the effects of Rg1 based on the expression data
of 202 genes and demonstrate the results in Table 1. The
second column of the table shows the number of genes on
each line detected in the hexaMplot. In addition to the
slope (tangent value) in the third column, we also show
the 95% confidence interval of the slope in the fourth col-
umn of Table 1. In the fifth column of Table 1, we define
the Neg. T (negative therapeutic effect) of drug when the
slope value has a negative deviation from the slant axis
because the drug-related expression is opposite to the dis-
ease-related expression, that is, R is between B and G. The
positive deviation can be similarly defined as Pos. T (pos-
itive therapeutic effect) because B is between R and G.

In Table 1, the genes are classified into 15 lines corre-
sponding to different drug effect levels. We plot the gene
expression data in Figure 3, where genes on the detected
lines are shown in red and those not on the lines in black.
In this original data space, it is not easy to observe obvious
line clusters because they are embedded in noise or irrele-
vant data samples. However, in the Hough parameter
space, each line hidden in the original data is related to a
peak point, or the intersection of many sinusoidal curves.
In the Hough space, we can search for the lines easily by
simply filtering out the curves that do not intersect with
many other curves at a common point. This is demon-
strated in Figure 4, where the curve intersections corre-
spond to distinct line clusters. Genes on the same line
show similar expression patterns and similar drug effects.
However, not all 202 genes are classified because some
genes are located on those lines each of which has less
than d genes and are not selected for further considera-
tion. Due to noise and outliers, these small groups may
not be meaningful statistically. This classification scheme
is reasonable because genes do not function separately but
together in complex biological systems, as discussed

above. In many cases, it is more useful to study groups of
genes together that are significantly expressed in a similar
way than individual genes separately. This is why a lot of
research is being carried out to analyze the functional
groups of genes using the microarray technology.

We have also analyzed the biological functions of these
resulting groups. Currently, the Gene Ontology (GO) is a
well accepted standard for gene function categorization
[30-33]. The GO project provides a controlled vocabulary
for various genomic databases of diverse species in such a
way that it can show the essential features shared by all the
organisms. In the GO function analysis, the hypergeomet-
ric distribution is applied to calculate the probability p of
the related GO 'biological process' terms to assess the sig-
nificance of our resulting groups [31-33]. The approach is
introduced in Methods. We list the most significant GO
function levels of the genes on the lines detected using the
HoughFeature method in the last column of Table 1.

Based on the suggestion of some biologists, we set the
minimum number of genes in a functional group d = 7 to
study up-regulated genes. The value of d is about 5% of
significantly up-regulated genes. The genes are classified
into eight lines, in which the slopes of seven lines are less
than 0 in the Neg. T and Pos. T regions and one is larger
than 0, to demonstrate some side effects of Rg1. Based on
the GO analysis of gene functions, the Rg1 shows thera-
peutic effects on the Hcy-related genes in regions II and III
in relation to protein binding (GO:0005515), membrane
(GO:0016020) and calcium ion binding (GO: 0005509).
The side effects of Rg1 are observed with the function of
cytoplasm (GO: 0005737) in region I. Similarly, we select
d = 4 in the analysis of the down-regulated genes. The
genes are identified along seven lines in the Neg. T and
Pos. T region. Rg1 still shows positive effects on protein
binding (GO: 0005515) as well as protein amino acid
phosphorylation (GO: 0006468), transcription (GO:
0006350), and signal transduction (GO: 0007165). The
GO analysis shows that Rg1 indeed has therapeutic effects
consistently on most of the differentially expressed genes
in Hcy-related HUVECs. The drug is too powerful to make
the genes regress to normal perfectly and causes some side
effects. In fact, a better pattern of therapy may be obtained
by adjusting the drug dosage, which always plays a key
role in disease treatment.

Discussion and conclusion
Our study shows that the HoughFeature algorithm pro-
vides a practical and effective solution to assess drug
effects based on the hexaMplot for three-color cDNA
microarray experiments. Although a drug has diverse
actions on different genes, we can classify the effects into
different levels according to the line patterns in the hex-
aMplot.
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For multi-factorial human disease involving as many as
100 susceptible genes (e.g. heart disease, cancer, and neu-
rodegenerative disease), the hexaMplot and HoughFea-
ture will be useful for the analysis of gene expressions in
disease and drug-treated samples. Such a framework may
ultimately deliver genomic fingerprint analyses, which are
predictive of disease susceptibility and drug effects,
thereby permitting the implementation of disease avoid-
ance strategies.

The drug effect assessment scheme based on our method
has potential applications to drug discovery and develop-
ment in both western and Chinese medicine. Western
medicine has a solid theoretical foundation based on
biology, biochemistry, physiology and pathology. How-
ever, it is ambiguous and difficult to explore specific activ-
ities of Chinese herbal medicine because of its
complexities in components and mechanisms. Using
microarray analysis as a powerful research tool, there is an
opportunity to analyze genetic and biochemical data in a

wide range of clinical applications [1]. Thus, there is a
common platform for the research of both western and
Chinese medicine, including the comparison, evaluation
and integration of gene expression data.

Methods
Gene expression patterns in dual- and three-color 
microarray experiments

In general, cDNA microarray experiments using spotted
arrays involve the hybridization of two differentially
labeled targets on one slide. These are called dual targets
or dual-dye arrays. In such an experiment, one sample is
labeled with the fluorescent dye Cy5 (red) and the other
is labeled with dye Cy3 (green). After image analysis and
data processing, two intensities Rij and Gij (i = 1, ..., n, j =

1, ..., N) from each spot are used to denote the respective
expression level of the ith gene under the jth condition.
For convenience, we will omit the subscripts of R and G in
the following discussions. There are two general expres-

The hexaMplot of three-color cDNA microarray data from an experiment to study the disease group (Hcy) and drug-treated group (Rg1)Figure 3
The hexaMplot of three-color cDNA microarray data from an experiment to study the disease group (Hcy) and drug-treated 
group (Rg1). Genes on the detected lines are shown in red. We are unable to observe line patterns in this original data space 
since they are embedded in noise or irrelevant data samples.
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sion patterns, equivalent (EE: G = R) and distinct (DE: G

≠ R). The relations in DE can be further divided into up-
regulated (G > R) and down-regulated (G < R) expres-
sions. Since only the difference between G and R is impor-
tant, it is enough to analyze the experimental data with
their ratio (G/R) or log ratio (log(G/R)). The AM plot, in

which two variables  and MG/R =

log2(G/R) are used, provides an effective visualization

tool for dual-color microarray data [28].

Unlike the design in a dual-color microarray, a third dye-
label (Alexa 594) is introduced for a third target sample in
[6-9]. Previous investigations of three-color microarray
technology almost all deal with the quality control or
comparison of the slides [6-9]. Many designs of three-
color microarray experiments, such as triple-target self,
dual-target self, and single-target hybridizations, are
applied to assess the slide fabrication, visualize the array
morphology, and control the array quality. Research work
has also been carried out to verify the fact that the inclu-
sion of Alexa594 as a third dye-label causes no additional
noise or unexpected results in the data [12,13].

In three-color microarray experiments, the normal sample
is labeled with Cy5 (Red), the disease sample is labeled
with Cy3 (Green), and the drug-treated sample is labeled
with Alexa 594 (Blue). Three values are obtained from
every spot on an array, denoted as R, G, and B respectively
to represent corresponding gene expression levels. Rela-
tions among measured three-color data are naturally more
complicated than those for two-color data. Figure 1 pro-
vides an overview of the 13 relations presented in [14].

Visulization tool: the hexaMplot
In order to display gene expression patterns in three-color
microarray data, the hexaMplot was first proposed in [14].

Figure 2 shows the coordinates used in the hexaMplot.
The line MG/R = 0 (i.e. log2(G/R) = 0) is selected as the hor-
izontal axis to scale the difference in the gene expression
data between disease and normal cells, and the line MB/G
= 0 (i.e. log2(B/G) = 0) is considered as the vertical axis to
measure the difference between disease and drug-treated
samples. And the line MB/G = -MG/R within the coordinates
is equivalent to the equation MB/R = 0 (log2(B/R) = 0). The
equation is meaningful since it can be used to measure the
difference of expression patterns between drug-treated
and normal samples in the absence of disease one. There-
fore the line can be defined as the slant axis to measure the
specific difference of gene expression. More importantly,
the slant axis makes it possible to carry out drug assess-
ment using the hexaMplot as discussed below.

In Figure 2, the three lines divide the two-dimensional
plane for the hexaMplot into six regions, denoted counter-
clockwise as I (B > G > R), II (G > B > R), III (G > R > B),
IV (R > G > B), V (R > B > G), and VI (B > R > G), respec-
tively. When disease genes are up-regulated (G > R), a
good drug should act to decrease their expressions. This
means G > B, corresponding to regions II and III. Due to
the difference in drug strength or dosage, there may be
three scenarios. The first case in II suggests that the drug
slightly decreases the up-regulated gene expressions in dis-
ease (G > B) but these genes are still up-regulated in the
disease than normal (B > R). The second case in III means
that the drug significantly decreases the gene expressions
to becoming down-regulated (G > R > B). The third case
on the slant axis suggests that the drug effectively acts to
decrease the genes expressions to the normal level (G > B
= R). All three cases should be preferred because the ten-
dency of therapy is to bring gene expression level closer to
the normal level R. A similar therapeutic conclusion on
the down-regulated disease genes can be drawn for
regions V and VI. In contrast, side effects are produced in

A RGG R/ log= 2

Table 1: Analysis of the effects of Rg1 on Hcy-treated HUVECs

Significant genes No. of genes on each line Tangent value 95% confidence interval General PW-1 effect Biological function GO term

Down-regulated (63) 7 -0.94 ±0.19 Neg. T (VI) GO: 0006468
6 -1.05 ±0.46 Pos. T(V) GO: 0006350
5 -1.15 ±0.21 Pos. T(V) GO: 0005515
5 -0.67 ±0.19 Neg. T(VI) GO: 0005515
5 -0.59 ±0.19 Neg. T(VI) GO: 0005515
4 -0.79 ±0.08 Neg. T(VI) GO: 0007165
4 -0.86 ±0.27 Neg. T(VI) GO: 0005515

Up-regulated (139) 12 -3.03 ±0.25 Pos. T(II) GO: 0005515
11 -2.02 ±0.18 Pos. T(II) GO: 0005515
11 -1.12 ±0.07 Pos. T(II) GO: 0005515
10 -34.23 ±24.60 Pos. T(II) GO: 0016020
9 12.35 ±8.48 Side (I) GO: 0005737
9 -4.29 ±0.90 Pos. T(II) GO: 0005509
9 -1.37 ±0.15 Pos. T(II) GO: 0005515
8 -0.73 ±0.11 Neg. T(III) GO: 0005515
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cases represented by region I, where the drug makes the
related genes even more up-regulated after treatment than
in the disease status (B > G > R), and by region IV, where
the drug makes the related genes even more down-regu-
lated after treatment than in the disease status (R > G > B).

The regions discussed above only provide a rough and
qualitative assessment of drug effects. To carry out the
evaluation quantitatively, we can consider lines passing
through the origin in the hexaMplot. A ray in regions II,
III, V or VI from the origin has negative slopes and indi-
cates a positive drug effect. The line slope value represents

The peak points corresponding to the 15 detected lines in the polar parameter space obtained using the HoughFeature algo-rithmFigure 4
The peak points corresponding to the 15 detected lines in the polar parameter space obtained using the HoughFeature algo-
rithm. The up-regulated genes are shown in (a) and the curve intersection regions are zoomed in and shown in (b). The down-
regulated genes are shown in (c) and the curve intersection regions are zoomed in and shown in (d).
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the therapeutic level. When the slope has value -1 or when
the line coincides with the slant axis, the gene expressions
completely regress to normal without any side effect after
medication. Thus, we can classify drug effects on genes
into different levels based on the slopes of the rays. The
assessment problem is converted to the detection of the
lines passing through the origin in the hexaMplot.

The Hough transform
The HT is the basis of the HoughFeature algorithm. The
HT is widely used in image analysis and computer vision
for detecting multiple lines, which may be broken and
mixed with noisy and textured background [19-22]. It has
also been shown recently to be an effective method for
microarray data biclustering [23,24]. Many studies have
been carried out on the consistency, convergence, and
robustness of the HT [19-22].

The basic idea of the HT can be briefly described as fol-
lows. A line in the x-y data space is defined by

y = kx + b (1)

Note that a line in the x-y space as defined by Equation (1)
corresponds to a point (k, b) in the k-b parameter space.
Conversely, the line in Equation (1) in the k-b space cor-
responds to a point (x, y) in the x-y space. If n points {(xi,
yi): i = 1,...,n} on a line in the x-y space are known, lines
obtained from all n points should pass through the same
point in the k-b space. Figure 5 shows the relation of the
lines and points in their respective spaces. Therefore, to
determine lines from points, we can initialize all entries of
the k-b space to zero and increase an entry by one vote
when the line representing a point in the x-y space passes
through it, and then find the entry in the k-b space that
has the highest vote. If more than one line is to be
detected, entries with local peak counts in the k-b space

are located and their coordinates are used as the slopes
and y-intercepts of the line. The accumulator array in the
parameter space may be very large because the range of
the slope is large, especially for vertical lines. Alterna-
tively, the polar form can be used to describe a line:

ρ = x cosθ + y sinθ (2)

where ρ is the distance of a line to the origin and θ is the

angle of the normal to the line with the x axis. Since ρ var-

ies from -  to  and θ is limited from -

π/2 to π/2, the dynamic ranges of the parameters are com-
pressed and a small accumulator array is sufficient to find
all lines. Note that if the polar equation of a line is used,
each point in the x-y space corresponds to a sinusoidal

curve in the ρ-θ space. Again, array entries with local peak
counts should be identified and used to detect the lines
[19-22].

In a hexaMplot, the lines passing through the origin are of
interest and thus we are able to employ the Hough tech-
nique to detect them. In addition, the origin in the data
space corresponds to the line ρ = 0 in the polar parameter
space after the HT. As a result, the line passing through n
points including the origin in the hexaMplot can be trans-
formed as an accumulator array intersected by n - 1 sinu-
soidal curves and one ρ = 0 line. The slope of the line in
the hexaMplot can be calculated based on parameters of
the accumulator array and can then be used to assess the
drug effect on the genes on the line [see Additional file 2].

We prefer the HT to linear regression for the following rea-
sons. Firstly, the HT is robust to noise and outliers [19-
22], and microarray data are usually very noisy. Secondly,
multiple lines can be detected at the same time using the
HT without knowing beforehand which points are placed
on which line. We can fit a given set of points to only one
line model in linear regression. Therefore, the HT is espe-
cially useful for detecting the multiple lines in the hexaM-
plot in microarray analysis.

In general, the HT can be used to extract multiple groups
of points which form lines or curves and are corrupted by
noise in a multi-dimensional space. It has been studied
extensively in image processing and has many applica-
tions, including recognition of roads and buildings in dig-
ital images and videos, and biclustering of microarray
data [19-27]. Biclustering has recently become a very
active research topic in bioinformatics [23-27]. In biclus-
tering, we are interested in grouping a subset of genes
which have consistent expression patterns under a subset
of conditions. Biclusters with constant, additive and mul-
tiplicative coherent values can all be modeled using linear

x y2 2+ x y2 2+
Illustration of the Hough transform in data and parameter spacesFigure 5
Illustration of the Hough transform in data and parameter 
spaces. Points in the data space (left) correspond to lines in 
the parameter space (right). Points on a line in the data space 
produce lines that intersect at the same point in the parame-
ter space, while random points in the data space produce 
random lines in the parameter space.
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equations or hyperplanes in a multi-dimensional data
space. Although we do not know the gene groups and con-
dition groups beforehand, the voting process in the
parameter space reveals the consistency among the data
points. That is, points forming a coherent pattern will
always contribute to the same accumulator and thus pro-
duce a peak in the parameter space. The HoughFeature
algorithm for three-color microarray data analysis devel-
oped in this paper can be considered as a special case of
biclustering. The line patterns in the hexaMplot are multi-
plicative biclusters. That is, we would like to group the
genes that are consistently upsor down-regulated under
one condition, e.g. the disease status, compared with
another condition, e.g. normal or drug-treated status.

Hypothesis testing of the correlation coefficient
The correlation coefficient between MG/R = log2(G/R) and
MB/G = log2(B/G) is defined as

where  and

. It is desirable to

detect expression patterns along the slant axis, that is, a
highly negative correlation is expected to show good ther-
apeutic effect of the drug. The following hypothesis test of

ρ is performed:

H0:γ ≤ γ0 v.s. H1:γ > γ0

where γ0 is the critical value given to assess the drug effect
and the critical value is subjectively set -0.8 in [14]. The
drug is inferred to show significant therapeutic effect on
the disease if we reject the null hypothesis H0; otherwise
the drug shows little effect. As pointed out in Introduc-
tion, the methodology has several limitations.

Function analysis of gene clusters using Gene Ontology 
(GO)
Functionally related genes tend to express and perform
their integrated roles in modular fashions, which are often
reflected by a high degree of concert of the gene reactions
to stimuli such as disease or drug-related conditions
[34,35]. Based on the most widely used gene functional
annotation system Gene Onotolgy (GO), we apply a
hypergeometric distribution to calculate the probability p
of a GO 'biological process' category to assess the signifi-
cance of a particular function group [30-33].

The annotation is quite straight forward. Given a cluster of
n genes, we first find the set of all unique GO terms within
the 'biological process' ontology that are associated with
one of more of the genes of interest. Next, for each term
we determine the number of the interesting genes k anno-
tated at the node and the number of assayed genes f anno-
tated at the node. The hypergeometric distribution is used
to model the probability of observing at least kψ genes
from the cluster of nψ genes by chance in a category con-
taining fψ genes from all gψ genes spotted on the chip [31-
33]. The corresponding p-value is calculated by

which is the probability of seeing something as extreme or
more extreme than what was observed. Thus, the test
measures whether the cluster is enriched with genes from
a particular category to a greater extent than that would be
expected by chance. For example, if the majority of genes
in the cluster have the same biological function, then it is
unlikely that this happens by chance and the category's p-
value would be close to 0. When several categories' p-val-
ues are less than the threshold, it is reasonable to annotate
the cluster with the category that has the smallest p-value
[32,33].
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Additional file 1
MATLAB M-file of HoughFeature algorithm to assess drug effects based 
on hexaMplot. This is the main computer program of the HoughFeature 
algorithm. The program input is the expression data of up- or down-regu-
lated genes and the output is the drug effect levels on different genes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-256-S1.M]

Additional file 2
MATLAB M-file of Hough technique. This file contains a function used 
by the main HoughFeature program to perform the Hough transform for 
detecting the line patterns.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-256-S2.M]
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