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Abstract
Background: Automated identification of cell cycle phases of individual live cells in a large
population captured via automated fluorescence microscopy technique is important for cancer
drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an
important method to study the cell cycle process under different conditions of perturbation.
Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not
feasible. This paper presents statistical data analysis and statistical pattern recognition to perform
this task.

Results: The data is generated from Hela H2B GFP cells imaged during a 2-day period with images
acquired 15 minutes apart using an automated time-lapse fluorescence microscopy. The patterns
are described with four kinds of features, including twelve general features, Haralick texture
features, Zernike moment features, and wavelet features. To generate a new set of features with
more discriminate power, the commonly used feature reduction techniques are used, which
include Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Maximum
Margin Criterion (MMC), Stepwise Discriminate Analysis based Feature Selection (SDAFS), and
Genetic Algorithm based Feature Selection (GAFS). Then, we propose a Context Based Mixture
Model (CBMM) for dealing with the time-series cell sequence information and compare it to other
traditional classifiers: Support Vector Machine (SVM), Neural Network (NN), and K-Nearest
Neighbor (KNN). Being a standard practice in machine learning, we systematically compare the
performance of a number of common feature reduction techniques and classifiers to select an
optimal combination of a feature reduction technique and a classifier. A cellular database containing
100 manually labelled subsequence is built for evaluating the performance of the classifiers. The
generalization error is estimated using the cross validation technique. The experimental results
show that CBMM outperforms all other classifies in identifying prophase and has the best overall
performance.

Conclusion: The application of feature reduction techniques can improve the prediction accuracy
significantly. CBMM can effectively utilize the contextual information and has the best overall
performance when combined with any of the previously mentioned feature reduction techniques.
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Background
Quantitating the changes in cell cycle timing before and
after drug treatment is useful for effective drug discovery
research. Knowledge of the cell cycle progression, e.g.,
interphase, prophase, metaphase, and anaphase, is
important to improving our understanding of the effects
of various drugs on cancer cells [1-4]. Cell cycle progress
can be identified by measuring changes in the nucleus as
a function of time. Automated time-lapse fluorescence
microscopy imaging provides an effective method to
observe and study nuclei dynamically and is an important
quantitative technique in the fields of cell biology and sys-
tems biology [2-4]. Nevertheless, the vast amount and
complexity of image data acquired from automated
microscopy renders manual analysis unreasonably time-
consuming. Accurate automatic classification of cell
nuclei into interphase, prophase, metaphase, or ana-
phase, is an unresolved issue in cell biology studies using
fluorescence microscopy. Murphy et al. [5-9] have pro-
posed different feature extraction, feature reduction, and
classification algorithms for a similar problem of classifi-
cation of subcellular location patterns in fluorescence
microscope images. Methods have also been proposed to
identify the cell cycle phase recognition. Gallardo et al.
[10] used Hidden Markov Models (HMMs) to classify the
feature vector sequences that are extracted from the seg-
mented, potential mitotic cells. Chen et al. [11] proposed
an automated system to segment, classify, and track indi-
viduals in live cell population, in which the KNN classifier
with a set of seven features was used. A novel hybrid frag-
ments merging method based on watershed segmentation
and HMMs is also proposed for cell phase identification
[1,2].

In this work, an automated analytical system [1,2] is used
to acquire images, track cell nuclei and generate features
of each cell nucleus in a population of thousands of cells.
In these specific time-lapse fluorescence microscopy
images, nuclei are bright objects protruding out from a
relatively uniform dark background; see an example in
Figure 1. The cell nuclei are segmented from the acquired
images and represented by a group of features for phase
identification. To extract features from these time-lapse
fluorescence images, four operating steps are conducted
[1,2]: image preprocessing, cell nuclei segmentation, frag-
ment merging, and cell nuclei tracking. After that, 145 fea-
tures are extracted from each cell nucleus. But there are
many noisy and functionally redundant features. Thus it
is necessary to remove the noisy, irrelevant, and redun-
dant features with feature reduction techniques. Many fea-
ture reduction methods have been proposed to improve
the efficiency and effectiveness of cell phase identification
[1,6,7,12,13].

Feature reduction techniques can be generally classified
into feature extraction and feature selection approaches
[13,15-19]. Commonly used feature extraction algo-
rithms, such as PCA [16,17], Linear Discriminant Analysis
(LDA) [17,18], and Maximum Margin Criterion (MMC)
[19] are investigated in this work. In PCA, the linear pro-
jections of the greatest variance from the top eigenvectors
of the covariance matrix are computed, which works well
when the data lies close to a flat manifold. LDA is one of
the most commonly used supervised feature extraction
algorithms. It is used to locate a lower dimensional space
that best discriminates the samples from different classes.
LDA explicitly utilizes the label information of the sam-
ples and thus is suitable for classification problems. How-
ever, it often suffers from small sample size when dealing
with the high dimensional image data. Moreover, while
LDA is guaranteed to find the best directions when each
class has a Gaussian density with a common covariance
matrix, it may fail if the class densities are more general-
ized. To solve the limitations of LDA, MCC, a supervised
approach, has recently been proposed. The computation
complexity of MMC is lower than LDA. In addition, the
SDAFS is proposed as the best approach in feature selec-
tion for cell phase identification [7]. Other approaches,
such as MIFS [15,20], GAFS [21], and T-test based Feature
Selection (TFS) [22], are also evaluated. It is a NP-hard
problem to determine the optimal feature subset for MIFS
by global search. So we adopt a greedy searching algo-
rithm, in which the features with the highest average
mutual information are selected. Genetic algorithm
[17,21] is a classical random optimization method, which

A gray level image of a population of cells showing only nuclei channelFigure 1
A gray level image of a population of cells showing 
only nuclei channel. The image shows the nuclei after 
image enhancements.
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mimics the evolutionary process of survival of the fittest.
A T-test is used to generate the initial individual feature
subset, which belongs to the "Population" in the GA algo-
rithm. To classify cell nuclei, some researchers have used
KNN [11,17], BPNN [8], and SVM [23,24] to classify cell
nuclei. Though acceptable results have been reported,
both of them ignored the contextual information of time-
lapse microscopy. To utilize the contextual information,
we propose a Context Based Mixture Model. Finally, as a
standard practice in machine learning, a systematic com-
parison is conducted to select an optimal combination of
a feature reduction technique and a classifier.

Feature reduction techniques can effectively improve the
prediction accuracy, and more features do not necessarily
guarantee better performance. Our finding indicates that
CBMM outperforms SVM, BPNN, and KNN in identifying
prophase and achieves the best overall performance.

Results
Key Steps
The experiments consist of the following six steps.

Step 1. Image processing: Include image pre-processing,
thresholding, fragment merging, and tracking. The cell
nuclei are segmented from the background and tracked as
cell sequences, refer to [1,2,25-27] for a detailed descrip-
tion.

Step 2. Feature generation: Generate 145 features for each
cell nucleus in all tracked sequences.

Step 3. Data labeling and splitting: Label 100 cell
sequences manually as interphase, prophase, metaphase,
and anaphase.

Step 4. Feature reduction: Use the six different approaches
introduced in this paper to reduce the dimension of vector
space.

Step 5. Classifier training: Train the classifiers using
reduced training data, the four classifiers are trained using
the reduced training data obtained from step 4.

Step 6. Phase identification: Identify cell cycle phases of
the cells from the reduced testing data.

Materials
The data is generated from HeLa H2B GFP cells imaged
during a 2-day period with images acquired 15 minutes
apart using an automated time-lapse fluorescence micros-
copy. H2B GFP is a recombinant protein that localizes to
DNA and is fluorescent. Each image has a resolution of
672*512 pixels. To get more reliable training data from
each tracked cell sequence, we select the frames where the

cell is in mitosis, thus including interphase, prophase,
metaphase, and anaphase. In addition, the subsequence is
supposed to start from a cell in interphase and end with a
cell in anaphase. There are totally 100 manually labeled
subsequences. A typical 200-frames sample of digital
microscope images contains at least 18,000 interphase
cells and the other types of cells sum up to less than 1,000.
Obviously, the data sets are critically imbalanced. To han-
dle this problem, we down-sample the interphase cells
greatly while keeping other three classes of cells. But there
are still serious problems with unequal distribution of the
training examples, e.g., there are only 100 prophase cells
and 306 anaphase cells.

Image Processing and Feature Generation
During cell phase identification, it is critical to separate
nuclei from the background. Nuclei are bright objects pro-
truding out from a relatively uniform dark background.
Digital images usually require pre-processing to remove
noise, discard undesirable features, and correct illumina-
tion artifacts. In a sequence of cell images, our pre-
processing procedure includes four steps: image enhance-
ment, adaptive shareholding, morphological filtering,
and distance transformation [1-4,11]. Although the adap-
tive threshold can segment all the cells from the back-
ground effectively, it cannot separate touching nuclei
clusters. To solve this problem, our system utilizes a
watershed algorithm. Traditional watershed segmenta-
tion, however, will lead to over-segmentation. Thus, a
hybrid fragment merging approach that combines the
roughness score and Probability Distribution Function
(PDF) score of each cell is used [1-4,25-27]. This algo-
rithm can effectively segment separated nuclei and most
of the touching ones. The dynamic behaviors of cell nuclei
are tracked by distance and size. After tracking, the per-
formance of fragment merging is improved by the contex-
tual information. The revised segmentation results are
then used to reinforce the tracking performance.

After obtaining the segmented nuclei, feature vectors that
each contains 145 features are generated to represent the
cells. They compose of twelve general image features
about shape, size, and intensity (max intensity, min inten-
sity, deviation of gray level, average intensity, length of
long axis, length of short axis, long axis/short axis, area,
perimeter) [11]; 14 Haralick co-occurrence textural fea-
tures [6,28]; 49 Zernike moment features [6,29], and 70
features generated by Gabor transformation [2,30].

Parameters
To determine the dimensionality of the lower space for
feature extraction algorithms, we vary the ratio of the
energy preserved by feature extraction algorithms from
80% to 95% and compare the performance of different
classifiers. Our results show that when the reduced dimen-
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sionality is 15, almost all the classifiers reach their best
performance. Therefore, the reduced dimensionality for
feature extraction algorithms is estimated as 15, with
which 90% of the energy is preserved by PCA. With the FS
algorithms, 10, 20, 30, 40, and 50 features are selected to
compare the performance. We reduce the dimensions to
20 for all FS approaches. Both linear kernel and RBF ker-
nel are used for the SVM classifier. The genetic algorithm
is used in feature selection, and the parameters are as fol-
lows: populations size of 200, maximum generation size
of 200, the portion of crossover is set to 0.5-th of the fea-
ture length, and the mutation rate is 0.3. One of the 200
populations is initialized with t-test feature selection
method. The best performance of KNN is achieved by
selecting K = 7 for cell phase identification. A BPNN [8]
with a single hidden layer of 20 nodes is used to classify
the four classes of cell phases, and is trained with back
propagation algorithm. The best performance of SVM is
always achieved by linear kernel except for the case with-
out feature reduction. Only linear FE approaches are used

in this paper due to their efficiency in contrast to nonlin-
ear ones [31]. Thus, as indicated in Table 1 and 2, the best
performance of SVM using linear kernel and RBF kernel is
reported.

Measurements
We use precision and sensitivity as the measurements for
our experimental results. Suppose TP, FP, and FN stand
for the number of true positive, false positive and false
negative samples respectively after the completion of cell
phase identification. Precision is defined as precision =
TP/(TP+FP), and sensitivity is defined as sensitivity = TP/
(TP+FN). In other words, precision is the portion of cells
identified positively that are really positive. Sensitivity
refers to the ability to identify positive cells correctly. We
can calculate the precision and sensitivity for each class if
we treat one class as positive and other classes as negative.
The average precision and sensitivity of the four classes is
used to indicate the overall performance. The ten-fold
cross validation is used for testing the trained classifiers.

Table 1: The precision of the combinations of various classifiers and feature reduction algorithms.

classifier FR algorithm Precision (confidence Interval) (at 90% confidence level)

class 1 class 2 class 3 class 4

CBMM PCA 0.9129 (0.8824,0.9433) 0.8683 (0.7723,0.9643) 0.9412 (0.9055,0.9770) 0.8586 (0.8011,0.9160)
LDA 0.9021 (0.8786,0.9758) 0.8614 (0.8010,0.9218) 0.9496 (0.9432,0.9756) 0.8536 (0.8172,0.8900)
MMC 0.9170 (0.8850,0.9490) 0.8417 (0.7253,0.9581) 0.9354 (0.8973,0.9734) 0.8022 (0.7672,0.8371)
SDAFS 0.8487 (0.8064,0.8910) 0.7967 (0.7023,0.8906) 0.9484 (0.9048,0.9920) 0.8700 (0.8244,0.9156)
MIFS 0.7902 (0.7449,0.8357) 0.7633 (0.6735,0.8531) 0.9483 (0.9204,0.9761) 0.8783 (0.8208,0.9358)
GA 0.8556 (0.823,0.8883) 0.7833 (0.6584,0.9083) 0.9642 (0.9336,0.9947) 0.8881 (0.8422,0.9340)

SVM PCA 0.9200 (0.9022,0.9375) 0.7518 (0.7045,0.7991) 0.9088 (0.8896,0.9279) 0.8069 (0.7721,0.8417)
LDA 0.9969 (0.9911,1.0026) 0 (0,0) 0.8840 (0.8487,0.9193) 0 (0,0)
MMC 0.9216 (0.9119,0.9314) 0.6655 (0.5946,0.7363) 0.8960 (0.8724,0.9195) 0.7190 (0.6670,0.7681)
SDAFS 0.9457 (0.9372,0.9542) 0.6018 (0.5409,0.6627) 0.9214 (0.9059,0.9369) 0.8048 (0.7501,0.8596)
MIFS 0.9457 (0.9257,0.9656) 0.6454 (0.5438,0.7470) 0.9086 (0.8819,0.9353) 0.8401 (0.7913,0.8888)
GA 0.9381 (0.9194,0.9568) 0.7827 (0.7173,0.8481) 0.9172 (0.8902,0.9441) 0.8396 (0.7930,0.8661)

KNN PCA 0.9487 (0.9349,0.9625) 0.6691 (0.5927,0.7455) 0.9215 (0.8977,0.9454) 0.7588 (0.7167,0.8001)
LDA 0.7313 (0.6975,0.7652) 0.2773 (0.2005,0.3541) 0.2144 (0.1767,0.2520) 0.0922 (0.0605,0.1238)
MMC 0.9532 (0.9367,0.9699) 0.6327 (0.5570,0.7084) 0.9171 (0.8984,0.9360) 0.7387 (0.6764,0.8010)
SDAFS 0.9487 (0.9393,0.9582) 0.5110 (0.4324,0.5895) 0.9150 (0.8831,0.9469) 0.7908 (0.7541,0.8275)
MIFS 0.9532 (0.9376,0.9689) 0.5518 (0.4832,0.6204) 0.9087 (0.8932,0.9242) 0.8040 (0.7732,0.8347)
GA 0.9668 (0.9481,0.9856) 0.6273 (0.5469,0.7077) 0.9384 (0.9276,0.9492) 0.7841 (0.7420,0.8262)

BPNN PCA 0.9004 (0.8707,0.9301) 0.6817 (0.5352,0.8281) 0.8876 (0.8369,0.9383) 0.8106 (0.7669,0.8543)
LDA 0.8929 (0.8513,0.9345) 0.0100 (0.000,0.0283) 0.7746 (0.6147,0.9345) 0.2644 (0.1050,0.4238)
MMC 0.8960 (0.8758,0.9162) 0.4664 (0.2381,0.6947) 0.8895 (0.8501,0.9289) 0.5919 (0.4672,0.7167)
SDAFS 0.7472 (0.5156,0.978) 0.3364 (0.1228,0.5499) 0.7279 (0.5048,0.9509) 0.7032 (0.5559,0.8506)
MIFS 0.8351 (0.6638,1.000) 0.4882 (0.2847,0.6917) 0.7342 (0.5084,0.9599) 0.7687 (0.608,0.9294)
GA 0.7872 (0.6192,0.9552) 0.3791 (0.1147,0.6435) 0.7234 (0.5007,0.9461) 0.7341 (0.5679,0.9003)

The reduced dimensionality for feature extraction algorithm is 15, while the dimensionality for feature selection is 20. The best performance 
combination for each class and each classifier is displayed in bold.
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To address the statistical significance of differences in clas-
sification result, the confidence intervals of classification
accuracies are estimated to be at the 90% confidence level.

Testing Results
We first reduce the data to 15 dimensional vector spaces
with different FE approaches and 20 for all FS approaches.
Table 1 and 2 shows the results of all four classes (class1-
interphase, class2-prophase, class3-metaphase, and
class4-anaphase). We describe the details of all four
classes instead of only their average, since prophase and
metaphase identifications are very important for drug dis-
covery application [1-4,11].

According to Table 1 and 2, it can be observed that CBMM
has the best overall performance regardless of which fea-
ture reduction algorithm is coupled with. PCA combined
with the CBMM classifier outperforms other combina-

tions. Although LDA achieves similar performance, its use
is not recommended due to the singularity problem [18].

Since prophase is more important than the other three
classes for drug screening, we show the specific measure-
ment (precision and sensitivity) of prophase besides the
average measurements of the four classes in Figure 2 and
3. CBMM outperforms SVM, BPNN, and KNN (Figure 2
and 3, (B), (D)) in classifying prophase. On the other
hand, SDAFS has been reported to be the best among all
the FS approaches [7], its performance when combined
with CBMM is shown in Table 3 and 4. From Table 3 and
4, it can be observed that the optimal dimension for
CBMM is 20 and its performance cannot be enhanced sig-
nificantly by the increasing of the subspace dimension.

These conclusions are drawn based on the preliminary
analysis, which can serve as a guideline for future research.

Table 2: The sensitivity of the combinations of various classifiers and feature reduction algorithms.

classifier FR algorithm Sensitivity (confidence Interval) (at 90% confidence level)

class 1 Class 2 class 3 class 4

CBMM PCA 0.9390 (0.9100,0.9680) 0.7602 (0.6786,0.8419) 0.9526 (0.9196,0.9856) 0.8575 (0.8026,0.9125)
LDA 0.9220 (0.8966,0.9773) 0.7567 (0.8096,0.9237) 0.9489 (0.9462,1.000) 0.9460 (0.9101,0.9818)
MMC 0.9202 (0.8979,0.9425) 0.7733 (0.6724,0.8742) 0.9289 (0.9086,0.9491) 0.8445 (0.7774,0.9116)
SDAFS 0.9203 (0.8733,0.9401) 0.5537 (0.3536,0.4756) 0.9588 (0.9367,0.9817) 0.8786 (0.8191,0.9381)
MIFS 0.9067 (0.8733,0.9401) 0.4146 (0.3536,0.4756) 0.9592 (0.9367,0.9817) 0.8786 (0.8191,0.9381)
GA 0.9234 (0.8869,0.9599) 0.5812 (0.4748,0.6877) 0.9611 (0.9344,0.9878) 0.8743 (0.8273,0.9213)

SVM PCA 0.8790 (0.8542,0.9038) 0.8025 (0.7328,0.8722) 0.9192 (0.9067,0.9317) 0.8744 (0.8441,0.9047)
LDA 0.6254 (0.6128,0.6380) NaN 0.8411 (0.8185,0.8636) NaN
MMC 0.8658 (0.8376,0.8941) 0.7694 (0.7061,0.8238) 0.8919 (0.8608,0.9230) 0.8221 (0.7882,0.8560)
SDAFS 0.8731 (0.8519,0.8943) 0.7767 (0.7043,0.8491) 0.9267 (0.9086,0.9447) 0.8966 (0.8734,0.9200)
MIFS 0.8819 (0.8607,0.9030) 0.7814 (0.7113,0.8515) 0.9421 (0.9247,0.9594) 0.8899 (0.8640,0.9157)
GA 0.8936 (0.8727,0.9146) 0.8332 (0.7689,0.8975) 0.9439 (0.9263,0.9615) 0.8852 (0.8480,0.9226)

KNN PCA 0.8570 (0.8328,0.8811) 0.8880 (0.8273,0.9488) 0.9365 (0.9215,0.9515) 0.8753 (0.8467,0.9041)
LDA 0.4596 (0.4455,0.4736) 0.1751 (0.1406,0.2096) 0.4189 (0.3650,0.4729) 03689 (0.2580,0.4800)
MMC 0.8590 (0.8367,0.8812) 0.9139 (0.8692,0.9587) 0.9042 (0.8913,0.9171) 0.8848 (0.8378,0.9318)
SDAFS 0.8556 (0.8389,0.8722) 0.7410 (0.6738,0.8082) 0.9308 (0.9088,0.9527) 0.8958 (0.8776,0.9139)
MIFS 0.8533 (0.8368,0.8698) 0.8312 (0.7372,0.9251) 0.9314 (0.9159,0.9467) 0.9027 (0.8740,0.9314)
GA 0.8741 (0.8556,0.8926) 0.9557 (0.9121,0.9993) 0.9198 (0.9017,0.9379) 0.9223 (0.8890,0.9568)

BPNN PCA 0.8493 (0.7781,0.9204) 0.7500 (0.6490,0.8510) 0.9321 (0.9056,0.9585) 0.8177 (0.7701,0.8652)
LDA 0.7046 (0.6461,0.7631) NaN NaN NaN
MMC 0.8277 (0.7852,0.8702) NaN 0.8407 (0.7881,0.8932) 0.7505 (0.6789,0.8221)
SDAFS NaN NaN NaN NaN
MIFS 0.8683 (0.8302,0.9064) NaN NaN 0.7935 (0.6939,0.8932)
GA NaN NaN NaN NaN

The reduced dimensionality for feature extraction algorithm is 15, while the dimensionality for feature selection is 20. The best performance 
combination for each class and each classifier is displayed in bold.
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With the accumulation of new data, a more detailed and
conclusive analysis will be presented in our future work.

Implementation
The functions for PCA, LDA, MMC, SDAFS, and t-test are
developed in Matlab 6.5. MIFS is adapted from previously
reported source code [1]. The feature generation tools are
adapted from [2,11] and [30], whereas the twelve general
features are generated by Matlab. We use Libsvm [23] as
the SVM classifier and implement the CBMM, BPNN, and
KNN classifier in Matlab 6.5.

Discussion
Our method can successively classify over 80% of the cell
phases. Although such precision is acceptable for most
biological applications, additional heuristic rules and
online-training will improve the precision further. Since

the cell cycle is confined by biological constraints, knowl-
edge-driven heuristic rules can be applied to compensate
for certain phase identification errors. For example, we are
going to implement the following three biological rules to
enhance the system performance:

• Phase progression rule: Once a cell enters a defined cell-
cycle phase, it cannot go back to its previous phase.

• Phase timing rule: The time period that a cell stays in a
phase also obey certain biological rules. Cells will usually
stay in prophase no more than 45 minutes, metaphase for
about 1 hour in untreated cell sequences, and anaphase
under 1 hour. On the other hand, a cell can stay in inter-
phase for more than 20 hours. In time-lapse sequences in
a drug-treated cell population, certain cells can stay in
metaphase for an even longer period of time.

Charts of average precision and sensitivity by CBMM and SVMFigure 2
Charts of average precision and sensitivity by CBMM and SVM. Charts (A), (C) show the average precision and sensi-
tivity of different classifiers; while (B), (D) show the precision and sensitivity of the prophase cell identified by different classifi-
ers.
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Table 3: The precision of SDAFS combined with CBMM when compared over a range of subspace dimensions.

10-d 20-d 30-d 40-d 50-d

Class 1 0.8842 (0.7682,0.8958) 0.8320 (0.7682,0.8958) 0.7718 (0.7142,0.8293) 0.9933 (0.98113,1.000) 1 (1,1)
Class 2 0.785 (0.6918,0.8781) 0.7783 (0.6755,0.8812) 0.4917 (0.2869,0.6964) 0.01667 (0.0000,0.0472) 0 (0,0)
Class 3 0.8544 (0.7980,0.9108) 0.9529 (0.9143,0.9915) 0.7530 (0.6672,0.8388) 0.04 (0.0000,0.1056) 0 (0.0)
Class 4 0.7367 (0.6454,0.8281) 0.8729 (0.8217,0.9240) 0.8731 (0.8108,0.9353) 0.014286 (0,0.0404) 0 (0,0)

The dimensionality ranges from 10 to 50.

Charts of average precision and sensitivity by KNN and BPNNFigure 3
Charts of average precision and sensitivity by KNN and BPNN. Charts (A), (C) show the average precision and sensi-
tivity of different classifiers; while (B), (D) show the precision and sensitivity of the prophase cell identified by different classifi-
ers.
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• Phase continuation rule: Cells cannot skip the one cell
cycle phase and enter next phase following the one it
skipped, e.g., cells cannot jump from metaphase to inter-
phase or from anaphase to metaphase.

It is worth noting that the problems with unequal distri-
bution of training examples can be solved in a supervised
framework while the unsupervised approach heavily
depends on the distribution of training examples. For
example, we may first down-sample the training sets with
appropriate sampling method, then train the SVMs by
assigning the training samples with different cost weights
according to class size [23,24,32]. In the "weighted" SVM
[23], the prediction accuracy of prophase can be increased
by 10%~20% at the expense of slightly decrease of the
classes with large samples using the reduced features. The
weights for interphase, prophase, metaphase, and ana-
phase are 1, 10, 10, and 10 respectively.

Conclusion
This paper proposes a new Context-Based Mixture Model
for dealing with the time-series cell cycle sequence infor-
mation, which outperforms other traditional classifiers in
identifying prophase. The application of feature reduction
techniques can effectively improve the prediction accu-
racy, whereas more features do not necessarily guarantee
better performance.

Methods
Feature Reduction
From the Feature Reduction (FR) perspective, the tradi-
tional and the state-of-the-art dimensionality reduction
methods can be generally classified into Feature Extrac-
tion (FE) and Feature Selection (FS) [15-21]. FE aims to
project high dimensional data to a lower dimensional
space by algebraic transformation according to certain cri-
teria while FS identifies a subset of the most representative
features according to pre-defined criteria, thus the features
are ranked according to their individual predictive power.
We compare certain commonly used feature reduction
approaches below.

Series of cell divisions can be represented in lineage trees.
For this study, we only use one of the daughter cells after
each division. This results in only one cell being tracked in

any given frame, thus a sequence of cell nuclei are tracked
for all of the frames in the current experiment. In other
words, a sequence of these cell nuclei is mathematically

represented by a n × d matrix X ∈ Rn × d, where d is the
number of features and n is the length of a cell sequence.
Each cell nuclei is represented with a feature vector. XT is
used to denote the transpose of matrix X. M sequences of
cell nuclei (or M cell sequences) are denoted by a mn × d

matrix  ∈ Rmn × d. Each cell is denoted by a row vector xi,

i = 1, 2,�, mn. Assume that these feature vectors belong to
c different classes and the sample number of the jth class is
nj, we use cj to represent class j, j = 1, 2,�, c. The mean vec-

tor of cj is . The mean vector of all the

cell nuclei is . The feature reduction

problem can be framed as the problem of finding a func-

tion f : Rd → Rp according to an objective function J, where
p is the dimension of data after the dimensionality reduc-

tion, so that an object xi ∈ Rd is transformed into yi = f(xi)

∈ Rp.

Classifiers
We select the established classifiers KNN [17], BPNN
[8,17], and SVM [23,24] for comparison. In addition, the
CBMM is also proposed to incorporate the contextual
information.

Context based Mixture Model Classifier
Figure 4 provides an example of cell mitosis process. The
occurrence of phases in a sequence can be regarded as a
stochastic process; hence, the cell sequence can be repre-
sented as a Markov chain where phases are in hidden
states. The occurrence of the first phase in the sequence is
characterized by the initial probability of the Markov
chain. The occurrence of the other phases, which is given
by the occurrence of its previous phase, is characterized by
the transition probability. We calculate initial and transi-
tion probabilities for Markov chains with a set of training
nuclei sequences. In addition, we assume each hidden
state can generate a group of continuous visible states
described by R Gaussian Mixtures. We optimize these

X

m nj
j

i
x ci j

=
∈
∑1 x

m mnall ii
mn= =∑1

1
x

Table 4: The sensitivity of SDAFS combined with CBMM when compared over a range of subspace dimensions.

10-d 20-d 30-d 40-d 50-d

Class 1 0.9047 (0.8773,0.9321) 0.9208 (0.8881,0.9536) 0.8061 (0.7394,0.8728) 0.4208 (0.3814,0.4602) 0.41667 (0.3860,0.4473)
Class 2 0.6505 (0.5384,0.7626) 0.5275 (0.5384,0.7626) 0.3582 (0.2327,0.4838) NaN NaN
Class 3 0.8944 (0.4603,0.5948) 0.9418 (0.9150,0.9687) 0.8810 (0.8282,0.9338) NaN NaN
Class 4 0.7052 (0.7797,0.9126) 0.8461 (0.7797,0.9126) 0.6908 (0.6119,0.7698) NaN NaN

The dimensionality ranges from 10 to 50.
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Gaussian mixtures with the Expectation-Maximization
(EM) algorithm. Those initial probabilities and the opti-
mized Gaussian mixtures are regarded as a continuous
Hidden Markov Model (HMM) [1,10] for the training
sequences.

Mathematically, suppose a set of N training sequences (χ1,

χ2,�χN) is given and the phases of all the cell nuclei in

these sequences are known. Each sequence is a cell

nucleus in Tl different frames , where

each cell nucleus is denoted by a p dimensional vector

, t = 1,2,..., T. On the other hand, let S

= {s1, s2,�, sM} be the set of M hidden states in Markov

chain, we also consider the N training sequences as a
group of TlTl length random variables,

. The Sample Space of these variables is

S. By applying the Markov assumption (the state of an

object at time t only depends on the state of it at time t-the
conditional probabilities is:

, i, j = 1,2,�M. The trained model is represented by a

group of parameters Λ = {∏, A, μkr, Σkr, ckr, k = 1,2,�M, r

= 1,2,�R}, where Π stands for the initial probability of
each phase and A = {aij} stands for the transition proba-

bility of Markov model.

For the Continuous Hidden Markov Model (CHMM), we
assume each hidden state can generate R visible Gaussian
mixtures ϕ(x, μkr, Σkr), k = 1, 2,�, M, r = 1,2,�R, where ukr
and Σkr are means and covariance matrices of Gaussian
mixtures respectively. In addition, we have a group of
coefficients, ckr, to weight the Gaussian mixtures of each
hidden state. Figure 5 provides an example of CHMM. The
Gaussian mixtures of each phase can be initialized by
Fuzzy K-means [17,19]. Eventually ukr and Σkr are initial-
ized based on the results of Fuzzy K-means. After initiali-
zation, the parameters ukr and Σkr, ckr, k = 1,2,�M, r =
1,2,�R are optimized by EM algorithm iteratively.

χl
l l

T
l

l
= { , ,... }x x x1 2

xt
l

t
l

t
l

tp
lx x x= { , ,... }1 2

Θl
l l

T
l
l

= { , , , }θ θ θ1 2

Pr( | , ) Pr( | )θ θ θ θ θ θt
l

j t
l

i t
l

i
l

i t
l

j t
l

is s s s s s= = = = = = =− − −1 2 1 12 1

Changes in the appearance of a nucleus during cell mitosisFigure 4
Changes in the appearance of a nucleus during cell mitosis. From (a) to (h) consecutive image subframes form a 
sequence showing nuclei size and shape changes during cell mitosis.

(a)                       (b)                      (c)                         (d) 

(e)                       (f)                      (g)                         (h) 
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The next issue is how to use this model to predict cell
phases. According to traditional Continuous Gaussian
Mixture HMM, the probability of a cell xt belonging to
phase sm, i.e. θt = sm, should only depend basically on xt
and xt-1. Thus the probabilities we need for the categoriza-
tion of cells could be denoted as p(θt = sm|xt, xt-1). Based on
the Bayesian formula, we rewrite them as:

where m = 1,2,...M, p(θt = sj, θt-1 = si) = p(θt = sj|θt-1 = si)p(θt-

1 = si) = aijπi. The p(xt, xt-1|θt = sj, θt-1 = si) means given θt =
sj and θt-1 = si, the probability of Gaussian mixtures ϕ(x, μjr,
Σjr) and ϕ(x, μkr, Σkr), r = 1, 2,..., R can generate vectors xt
and xt-1.

Traditional CHMM has utilized the information of the
previous time point to predict the state of current time
point. In our application, we know both the information
of "left point" and "right point", since we have obtained
the cell trace and the features of all cells. In contrast to the

traditional CHMM introduced above, we propose to uti-
lize the contextual information for cell phase identifica-
tion, i.e., we propose to use Gaussian mixture models
based on two-pixels. This model is called the Context
Based Mixture Model Classifier.

where p(m, i, j) = p(θt = sm, θt-1 = si, θt+1 = sj) is the prior
probability defined as:

Since the denominator in (2) is the same for each class, in
implementation we can neglect this term,
i.e.,

.
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An example of Continuous Gaussian Mixture Hidden Markov ModelFigure 5
An example of Continuous Gaussian Mixture Hidden Markov Model. M = 4, R = 2, the prior probability of phases are 
πi, i = 1,2,3,4 which are ignored in this picture.
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To estimate p(xt, xt-1, xt+1|θt = sm, θt-1 = si, θt+1 = sj), the sim-
plest way is to assume that the phase of three states are
independent, then it can be simply approximated by the
product of the three items p(xt|θt = sm), p(xt-1|θt-1 = si ) and
p(xt+1|θt+1 = sj). This assumption is not always true in real-
istic applications. In this case, we assume that they are
dependent. More complex models are trained than the
standard continuous models described above. We collect
the cells in status satisfying (θt = sm, θt-1 = si, θt+1 = sj). For
example, if (θt = 2, θt-1 = 1, θt+1 = 3), the interphase cells are
collected if they lie between the interphase and anaphase
to estimate p(xi, xt-1, xt+1|θt = 2, θt-1 = 1, θt+1 = 3) using the
EM algorithm. Then we have 4 × 4 × 4 = 64 hidden states
altogether. The hidden states with less than five training
samples are assigned zero prior probabilities. Each hidden
state can generate one visible Gaussian mixture ϕ(x, μk,
Σk), k = 1,2,...,64, where μk and Σk sare means and covari-
ance matrices of Gaussian mixtures respectively. The
parameters μk and Σk are optimized by the EM algorithm
iteratively. Then we get p(θi = sm|xi, xt-1, xt+1), m = 1,..., M,
and classify cell Xt to phase sm*, such that
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