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Abstract
Background: In recent years, an extensive characterization of network structures has been made
in an effort to elucidate design principles of metabolic networks, providing valuable insights into the
functional organization and the evolutionary history of organisms. However, previous analyses have
not discussed the effects of environmental factors (i.e., exogenous forces) in shaping network
structures. In this work, we investigate the effect of temperature, which is one of the environmental
factors that may have contributed to shaping structures of metabolic networks.

Results: For this, we investigate the correlations between several structural properties
characterized by graph metrics like the edge density, the degree exponent, the clustering
coefficient, and the subgraph concentration in the metabolic networks of 113 prokaryotes and
optimal growth temperature. As a result, we find that these structural properties are correlated
with the optimal growth temperature. With increasing temperature, the edge density, the
clustering coefficient and the subgraph concentration decrease and the degree exponent becomes
large.

Conclusion: This result implies that the metabolic networks transit with temperature as follows.
The density of chemical reactions becomes low, the connectivity of the networks becomes
homogeneous such as random networks and both the network modularity, based on the graph-
theoretic clustering coefficient, and the frequency of recurring subgraphs decay. In short, metabolic
networks undergo a change from heterogeneous and high-modular structures to homogeneous
and low-modular structures, such as random networks, with temperature. This finding may suggest
that the temperature plays an important role in the design principles of metabolic networks.

Background
Elucidation of basic design principles of biological net-
works is important to understand the cell's internal organ-
ization and its adaptation to environmental changes [1].
A large amount of data on molecular interaction networks
has recently been accumulated using several new technol-
ogies and high-throughput methods. In particular, the
increasing number of data on many different organisms

has made it possible to trace back the evolutionary history
of metabolic networks, and uncover the major structural
similarities and differences among species.

The ordinary classification of organisms includes three
domains of life [2] (Archaea, Bacteria and Eukaryote) and
it is based on cellular organization and similarities among
organisms, reflecting common evolutionary history of the
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species. Archaea and bacteria have a prokaryotic cell
organization and are single-celled organisms character-
ized by the lack of a nucleus cell. In contrast, a eukaryote
can be a single-celled or multicellular organism where
each cell contains a distinct membrane-bound nucleus.
These cells are distinguished from prokaryotic cells by
their structural complexity.

However, a different scheme based on the growth temper-
ature ranges can be used to group prokaryote (unicellular)
organisms into four classes [3]: Hyperthermophiles
(extreme heat-loving), Thermophiles, Mesophiles (grow
at moderate temperatures) and Psychrophiles (cold-lov-
ing).

On the other hand, the structure of the metabolic net-
works for many organisms has recently been investigated.
For large-scale networks such as metabolic networks, the
structural features were analyzed using statistical mechan-
ics and graph theory techniques [4]. In particular, several
striking structural properties have recently been found
such as small-world [5], scale-free connectivity [6], and
hierarchical modularity [7,8] which are absent in random
networks [9]. Moreover, sets of ordered substructures such
as network motifs [10-12] and highly-interconnected sub-
graphs [13] that occur far more often than at random have
also been detected in different cellular networks. These
motifs are thought to be related to specific biological func-
tions [11,12,14], and the recurring pattern in networks
reflects the modularity embedded in subcellular systems.
These recent findings in network biology suggest that met-
abolic pathways, as well as the other types of cellular net-
works, may have been governed by universal laws and
basic design principles that might have shaped and opti-
mally organized their structures.

Motivated by the debate on the existence and identifica-
tion of the design principles, several analyses [15-18] have
been carried out. to characterize the structure of metabolic
networks, providing important insights into the evolu-
tionary history of metabolism. In Ref. [18], in particular,
the authors focused on the three domains of life, and
compared the structural properties of the metabolic net-
works for 11 organisms among their domains of life. As a
result, they found that the structural properties of the met-
abolic networks of bacteria and eukaryote are similar to
each other but are quite different when compared with the
ones from archaea. However, it is worth noticing that pre-
vious analyses were performed using the three domains of
life that are defined based on the cellular organization,
and consequently they are limited to capture intrinsic
structural features of each organism.

One of the possible directions for expanding our knowl-
edge on complex cellular networks is to investigate the

effects of exogenous forces induced by environmental
conditions on these systems. For example, transcriptional
regulatory network is one of the most complex networks
in a cell. It is thought that these networks have evolved to
optimize the mechanisms responsible for processing
external information such as environmental nutrients and
a diverse range of stress signals [19]. Then, it is possible
that, in general, different environmental conditions may
have significantly influenced the structures in cellular net-
works in a diverse manner.

In this work, we present an analysis for uncovering the
effects of exogenous forces in shaping structures in meta-
bolic networks. We used here the KEGG database: Kyoto
Encyclopedia of Genes and Genomes [20] and PGTdb:
The Prokaryotic Growth Temperature Database [3]. We
selected prokaryotes from KEGG whose optimal growth
temperature is assigned in PGTdb. We then constructed
metabolic networks of the prokaryotes as substrate
graphs, in which nodes and edges correspond to metabo-
lites and binary relationships between them, respectively
(see Methods for details). In addition, we used two types
of the metabolic networks to investigate the effect of ubiq-
uitous metabolites, such as water and ATP, on the correla-
tion between the structural properties and optimal growth
temperature. First, we construct a complete network for
each prokaryotic organism, which involves all metabo-
lites. Next, a second network for each organism was con-
structed by deleting 13 nodes as ubiquitous metabolites,
which serve for energy exchange, exchange of a proton or
a phosphate moiety, and so on, and edges which connect
to the ubiquitous metabolites from the complete network
(see Methods for details). We then extracted the largest
connected components from the complete metabolic net-
works and selected 113 prokaryotes for each of which the
size of the component in the network without ubiquitous
metabolites is more than 200. This procedure is done to
evaluate more accurately the structural properties.

In 113 prokaryotes, we found 9 hyperthermophiles, 9
thermophiles, 94 mesophiles, and one psychrophile
based on PGTdb. Next, we computed several graph met-
rics to characterize structural properties: the edge density,
the degree exponent, the clustering coefficient, and the
subgraph concentration corresponding to the metabolic
networks of 113 prokaryotes constructed as above. We
then investigated the correlation between these structural
properties and optimal growth temperature. As a main
result, our analysis revealed statistically significant corre-
lations between the network structure and temperature.
Although the strength of the correlation is not strong, it is
significant enough to suggest that environmental factors
play an important role in the design principles of net-
works.
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Results
Density of chemical reactions decreases with temperature
First, we show a correlation between the edge density,
defined as the ratio of the total number of edges to the
total number of nodes, of the metabolic networks and
temperature. From biological viewpoint, the edge density
represents the ratio of chemical reactions to metabolites.
Using the edge density, we can understand how dense the
chemical reactions are in metabolic networks.

Figures 1(a) and 1(b) show significant negative correla-
tions between the edge density and optimal growth tem-

perature. This feature is observed with both the complete
networks and the networks without ubiquitous chemical
compounds. As shown in Figure 1, the edge density
becomes small with temperature, indicating that density
of chemical reactions decreases in metabolic networks
with temperature.

Connectivity becomes homogeneous with temperature
Next, we consider a relationship between the connectivity
of the metabolic networks and growth temperature. The
connectivity means the number of edges which a metabo-
lites has, and is so-called degree in graph theory. In order
to characterize the degree, the degree distribution P(k),
defined as the probability that a randomly selected node
has exactly k edges, is often utilized. Many analyses of
metabolic networks using degree distribution have
revealed that the degree distribution of metabolic net-
works follows a power law: P(k) ∝ k-γ [1,4,6,15,16]. This
structural property is called scale-freeness. Here, we focus
on the degree exponent γ, because the exponent reflects a
macroscopic tendency of the connectivity in networks. As
the degree exponent increases, the probability that a node
with large degree exists in a network decreases. That is,
most nodes have similar degrees in the networks, indicat-
ing that the connectivity of the network is homogeneous
as a random network. When the exponent becomes low,
in contrast, the probability that a node with large degree
exists in a network becomes high. That is, nodes tend to
have different degrees in the networks, suggesting that the
connectivity of the network is heterogeneous, and there-
fore is statistically possible to find highly connected nodes
or hubs.

Figures 2(a) and 2(b) show significant positive correla-
tions between the degree exponent and optimal growth
temperature. This property is conserved between the com-
plete networks and the networks without ubiquitous
metabolites. We extracted the degree exponent using the
maximum likelihood method (see Methods for details).
As shown in Figure 2, the degree exponent increases with
temperature, indicating that the connectivity of the meta-
bolic networks becomes homogeneous with temperature.

Modularity decreases with temperature
Next, we discuss a relationship between the modularity of
the metabolic networks and temperature. In this paper,
the modularity is based on the graph-theoretic clustering
coefficient as Ref. [7], and indicates the density of edges
among neighbors of a node. And note that the clustering-
coefficient-based modularity is different from the edge-
betweenness-based modularity [21] and the flux-balance-
analysis-based modularity [22]. In this paper, we focus on
graph-theoretic aspects, and then the high modularity
indicates that reactions among neighboring metabolites
of a metabolite are very dense in the metabolic networks.

Correlation between edge density and temperatureFigure 1
Correlation between edge density and temperature. 
(a) The complete networks (Pearson's correlation r = -0.42 
with P < 10-5, Spearman's rank correlation rs = -0.30 with P < 
0.01), (b) the networks without the ubiquitous metabolite (r 
= -0.54 with P < 10-9, rs = -0.33 with P < 0.001), and (c) aver-
aging based on growth temperature class.
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The clustering coefficient is defined as the edge density of
the neighbors of a node (see Methods for details), and
characterizes the overall tendency of nodes to form clus-
ters in the networks. In the case of high modularity, the
clustering coefficient is high.

Figures 3(a) and 3(b) show significant negative correla-
tions between the clustering coefficient and optimal
growth temperature. This phenomenon is identical
between the complete networks and the networks without
ubiquitous metabolites. As shown in Figure 3, the cluster-

ing coefficient decays with temperature, implying that the
modularity of the networks decreases with temperature.

So far, we have discussed the overall tendency of the mod-
ularity in the metabolic networks. Next, we consider a
dependency of degree (the number of reactions) on the
clustering coefficient to reveal a local tendency of the
modularity in the networks. For this, we utilize the degree-
dependent clustering coefficient C(k), defined as the clus-
tering coefficient with degree k (see Methods for details).

Correlation between degree exponent and temperatureFigure 2
Correlation between degree exponent and tempera-
ture. (a) The complete networks (Pearson's correlation r = 
0.45 with P < 10-6, Spearman's rank correlation rs = 0.27 with 
P < 0.01), (b) the networks without the ubiquitous metabo-
lites (r = 0.52 with P < 10-8, rs = 0.27 with P < 0.01), and (c) 
averaging based on growth temperature class.
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Correlation between clustering coefficient and temperatureFigure 3
Correlation between clustering coefficient and tem-
perature. (a) The complete networks (Pearson's correlation 
r = -0.59 with P < 10-11, Spearman's rank correlation rs - 0.28 
with P < 0.01), (b) the networks without the ubiquitous 
metabolites (r = -0.58 with P < 10-10, rs = -0.30 with P < 0.01), 
and (c) averaging based on growth temperature class.
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Figures 4(a) and 4(b) show the degree-dependent cluster-
ing coefficient C(k) for the four growth temperature
classes. In addition, C(k) is averaged based on the growth
temperature class. As shown in Figure 4, the degree-
dependent clustering coefficient tends to decay within
small degree (2 ≤ k ≤ 4) with temperature. For the large
degree (k ≥ 5), in contrast, the clustering coefficient is
almost constant even though the temperature changes.
This tendency is the same both in complete networks and
in the networks without ubiquitous metabolites. In order
to evaluate the significance of this variance, we investi-
gated a correlation between the clustering coefficient with
degree k and optimal growth temperature [see Additional
file 1]. Because of space limitation, we do not include
additional figures. Instead of the figures, we show the cor-
relation coefficient and the P-value for the correlation
between C(k) and optimal growth temperature (Table 1).
As shown in Table 1, there tends to be the significant cor-

relations within the small degree. On the other hand,
weak correlations are observed for the large degree.

This result indicates that the variance of the overall mod-
ularity as shown in Figure 3 is caused by the change of the
modularity for the metabolites with few chemical reac-
tions in the networks.

Frequency of appearance of recurring subgraphs decays 
with temperature
Finally, we argue a relationship between a frequency of
appearance of specific subgraphs and temperature. In
order to investigate the frequency, we consider (nt)-sub-
graph concentration Cnt (see Methods for details). It is
well-known that the abundance of recurring subgraphs in
biological networks, such as gene regulatory network and
metabolic networks, plays an important role in a func-
tional level. These subgraphs are so-called network motifs.

Degree-dependent clustering coefficient C(k) for growth temperature classFigure 4
Degree-dependent clustering coefficient C(k) for growth temperature class. (a) The complete networks and (b) the 
networks without the ubiquitous metabolites. The solid lines are drawn by Bezier curve.
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In particular, triangles and more complex designs com-
posed of the multiple triangles, occur quite frequently in
networks, and tend to be involved in control mechanisms
of biological systems [11,12,14]. Since it is believed that
the triangles and several larger subgraphs are important in
biological networks as above, we focus on two types of the
recurring subgraphs: (31)-subgraph (triangle) and (42)-
subgraph (square including two triangles), and investigate
the subgraph concentrations.

Figures 5(b) and 5(e) show significant negative correla-
tions between (31)-subgraph and (42)-subgraph concen-
tration and optimal growth temperature in the networks
without ubiquitous metabolites. As shown in Figures 5(a)
and 5(c), on the other hand, the correlation in the com-
plete metabolic networks is weak. That is, the correlation
becomes clear after removal of ubiquitous metabolites. As
shown in Figure 5, the subgraph concentration of the net-
works without ubiquitous metabolites decays with tem-
perature, suggesting that the probability to find the
analyzed subgraphs in the networks decreases with tem-
perature.

Discussion
From this analysis, several correlations between structural
properties and temperature have been revealed. In partic-
ular, we have found that the decrease in the edge density,
the clustering coefficient and the subgraph concentration
and the increase in the degree exponent were correlated
with increasing temperature. In the following, we briefly
discuss several interesting issues related to our results.

As shown in Figure 5, the correlation between structure
and temperature becomes more significant (see correla-
tion coefficient and P-value) in the case of removing ubiq-
uitous metabolites. This implies that the correlations
between structure and temperature are independent of the
ubiquitous metabolites and the reactions in which the
metabolites are involved. That is, it is expected that there
are relevant temperature-dependent chemical reactions in
metabolic networks. We may be able to find such reac-

tions via a comparison of metabolic networks between in
thermophiles and in non-thermophiles.

Now, we speculate how the structural properties of meta-
bolic networks changes with temperature. Structure of
networks is determined by connections among nodes. We
then contemplate that enzymes that catalyze chemical
reactions are concerned in the structural transition of met-
abolic networks with increasing temperature.

First, we discuss the variance of the density of the chemical
reactions with temperature. The density of the chemical
reactions becomes low with temperature. One hypothesis
could be as follows. It is believed that metabolic networks
evolve by gene duplication [24,25]. That is, the number of
chemical reactions increases when new enzymes gener-
ated by gene duplication stay and act in metabolic net-
works. In addition, it is reported that the selective
constraint at the amino acid level in thermophiles is
stronger than that in nonthermophiles [26]. This implies
that it is hard for the new enzymes generated by gene
duplication to stay in metabolic networks of ther-
mophiles. For this reason, therefore, we speculate that the
density of chemical reactions of hyperthermophile and
thermophiles is lower than that of mesophile and psy-
chrophiles.

Second, we speculate about the change of the clustering
coefficient and subgraph concentration with temperature.
The clustering coefficient and the subgraph concentration
decay with temperature. One possible explanation is as
follows. As before, it is believed that the evolution of met-
abolic networks is caused by gene duplication. A new
enzyme generated by gene duplication tends to be func-
tionally similar to the original enzyme. That is, we expect
that the new enzyme tends to catalyze chemical reactions
among neighbors of the metabolites in the chemical reac-
tion catalyzed by the original enzyme, when the new
enzyme stays and acts in metabolic networks. By gene
duplication, as a result, it is conjectured that chemical
reactions among the neighbor metabolites of a metabolite
are dense, and triangles are generated.

Table 1: Correlation coefficient and the P-value for the correlation of C(k) and optimal growth temperature

Network Complete w/o ubiquitous metabolites

C(k) r rs r rs

C(2) -0.40 (P < 10-5) -0.30 (P < 0.01) -0.23 (P < 0.05) -0.12 (P = 0.20)
C(3) -0.39 (P < 10-4) -0.11 (P = 0.23) -0.55 (P < 10-9) -0.31 (P < 0.001)
C(4) -0.50 (P < 10-7) -0.34 (P < 0.001) -0.52 (P < 10-8) -0.33 (P < 0.001)
C(5) 0.13 (P = 0.17) 0.17 (P = 0.07) -0.27 (P < 0.01) -0.16 (P = 0.09)
C(6) 0.04 (P = 0.66) 0.15 (P = 0.21) -0.38 (P < 10-4) -0.24 (P < 0.05)

r and rs correspond to Pearson's correlation coefficient and Spearman's rank correlation coefficient, respectively.
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As above, it may be hard for the new enzymes generated
by gene duplication to stay in metabolic networks of ther-
mophiles because of the strong selective constraint. There-
fore, connections among neighbors of a metabolite and
generation of triangles may be inhibited with increasing
temperature. For this reason, the clustering coefficient and
the subgraph concentration may decay with temperature.

We consider the variance of the connectivity with the tem-
perature and speculate about its origin. The degree expo-

nent increases with temperature, indicating that
connectivity becomes homogeneous with temperature. It
is well-known that the degree distribution of metabolic
networks follows a power law [1,4,6,15,16]. It is impor-
tant for emergence of the power law to consider a prefer-
ential attachment mechanism which means that
metabolites with many reactions better tend to get new
reaction [1,4,6]. As a result, connectivity is heterogeneous
due to the preferential attachment. Actually, it have been
confirmed that the metabolic networks growth through

Correlation between subgraph concentration and temperatureFigure 5
Correlation between subgraph concentration and temperature. (31)-subgraph concentration: (a) the complete net-
works (Pearson's correlation r = -0.30 with P < 0.01, Spearman's rank correlation rs = -0.10 with P = 0.29), (b) the networks 
without the ubiquitous metabolites (r = -0.50 with P < 10-7, rs = -0.26 with P < 0.01), and (c) averaging based on growth temper-
ature class. (42)-subgraph concentration: (d) the complete networks (r = -0.32 with P < 0.001, rs = -0.21 with P < 0.05), (e) the 
networks without the ubiquitous metabolites (r = -0.41 with P < 10-5, rs = -0.28 with P < 0.01), and (f) averaging based on 
growth temperature class.
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the preferential attachment [27]. That is, it is expected that
the heterogeneity of connectivity becomes strong when
the number of chemical reactions increases. In addition, it
is believed that the preferential attachment is induced by
gene duplication and gene mutation [28]. As above, the
tendency of increment of chemical reactions becomes
weak with temperature because of the strong selective
constraint. Therefore, connectivity in hyperthermophilic
and thermophilic metabolic networks may be more
homogeneous than that in mesophilic and psychrophilic
metabolic networks.

Moreover, our results can provide new insights into recent
analyses on metabolic networks. In Ref. [18], it was
shown that the metabolic networks of archaea are essen-
tially different from the metabolic networks of bacteria.
Most archaea tend to belong to hyperthermophiles and
thermophiles, and most bacteria tend to be referred to
mesophiles. We have shown here that the network struc-
ture is different among growth temperature classes. Thus,
it may suggest that network structures are different
between archaea and bacteria because they belong to dif-
ferent growth temperature classes.

In this work, the metabolic networks are represented as
simple graphs and are described by binary relationships
between substrates and products as shown in Figure 6.
This graph representation has been widely used in a series
of works exploring the topology of metabolic networks
[7,15]. However, it is worth noticing that this representa-
tion does not consider all metabolic information, as for
example the reaction directions and the stoichiometric
matrix (S-matrix). In addition, some works have focused
on exploring metabolic networks with different methods
and techniques such as triad significance profile [29], the
metabolic control analysis [30], the elementary mode
analysis [31]. Among the recent topological studies of
metabolic networks, the topological analysis of an S-
graph constructed from the S-matrix was recently sug-
gested in [32]. The S-graph is represented as a complicated
graph with two types of nodes: reactions nodes and
metabolite nodes. In this work, in contrast, we consider
simple graphs represented with one type of nodes as
[1,7,15], which in some cases may suppress relevant bio-
chemical information. The topological analysis based on
the S-matrix also allows us to visualize the complete path-
ways from basic chemical precursors to complex synthe-
sized molecules. Thus, this representation is useful to
investigate biochemical mechanisms behind metabolic
networks. However, we believe that our graph representa-
tion is suitable for the aim of the present study because it
is hard to analyze several structural properties of the com-
plicated graphs due to that the development of tools for
analysis of the complicated graphs has been yet more
backward than that of simple graphs.

On the other hand, we have not included eukaryotic met-
abolic networks which are absent in the growth tempera-
ture database: PGTdb [3]. However, most eukaryote (e.g.
plants and animals) belongs to mesophiles because the
eukaryote grows at normal temperature (≈ 37°C). There-
fore, we predict that structures of metabolic networks are
similar between eukaryote and bacteria, which also
belong to mesophiles. In Ref. [18], it was recently reported
that the network structures are similar between the bacte-
ria and the eukaryote, therefore our results are in agree-
ment with this previous study.

To conclude this section, we note that most of the earliest
theories for evolving networks [4,33] have not considered
the effect of external factors. This is particularly true for
the case of the temperature, which is one of the important
environmental factors. Therefore, the establishment of a
complete theory for the network evolution considering
such environmental factors is an important future chal-
lenge.

Conclusion
We have explored here the relationship between structure
and temperature, which is one of environmental forces, in
metabolic networks of prokaryotic organisms. As a result,
we have found statistically significant correlations
between structure and temperature. However, it should be
noted that this correlation is not strong. Our findings
indicate that the structure of metabolic networks tends to
transit with temperature as follows. The density of chemi-

Representations of metabolic networksFigure 6
Representations of metabolic networks. (a) A chemical 
reaction catalyzed by an enzyme E. (b) The representation of 
the reaction (a) in KEGG. (c) The representation of (a) in the 
metabolic network we used.
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cal reactions becomes low, the connectivity of the net-
works becomes homogeneous such as random networks,
the clustering-coefficient-based modularity of the net-
works becomes small, and the frequency of recurring sub-
graphs decays. In short, this result implies that metabolic
networks transit from heterogeneous and high-modular
(high-clustered) structures to homogeneous and low-
modular (less-clustered) structures, such as random net-
works, with temperature. This finding raises the question
of what mechanisms were developed during the evolution
that induced the absence (or presence) of specific
enzymes (chemical reactions) in response to different
temperature. Furthermore, our findings also suggest that
another possible exogenous force may exist which could
also be responsible for shaping biological networks.
Therefore, further studies in this research line may provide
valuable insights into the evolution of networks.

Methods
Network construction
We downloaded the metabolic pathways of 113 prokary-
otes from KEGG: Kyoto Encyclopedia of Genes and
Genomes [20]. In the metabolic pathways, a chemical
reaction catalyzed by an enzyme, e.g. Figure 6(a), is
expressed as a directed bipartite graph that consists of
enzymes and metabolites by consideration of connections
between substrates and products without stoichiometry as
shown in Figure 6(b). Here, we expressed the metabolic
pathways as a undirected graph as shown in Figure 6(c),
by assuming the metabolites and the binary relationship
between them as nodes and unweighted and undirected
edges, respectively. That is, the metabolic networks only
describe a binary relationship between a substrate and a
product. In addition, such graph is so-called a substrate
graph. For example, we consider a reaction as shown in
Figure 6(a). In this reaction, P1 and P2 are produced by S1
and S2 via E. Then, we express this reaction as a directed
graph in which each substrate (S1 and S2) connects to E.
and E connects to P1 and P2, as shown in Figure 6(b).
Here we only focus on the relationship between substrates
and products. S1 and S2 are related in the production of
P1 and P2. Thus, we express this reaction as a undirected
graph in which S1 and S2 connect to P1 and P2, as shown
in Figure 6(c).

For the metabolic networks, we considered two situations:
one is the case of including all metabolites, and another is
the case of removing 13 ubiquitous metabolites: water,
ATP, ADP, NAD, NADH, NADPH, carbon dioxide, ammo-
nia, sulfate, thioredoxin, (ortho) phosphate (P), pyro-
phosphate (PP), and H+. In the case of the removing 13
ubiquitous metabolites, the metabolic networks are con-
structed as follows. In Figure 6(b), for example, if S1 is a
ubiquitous metabolite, then we remove node S1 and the
link between node S1 and node E. And we transform the

bipartite graph generated by this procedure into a sub-
strate graph represented by the metabolites and the binary
relationship between them as shown in Figure 6(c). As it
is known that in the case of removing the ubiquitous
metabolites, the network structure may undergo drastic
changes [15-17].

Optimal growth temperature and growth temperature 
class
We got optimal growth temperature of 113 prokaryotes
from PGTdb: The Prokaryotic Growth Temperature Data-
base [3]. And, we classified the prokaryotes into four
growth temperature classes according to PGTdb.

Maximum likelihood estimate of degree exponent
Assuming that degree distribution of the metabolic net-
works follows a power law: P(k) ∝ k-γ, the degree expo-
nents γ are extracted using maximum likelihood estimate
given by the formula [23]

where N corresponds to the number of nodes in the met-
abolic networks, and ki is degree (number of edges) of
node i. kmin is the smallest degree in the networks.

Clustering coefficient
The clustering coefficient of node i with degree ki is
defined as Ci = 2Mi/[ki(ki - 1)] [5,7], where Mi denotes the
number of edges among neighbors of node i. Moreover,
we define the average value of Ci as the clustering coeffi-
cient:

Degree-dependent clustering coefficient
The degree-dependent clustering coefficient means the
average clustering coefficient of nodes with degree k, and
is defined as

where δ(x) is Kronecker's delta function.

Subgraph and the concentration

The (nt)-subgraph consists of a central node, n - 1 neigh-
bors and n - 1 + t edges, where t denotes the number of
edges among the neighbors [13]. That is, a subgraph com-
posed of n nodes contains (n - 1)(n - 2)/2 + 1 different
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subgraphs because the maximal value of t is . Fig-

ure 7 shows the types of 3 and 4 node-subgraphs. The sub-
graphs are more interconnected with increasing t.

The subgraph concentration Cnt [13] denotes a fraction of
(nt)-subgraph abundance in all types of n-node sub-
graphs, and is defined as

where Snt corresponds to (nt)-subgraph abundance.

Statistical analysis
In order to assess the significance of the observed correla-
tions, we used Pearson's correlation coefficient r, Spear-
man's rank correlation coefficient rs and, their P-value P.
We determine that there is a significant correlation
between the structural property and optimal growth tem-
perature when P < 0.05.
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