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Abstract
Background: Selecting the highest quality 3D model of a protein structure from a number of
alternatives remains an important challenge in the field of structural bioinformatics. Many Model
Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in
order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single
energy score based on a single model, to methods which rely on structural comparisons of multiple
models or additional information from meta-servers. However, it is clear that no current method
can separate the highest accuracy models from the lowest consistently. In this paper, a number of
the top performing MQAP methods are benchmarked in the context of the potential value that
they add to protein fold recognition. Two novel methods are also described: ModSSEA, which
based on the alignment of predicted secondary structure elements and ModFOLD which combines
several true MQAP methods using an artificial neural network.

Results: The ModSSEA method is found to be an effective model quality assessment program for
ranking multiple models from many servers, however further accuracy can be gained by using the
consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform
the true MQAPs tested and is competitive with methods which make use of clustering or additional
information from multiple servers. Several of the true MQAPs are also shown to add value to most
individual fold recognition servers by improving model selection, when applied as a post filter in
order to re-rank models.

Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they
are intended to be used. Clustering based methods are the top performing MQAPs where many
models are available from many servers; however, they often do not add value to individual fold
recognition servers when limited models are available. Conversely, the true MQAP methods tested
can often be used as effective post filters for re-ranking few models from individual fold recognition
servers and further improvements can be achieved using a consensus of these methods.

Background
It is clear that one of the remaining challenges hindering
the progress of protein fold recognition and comparative
modelling is the selection of the highest quality 3D model
of a protein structure from a number of alternatives [1].

The identification of appropriate templates used for
building models has been significantly improved both
through profile-profile alignments and meta-servers, to
the extent that traditional threading methods are becom-
ing less popular for fold recognition. Increasingly, for the
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majority of sequences with unknown structures, the prob-
lem is no longer one of template identification; rather it is
the selection of the sequence to structure alignment that
produces the most accurate model.

A number of methods have been developed over recent
years in order to estimate the quality of models and
improve selection. A popular technique has been to use
methods such as PROCHECK [2] and WHATCHECK[3] in
order to evaluate stereochemistry quality following com-
parative modelling. These methods were developed in
order to check the extent to which a model deviates from
real X-ray structures based on a number of observed meas-
ures. However, such evaluations are often insufficient to
differentiate between stereochemically correct models.
Traditionally, a variety of energy-based programs have
been developed more specifically for the discrimination
of native-like models from decoy structures. These pro-
grams were based either on empirically derived physical
energy functions or statistical potentials derived from the
analysis of known structures[4]. For some time, methods
such as PROSAII [5] and VERIFY3D [6] have been in pop-
ular use for rating model quality. More recently, methods
such as PROQ [7], FRST [8] and MODCHECK [9] have
proved to be more effective at enhancing model selection.

During the 4th Critical Assessment of Fully Automated
Structure Prediction (CAFASP4), such methods were col-
lectively termed as Model Quality Assessment Programs
(MQAPs) and a number of them were evaluated in a blind
assessment [10]. For the purposes of CAFASP4, an MQAP
was defined as a program which took as its input a single
model and which outputted a single score representing
the quality of that model. Developers were encouraged to
submit MQAPs as executables, which were subsequently
used to evaluate models by the assessors.

More recently, quality assessment (QA) was incorporated
as a new "manual" prediction category in the 7th Critical
Assessment of Techniques for Protein Structure Prediction
(CASP7) [11]. The QA category was divided into two sub
categories QMODE 1 referring to the prediction of the
overall model quality and QMODE 2, in which the quality
of individual residues in the model was predicted. In the
QMODE 1 category, the format of the new experiment
allowed users to run their methods in-house and then
submit a list of server models with their associated pre-
dicted model quality scores. While this new format had
certain advantages, it also allowed more flexibility in the
type of methods which could be used for quality assess-
ment. For example, this format allowed methods to be
used which could not be evaluated as "true" MQAPs in the
original sense, such as meta-servers approaches which
may have used the clustering of multiple models or incor-

porated additional information about the confidence of
models from the fold recognition servers.

In this paper, several of the top performing MQAPs are
benchmarked in order to gauge their value in the enhance-
ment of protein fold recognition. A number of top per-
forming "true" MQAP methods are compared against
some of the best clustering and meta-server approaches.
In addition, two novel methods, which can be described
as true MQAPs according to the original definition, are
also benchmarked. Firstly, the ModSSEA method which is
based on the secondary structure element alignment
(SSEA) score previously benchmarked [12] and incorpo-
rated into versions of mGenTHREADER [13] and nFOLD
[14]. Secondly, ModFOLD which combines the output
scores from the ProQ methods[15], the MODCHECK
method [9] and the ModSSEA method using an artificial
neural network.

Results and discussion
Measurement of the correlation of predicted and observed 
model quality
The official CASP7 assessment of MQAP methods in the
QMODE1 category involved measuring the performance
of methods based on the correlation coefficients between
predicted and observed model quality scores. In this sec-
tion, the analysis is repeated both on a global and target-
by-target basis. In Figure 1, each point on the plot repre-
sents a model submitted by a server to the CASP7 experi-
ment. The models from all targets have been pooled
together and so the "global correlation" is shown. The
ModFOLD output score is clearly shown to correlate well
with observed mean model quality score.

In Table 1, the global measures of Spearman's rank corre-
lation coefficients (ρ) between predicted and observed
model quality scores are shown for a number of the top
performing MQAP methods. The Spearman's rank corre-
lation is used in this analysis, as the data are not always
found to be linear and normally distributed. The results
shown here confirm the results in the official CASP7
assessment and show the LEE method and the ModFOLD
method outperforming the other methods tested at
CASP7 in terms of the global measure of correlation.
Interestingly, the 3D-Jury method, which was not entered
in the official assessment, is shown to outperform the LEE
method based on all observed model quality scoring
methods. The ModFOLD consensus approach appears to
be working in this benchmark, as it is shown to outper-
form the individual constituent methods (MODCHECK,
PROQMX, PROQLG and ModSSEA). The ModSSEA
method, which was not individually benchmarked in the
official assessment, also appears to be competitive with
the established individual "true" MQAPs, which are capa-
ble of producing a single score based on a single model.
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The results in Table 2 again show the Spearman's rank cor-
relation coefficients for each method, but in this instance
the rho values are calculated for each target separately and
then the mean overall rho value is taken. It is clear that the
ordering of methods has changed and this was also shown
to occur in the official assessment. The 3D-Jury method
and the LEE method are still ranked as the top performing
methods but there is a re-ordering of the other methods.
Contrary to the results shown in Table 1, it would appear
that there is no value from using the consensus approach
of the ModFOLD method. How can these contradictory
results be explained?

The results in Figure 1 appear to show a roughly linear
relationship between the predicted and observed model
quality scores with few outliers based on the global meas-
ure where the models are pooled together for all targets.
However, when the results are examined for individual
targets (Figure 2) the relationship is often non-linear, the
data are not always normally distributed and there are
often a proportionately greater number of outliers which
can influence the rho values. In developing MQAPs for the
improvement of fold recognition the primary goal is to
select the highest quality model as possible given a
number of alternative models. Does the measurement of

Predicted model quality scores versus observed model quality scoresFigure 1
Predicted model quality scores versus observed model quality scores. The ModFOLD scores are plotted against the 
observed combined model quality scores ((TM-score+MaxSub+GTD)/3), for models submitted by the automated fold recogni-
tion servers to the CASP7 tertiary structure category (TS1 and AL1 models have been included).
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Table 1: Global measures of the Spearman's rank correlation coefficients (ρ)

TM-score MaxSub GDT Combined

3D-Jury† 0.955 0.924 0.925 0.943
LEE*† 0.943 0.903 0.909 0.926
ModFOLD 0.843 0.807 0.807 0.825
PROQ* 0.828 0.764 0.759 0.789
Pcons*† 0.803 0.773 0.765 0.786
ProQ-MX 0.779 0.755 0.751 0.768
ModSSEA 0.744 0.736 0.742 0.747
MODCHECK 0.729 0.659 0.658 0.686
ProQ-LG 0.688 0.651 0.640 0.665

All models are pooled together and the ρ is measured between predicted and observed model quality scores. The combined observed model 
quality score was also calculated for each individual model e.g. mean score for each model (TM-score+MaxSub+GTD)/3.*The MQAP scores for 
these methods were downloaded from CASP7 website; all other MQAP methods were run in house during the CASP7 experiment. †MQAP 
methods which rely on the comparison of multiple models or include additional information from multiple servers; all other methods are capable of 
producing a single score based on a single model.
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correlation coefficient on a target-by-target basis always
help us to distinguish the best method for selecting the
top model?

In Figure 2 (a-d), the scores from ModSSEA and Mod-
FOLD are compared against MODCHECK and ProQ for
four example CASP7 template based modelling targets. In
these examples the rho values are higher for the MOD-
CHECK and ProQ methods, however it can be seen that
the observed quality scores for the top ranked models
(which have been denoted m here) are shown to be higher
for the ModFOLD and ModSSEA methods. Of course,
there are also several cases where the the rho values for
MODCHECK and ProQ are lower yet the m scores are
higher than either ModFOLD or ModSSEA. Indeed by test-
ing on a target-by-target basis, it was found that, on aver-
age, for each individual CASP7 target, the MQAP with the
highest correlation coefficient between observed and pre-
dicted model quality was most often not the method with
highest observed quality of the top ranked model.

From the scatter plots in Figure 2 it is apparent that the
correlation between observed and predicted model qual-
ity may not necessarily be the best measure of perform-
ance if we are interested in methods which can identify
the highest quality models. In real situations, developers
and users of fold recognition servers would arguably be
most concerned with the selection of the best model from
a number of alternatives for a given target. The compari-
son of correlations coefficients should not necessarily
replace the individual examination of the data. However,
the individual examination of data for each method and
for each individual target may not always be practical. It is
therefore suggested that a more appropriate measure of
the usefulness would be to simply measure the observed
model quality of the top ranked models for each target
(m) when benchmarking MQAPs for fold recognition.

Measurement of the observed model quality of the top 
ranked models (m)
Table 3 shows the cumulative model quality scores that
can be achieved if each MQAP method is used to rank the
top models from all servers for each target (results are
highlighted in bold). In other words, the m scores are
taken from each MQAP for each target and then the scores
are added together. Higher cumulative observed model
quality scores (Σm) can be achieved using the ModFOLD
and ModSSEA methods than using the other true MQAPs,
which are capable of producing a single score based on a
single model (ProQ, ProQ-LG, PROQ-MX and MOD-
CHECK).

The methods which rely on the comparison of multiple
models and/or additional information from multiple
servers (3D-Jury, LEE and Pcons) are shown to greatly out-
perform the individual true MQAPs, however the consen-
sus approach taken by ModFOLD is shown to be
competitive.

The cumulative model quality scores of the TS1 or AL1
models from each fold recognition server are also shown
in Table 3. The 3D-Jury, Pcons, LEE and ModFOLD meth-
ods achieve a higher cumulative score than all fold recog-
nition servers except the Zhang-Server. It must be noted
that the cumulative scores which can be achieved by rank-
ing models using any of the existing MQAP methods are
still far lower than the maximum achievable MQAP score
obtained if the best model were to be consistently selected
for each target. Table 4 shows the cumulative observed
model quality scores if MQAP methods are used to rank
all models from all servers. For all of the methods, except
the 3D-Jury method, there is a reduction in the cumulative
observed model quality. The LEE method outperforms the
Pcons method but the relative performance of all other
methods is unchanged. However, are the differences in m
scores from the different MQAP methods significant?

Table 2: Target-by-target measures of the Spearman's rank correlation coefficients (ρ)

TM-score MaxSub GDT Combined

3D-Jury† 0.870 0.818 0.857 0.862
LEE*† 0.793 0.734 0.771 0.779
Pcons*† 0.732 0.752 0.754 0.754
MODCHECK 0.574 0.568 0.587 0.584
PROQ* 0.557 0.575 0.580 0.576
ModFOLD 0.550 0.546 0.556 0.550
ModSSEA 0.506 0.501 0.520 0.516
ProQ-MX 0.412 0.444 0.444 0.438
ProQ-LG 0.289 0.340 0.326 0.320

Target-by-target measure – ρ is measured using the models for each target separately and the overall mean score is calculated. The combined 
observed model quality score was also calculated for each individual model e.g. mean score for each model (TM-score+MaxSub+GTD)/3. *The 
MQAP scores for these methods were downloaded from CASP7 website; all other MQAP methods were run in house during the CASP7 
experiment. †MQAP methods which rely on the comparison of multiple models or include additional information from multiple servers; all other 
methods are capable of producing a single score based on a single model.
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Often the differences observed between methods in terms
of cumulative observed model quality scores (Σm), may
not be significant. The results in Tables 5, 6, 7 are pro-
vided to demonstrate that the rankings between methods
shown in Table 3 and 4 are only relevant if a significant
difference is observed according to the Wilcoxon signed
rank sum tests. The p-values for Wilcoxon signed ranks
sum tests comparing the MQAP methods are shown in
Tables 5, 6, 7. The null hypothesis is that the observed
model quality scores of the top ranked models (m) from
method x are less than or equal to those of method y. The
alternative hypothesis is that the m scores for method x are
greater than those of method y.

The top models selected using the 3D-Jury method are
shown to be of significantly higher quality (p < 0.01) than
those selected using any other method according to the
TM-score, MaxSub score and GDT score. The top models
selected using the ModFOLD method are of significantly
higher quality than those of PROQ-MX, PROQ-LG and
MODCHECK according to the TM-score (p < 0.01), Max-
Sub score (p < 0.05) and GDT score (p < 0.01) (Table 5, 6
and 7). According to the MaxSub score the top models
selected by both LEE and Pcons are significantly higher
quality (p < 0.05) than those selected by ModFOLD
(Table 6).

Examples showing the difficulty with relying on correlation coefficients as performance measuresFigure 2
Examples showing the difficulty with relying on correlation coefficients as performance measures. Predicted 
model quality scores are plotted against the observed combined model quality scores on a target-by-target basis, for models 
submitted by the automated fold recognition servers to the CASP7 tertiary structure category (AL and TS models are 
included). a) The scaled MODCHECK scores are compared with the ModSSEA scores for the target T0304 models. The 
Spearman's rank correlation coefficient (ρ) between the MODCHECK scores and observed model quality scores is 0.66 and 
the observed model quality of the top ranked model (m) is 0.27 (the data point is circled in blue). The correlation coefficient 
for the ModSSEA method is lower (ρ = 0.50), however the quality of the top ranked model is higher (m = 0.34) (the data point 
is circled in red). b) The ProQ scores are compared with the ModSSEA scores for the target T0283 models. For ProQ ρ = 0.50 
is and m = 0.01, whereas for ModSSEA, ρ = 0.40 is and m = 0.48. c) The scaled MODCHECK scores are compared with the 
ModFOLD scores for the target T0289 models. For MODCHECK, ρ = 0.61 is and m = 0.13, whereas for ModFOLD ρ = 0.53 
is and m = 0.47. d) The ProQ scores are compared with the ModFOLD scores for the target T0321 models. For ProQ, ρ = 
0.48 is and m = 0.11, whereas for ModFOLD, ρ = 0.17 is and m = 0.24.
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Table 3: Cumulative observed model quality scores for each MQAP (TS1 and AL1 models)

TM-score MaxSub GDT Combined

Maximum MQAP Score 62.30 52.98 56.25 57.18
Zhang-Server_TS1 58.21 48.77 52.03 53.00
3D-Jury† 58.02 48.32 51.96 52.77
Pcons*† 55.55 47.00 50.08 50.87
LEE*† 55.20 45.77 49.60 50.19
ModFOLD 55.39 45.47 49.62 50.16
HHpred2_TS1 54.95 45.22 49.16 49.78
Pcons6_TS1 54.67 45.08 48.52 49.42
Pmodeller6_TS1 54.77 44.76 48.73 49.42
ROBETTA_TS1 54.92 44.43 48.85 49.40
CIRCLE_TS1 54.69 44.59 48.49 49.26
HHpred3_TS1 54.33 44.76 48.52 49.20
BayesHH_TS1 54.39 44.33 48.41 49.04
MetaTasser_TS1 55.17 43.80 48.15 49.04
HHpred1_TS1 54.18 44.48 48.04 48.90
UNI-EID_expm_TS1 54.06 44.58 47.95 48.86
ModSSEA 54.30 43.88 48.35 48.84
beautshot_TS1 54.37 44.25 47.75 48.79
FAMSD_TS1 54.07 44.08 48.05 48.73
PROQ* 53.47 44.50 48.15 48.71
RAPTOR-ACE_TS1 54.05 43.80 47.69 48.52
FAMS_TS1 53.84 43.70 47.84 48.46
SP3_TS1 53.51 43.48 47.41 48.13
SP4_TS1 53.44 43.19 47.11 47.91
shub_TS1 53.35 43.31 46.87 47.84
RAPTOR_TS1 53.48 42.88 47.16 47.84
UNI-EID_bnmx_TS1 52.33 43.72 46.88 47.64
beautshotbase_TS1 52.46 43.05 46.59 47.37
RAPTORESS_TS1 53.17 42.44 46.46 47.36
FUNCTION_TS1 52.75 42.59 46.57 47.30
SPARKS2_TS1 52.47 42.49 46.19 47.05
PROQ-LG 51.49 43.04 46.43 46.99
3Dpro_TS1 51.81 42.16 46.34 46.77
FOLDpro_TS1 51.77 42.06 46.10 46.64
GeneSilicoMetaServer_TS1 51.75 42.09 45.87 46.57
UNI-EID_sfst_AL1.pdb 50.39 42.55 45.37 46.10
PROTINFO_TS1 51.28 41.36 45.60 46.08
Ma-OPUS-server_TS1 51.23 40.96 45.30 45.83
SAM_T06_server_TS1 51.35 40.66 45.12 45.71
PROQ-MX 49.89 41.60 44.89 45.46
PROTINFO-AB_TS1 50.64 40.65 44.65 45.32
Phyre-2_TS1 50.26 40.32 44.38 44.99
ROKKY_TS1 49.66 40.42 44.16 44.75
mGen-3D_TS1 49.29 40.15 44.22 44.55
Bilab-ENABLE_TS1 49.59 39.16 43.26 44.00
SAM-T02_AL1.pdb 48.13 40.12 43.03 43.76
LOOPP_TS1 48.44 38.64 42.73 43.27
FUGUE_AL1.pdb 47.55 38.79 42.53 42.96
nFOLD_TS1 47.40 38.46 41.95 42.60
keasar-server_TS1 47.84 38.20 41.59 42.54
Phyre-1_TS1 46.87 38.16 41.63 42.22
MODCHECK 47.03 37.76 41.65 42.15
NN_PUT_lab_TS1 46.95 37.72 41.26 41.98
CaspIta-FOX_TS1 46.53 37.47 41.01 41.67
FUGMOD_TS1 46.37 37.42 41.10 41.63
FORTE1_AL1.pdb 46.51 37.06 40.66 41.41
FORTE2_AL1.pdb 46.30 36.89 40.56 41.25
3D-JIGSAW_POPULUS_TS1 44.74 35.44 39.34 39.84
karypis.srv_TS1 44.43 35.20 38.95 39.53
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However, there is no significant increase in the quality of
the top models selected by Pcons over those selected by
ModFOLD according to the TM-score (Table 5). In addi-
tion there is no significant increase in the quality of mod-
els selected by the LEE method over the ModFOLD
method according to GDT score (Table 7). Variation in the
predicted secondary structures or other input parameters
would explain the observed differences between the in
house version of ProQ-LG and the ProQ scores down-
loaded from the CASP7 website, however the overall dif-
ference between scores is not shown to be significant
(Table 5, 6 and 7).

The ModSSEA method was developed independently for
the CASP7 experiment, prior to the publication of the
comparable method developed by Eramian et al. [16].
Although the two methods are similar in that they both
compare the DSSP assigned secondary structure of the
model against the PSIPRED predicted secondary structure
of the target, they differ in their scoring. The two methods
were found to show differences in cumulative observed
model quality scores (a mean difference of 1.08), however
none of these were found to be significant according to
the Wilcoxon signed rank sum test with each measure of
observed model quality: using the TM-score the p-value

3D-JIGSAW_RECOM_TS1 43.70 35.55 38.84 39.36
3D-JIGSAW_TS1 43.53 34.50 38.37 38.80
SAM-T99_AL1.pdb 42.60 35.81 37.64 38.69
karypis.srv.2_TS1 42.77 33.54 37.50 37.94
Huber-Torda-Server_TS1 41.78 34.40 37.21 37.80
forecast-s_AL1.pdb 41.00 33.38 36.48 36.95
Distill_TS1 39.75 27.26 31.94 32.98
Ma-OPUS-server2_TS1 33.35 26.75 29.77 29.96
panther2_TS1 28.87 23.67 25.85 26.13
CPHmodels_TS1 27.75 23.49 24.55 25.26
Frankenstein_TS1 23.55 17.66 20.33 20.52
gtg_AL1.pdb 20.55 16.66 17.81 18.34
ABIpro_TS1 21.88 12.35 17.45 17.22
MIG_FROST_AL1.pdb 16.68 12.11 14.75 14.51
FPSOLVER-SERVER_TS1 14.91 6.78 10.97 10.89
karypis.srv.4_TS1 14.71 6.55 10.66 10.64
POMYSL_TS1 9.64 6.00 8.35 8.00
panther3_TS1 5.75 4.58 5.05 5.12
MIG_FROST_FLEX_AL1.pdb 1.05 0.97 1.07 1.03

Results in bold indicate the cumulative observed model quality scores of the top ranked models for each target (Σm) obtained by using each MQAP 
method to rank the top models from all fold recognition servers. The maximum achievable MQAP score – obtained by consistently selecting the 
best model for each target – is also highlighted. All other results are based on the cumulative scores of the TS1 or AL1 models from each fold 
recognition server taking part in the automated category at CASP7. Each column indicates the method for measuring the observed model quality. 
Scores are sorted by the combined observed model quality. *The MQAP scores for these methods were downloaded from CASP7 website; all 
other MQAP methods were run in house during the CASP7 experiment. †MQAP methods which rely on the comparison of multiple models or 
additional information from multiple servers; all other methods are capable of producing a single score based on a single model.

Table 3: Cumulative observed model quality scores for each MQAP (TS1 and AL1 models) (Continued)

Table 4: Cumulative observed model quality scores for each MQAP (all models)

TM-score MaxSub GDT Combined

3D-Jury† 58.22 48.19 52.21 52.87
LEE*† 55.17 45.66 49.59 50.14
Pcons*† 54.47 45.81 49.20 49.82
ModFOLD 54.26 44.36 48.57 49.06
ModSSEA 53.73 43.24 47.65 48.21
PROQ* 51.20 42.82 45.99 46.67
PROQLG 49.32 41.62 44.63 45.19
PROQMX 46.93 39.04 42.23 42.73
MODCHECK 43.76 34.85 38.66 39.09

The cumulative observed model quality scores of the top ranked models for each target (Σm) obtained by using each MQAP method to rank all 
models from all fold recognition servers.*The MQAP scores for these methods were downloaded from CASP7 website; all other MQAP methods 
were run in house during the CASP7 experiment. †MQAP methods which rely on the comparison of multiple models or additional information 
from multiple servers; all other methods are capable of producing a single score based on a single model.
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was 0.1765, using the MaxSub score the p-value was
0.1625 and using the GDT score the p-value was 0.1355.

Measurement of the confidence in the true MQAP output 
scores
One of the advantages of the so called "true" MQAPs (e.g.
ProQ, MODCHECK, ModSSEA and ModFOLD) over clus-
tering methods (e.g. 3D-Jury and LEE) and those which
use also use information from multiple fold recognition
servers (e.g. Pcons), is that they provide a single consistent
and absolute score for each individual model. This means
that the models from different protein targets can be
directly compared with one another on the same pre-
dicted model quality scale. Conversely, with clustering

methods the scores for a given model are potentially vari-
able as they are dependent on the relationship between
many models of the same target protein. Similarly, the
information which can be obtained from multiple fold
recognition servers may vary from target to target. There-
fore, the predicted model quality scores between different
targets may not be directly comparable as they do not
directly relate to model quality.

The consistency of the output scores from the true MQAPs
is useful in the context of the structural annotation of pro-
teomes, where it is important to be able estimate the cov-
erage of modelled proteins at a particular level of
confidence. In order to be able to measure the confidence

Table 6: Calculated p-values for Wilcoxon signed rank sum tests (MaxSub)

Method x

Method y MODCHECK ProQ-MX ProQ-LG ProQ*† ModSSEA ModFOLD Pcons*† LEE*† 3D-Jury†

MODCHECK 0.05 9.47E-03 2.99E-03 1.56E-03 2.61E-05 1.92E-06 4.09E-08 4.02E-11
ProQ-MX 0.95 2.74E-02 1.36E-02 2.70E-03 1.54E-05 1.80E-06 7.16E-07 5.21E-11
ProQ-LG 0.99 0.97 0.18 0.12 1.10E-02 9.48E-06 8.15E-06 2.95E-11
ProQ* 1.00 0.99 0.82 0.28 0.06 7.67E-05 3.74E-05 3.67E-08
ModSSEA 1.00 1.00 0.88 0.72 0.08 7.84E-04 1.01E-03 5.11E-07
ModFOLD 1.00 1.00 0.99 0.94 0.93 1.41E-02 3.80E-02 1.45E-05
Pcons*† 1.00 1.00 1.00 1.00 1.00 0.99 0.57 5.30E-03
LEE*† 1.00 1.00 1.00 1.00 1.00 0.96 0.43 2.28E-03
3D-Jury† 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

The different MQAP methods are compared in terms of the observed model quality of the top ranked models for each target. H0 = mx ≤ my, H1 = 
mx > my, where H0 is the null hypothesis; H1 is the alternative hypothesis; mx is the observed model quality of models selected by Method x and my is 
the observed model quality of models selected by Method y according to the MaxSub score. * The MQAP scores for these methods were 
downloaded from CASP7 website; all other MQAP methods were run in house during the CASP7 experiment. † MQAP methods which rely on the 
comparison of multiple models or additional information from multiple servers; all other methods are capable of producing a single score based on 
a single model.

Table 5: Calculated p-values for Wilcoxon signed rank sum tests (TM-score)

Method x

Method y MODCHECK ProQ-MX ProQ-LG ProQ* ModSSEA ModFOLD Pcons*† LEE*† 3D-Jury†

MODCHECK 0.33 0.10 9.21E-03 9.25E-04 6.54E-05 2.85E-05 3.80E-08 1.89E-12
ProQ-MX 0.67 4.04E-02 3.34E-03 1.49E-06 1.14E-07 1.83E-07 3.49E-09 1.42E-12
ProQ-LG 0.91 0.96 2.35E-02 5.82E-05 1.54E-05 2.51E-07 5.88E-09 4.31E-13
ProQ* 0.99 1.00 0.98 4.29E-02 1.15E-02 3.43E-05 2.67E-06 8.17E-11
ModSSEA 1.00 1.00 1.00 0.96 0.26 2.53E-02 5.08E-03 1.32E-07
ModFOLD 1.00 1.00 1.00 0.99 0.75 0.05 2.76E-02 3.15E-07
Pcons*† 1.00 1.00 1.00 1.00 0.98 0.95 0.38 1.07E-04
LEE*† 1.00 1.00 1.00 1.00 1.00 0.97 0.63 5.02E-05
3D-Jury† 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The different MQAP methods are compared in terms of the observed model quality of the top ranked models for each target. H0 = mx ≤ my, H1 = 
mx > my, where H0 is the null hypothesis; H1 is the alternative hypothesis; mx is the observed model quality of models selected by Method x and my is 
the observed model quality of models selected by Method y according to the TM-score. * The MQAP scores for these methods were downloaded 
from CASP7 website; all other MQAP methods were run in house during the CASP7 experiment. † MQAP methods which rely on the comparison 
of multiple models or additional information from multiple servers; all other methods are capable of producing a single score based on a single 
model.
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of a prediction we must be able to directly compare model
quality scores from different protein targets. In Figure 3,
the confidence in output scores from the 5 true MQAPs
are compared by ranking all models according to pre-
dicted model quality and then plotting the number of true
positives versus false positives, according to observed

model quality, as the output scores decrease. A TM-score
of 0.5 is used as a stringent cut-off to define false positives.
Models above this cut-off are likely to share the same fold
as the native structure [17]. A higher true positive rate is
shown for the ModFOLD method than for the other
MQAP methods tested at low rates of false positives. This

Table 7: Calculated p-values for Wilcoxon signed rank sum tests (GDT)

Method x

Method y MODCHECK ProQ-MX ProQ-LG ProQ* ModSSEA ModFOLD Pcons*† LEE*† 3D-Jury†

MODCHECK 0.14 3.59E-02 5.99E-03 1.09E-03 9.83E-06 3.88E-06 4.69E-08 1.37E-11
ProQ-MX 0.87 4.77E-02 7.52E-03 3.85E-05 3.58E-07 7.98E-07 3.24E-08 3.38E-12
ProQ-LG 0.96 0.95 0.07 3.48E-03 1.05E-04 2.99E-07 6.41E-08 2.06E-13
ProQ* 0.99 0.99 0.93 0.14 1.03E-02 3.40E-05 8.83E-06 2.91E-09
ModSSEA 1.00 1.00 1.00 0.86 0.06 5.80E-03 2.53E-03 7.13E-08
ModFOLD 1.00 1.00 1.00 0.99 0.94 4.64E-02 0.06 2.90E-06
Pcons*† 1.00 1.00 1.00 1.00 0.99 0.95 0.43 1.47E-03
LEE*† 1.00 1.00 1.00 1.00 1.00 0.94 0.57 1.01E-03
3D-Jury† 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The different MQAP methods are compared in terms of the observed model quality of the top ranked models for each target. H0 = mx ≤ my, H1 = 
mx > my, where H0 is the null hypothesis; H1 is the alternative hypothesis; mx is the observed model quality of models selected by Method x and my is 
the observed model quality of models selected by Method y according to the GDT score. * The MQAP scores for these methods were downloaded 
from CASP7 website; all other MQAP methods were run in house during the CASP7 experiment. † MQAP methods which rely on the comparison 
of multiple models or additional information from multiple servers; all other methods are capable of producing a single score based on a single 
model.

A benchmark of the consistency of the ModFOLD predicted model quality scoreFigure 3
A benchmark of the consistency of the ModFOLD predicted model quality score. The proportion of true positives 
is plotted against the proportion of false positives. The CASP7 fold recognition server models (21714 models from 87 targets -
see methods) were ranked by decreasing predicted model quality score using ModFOLD and the different MQAP methods 
that make up the ModFOLD method. False positives were defined as models with TM-scores ≤ 0.5, indicating models that have 
a different fold to the native structure. True positives were defined as models with TM-scores > 0.5 indicating models that 
share the same fold as the native structure [17]. The plot shows the proportion of true positives at the region of < = 10% false 
positives.
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indicates that we can have a higher confidence in the
ModFOLD output score over the other true MQAP meth-
ods, implying that ModFOLD method should be a more
useful method in the context of proteome annotation
using fold recognition. In other words, a higher coverage
of high quality models can be selected with a lower
number of errors.

Benchmarking on standard decoy sets
It could be argued that data sets such as the CASP7 server
models provide a more appropriate and larger test set for
the benchmarking MQAP methods, particularly in the
practical context of fold recognition. Methods such as
ModFOLD, are often developed and tested for the selec-
tion of the best real fold recognition model rather than for
the detection of the native fold amongst a set of artificial
decoys.

However, in order to enable direct comparisons with
additional published methods, benchmarking was carried
out the using three commonly used standard decoy sets
from the Decoys 'R' Us [18] database (4state_reduced
[19], lattice_ssfit [20] and LMDS [21]) and the results are
shown in Table 8. The ModFOLD method appears to be
competitive with other MQAPs using the standard decoy
sets according to standard measures of performance such
as the rank and Z-score of the native structure (see
Tosatto's recent paper for a comparison of methods using
these sets and scoring [8]). However, due to the smaller
number of targets in these sets it is not often possible to
calculate significant differences between the methods. It is
also observed that the relative performance of methods
appears to be dependent on which dataset is used,
although it is not possible to draw sound conclusions
from this data.

Measurement of the added value of re-ranking few models 
from individual servers
It is clear from the cumulative observed model quality
scores (Σm) in Tables 3 and 4 and Wilcoxon signed rank
sum tests (Tables 5, 6 and 7) that if we have many models
from multiple servers then the best MQAP methods to use

are those which carry out comparisons between multiple
models for the same target (e.g. 3D-Jury). However, what
if only few models are available from an individual server?
Can developers and users of individual fold recognition
servers gain any added value from re-ranking their models
using an MQAP method?

Figure 4 shows the difference in observed mean model
quality score, or the "added value", obtained if the Mod-
FOLD method is used to select the best model out of the
5 submitted by each individual server compared against
using the 3D-Jury clustering approach. For most of the
fold recognition servers tested, the model quality scores
can be improved if ModFOLD is used as a post filter in
order to re-rank models. However, on average the model
quality score is decreased if a clustering approach, such as
3D-Jury, is used to re-rank models from the individual
servers.

In the case of the CaspIta-FOX server, the cumulative qual-
ity score of the top selected models can be improved from
41.67 to 43.88, using ModFOLD, which would improve
the overall ranking of the method by 8 places in Table 3.
The Zhang-Server score can also be marginally improved
upon from 53.00 to 53.23 if ModFOLD is used to re-rank
models. Several individual servers can also be improved
using the 3D-Jury method; however, for the majority of
servers, there is less benefit to be gained from re-ranking
very few models using the clustering approach.

On average the cumulative observed model quality score
of an individual server is improved by 0.44 if the Mod-
FOLD method is used to re-rank the 5 submitted models
(Table 9). Table 9 also shows that on average the quality
score of the top selected model is improved for individual
servers using the ProQ, ProQ-LG and MODCHECK meth-
ods, confirming our previous results [9]. The ProQ-MX,
ModSSEA and 3D-Jury methods on average show an over-
all decrease in the quality of the top selected models from
each server, if these methods are used as post filters to re-
rank models.

Table 8: Benchmarking based on three standard decoy sets from the Decoys 'R' Us database

4state_reduced Lattice_ssfit LMDS

Method Z-score Rank 1 Z-score Rank 1 Z-score Rank 1

ModFOLD 3.74 5/7 10.12 7/8 3.33 5/10
PROQ-LG 3.73 3/7 11.19 7/8 1.91 1/10
PROQ-MX 3.44 4/7 18.15 7/8 2.15 3/10
MODCHECK 2.20 3/7 5.05 8/8 1.64 3/10
ModSSEA 1.95 3/7 4.31 6/8 1.62 3/10

Rank 1 – the number of native structures correctly ranked first by each method out of the total proteins in decoy set; Z-score – the average Z-
scores calculated as the distance in standard deviations from the MQAP score of the native structure to the mean score of the decoy set.
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Table 10 shows the proportion of servers which can be
improved by using each MQAP method to re-rank submit-
ted models, according to each observed model quality
score. The ModFOLD method is shown to improve ~66%
(23/35) of the servers tested according to all measures of
observed model quality and the ProQ method improves

~69% (24/35), according to the combined observed
model quality score.

What if we were also to use the information from the orig-
inal server ranking in addition to the MQAP scores? Can
further improvements to model ranking be made by using
this information as an additional weighting to the MQAP

The added value of re-ranking modelsFigure 4
The added value of re-ranking models. The difference in the cumulative observed model quality score of the top ranked 
models is shown after the 5 models for each target provided by each server are re-ranked using the ModFOLD or 3D-Jury 
methods. Each bar represents Σ(mi-mj), where mi is the observed model quality of the top ranked model after the 5 server 
models are re-ranked and mj is the observed model quality of the original top ranked model submitted by the server. N.B. Only 
the common subset of servers which had submitted 5 models for all targets are included in the plot. The error bars show the 
standard error of the mean observed quality. Overall there is a mean increase of 0.44 in the cumulative observed model quality 
of the top ranked models if the ModFOLD method is used to re-rank the models provided by individual servers, however, 
there is a mean decrease of 0.56 if models are re-ranked using the 3D-Jury method (see Table 9). On the x axis, the first aster-
isk indicates a fold recognition server where the quality of the top ranking model can be significantly improved. An additional 
asterisk indicates a significant improvement of the ModFOLD method over the 3D-Jury method.

Table 9: The added value of re-ranking models measured by cumulative observed model quality

TM-score MaxSub GDT Combined

ModFOLD 0.42 0.42 0.47 0.44
ProQLG 0.27 0.32 0.33 0.31
PROQ* 0.23 0.34 0.30 0.29
MODCHECK 0.25 0.32 0.30 0.29
ProQMX -0.09 0.05 0.00 -0.01
3D-Jury† -0.49 -0.61 -0.59 -0.56
ModSSEA -1.12 -1.06 -0.97 -1.05
Random -3.61 -3.56 -3.48 -3.55

The mean difference in cumulative observed model quality scores if each MQAP method is used to re-rank the models from each individual fold 
recognition server. The results achieved from a random re-ranking of models from each server (random assignment of scores between 0 and 1) are 
also shown for comparison. * The official predicted MQAP scores for these methods were downloaded from CASP7 website; all other MQAP 
methods were run in house during the CASP7 experiment. † MQAP methods which rely on the comparison of multiple models or additional 
information from multiple servers; all other methods are capable of producing a single score for a single model.
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score? The results in Table 11 and Table 12 show the addi-
tional improvement to model rankings made by combin-
ing the information from the original server ranking with
that of the MQAP score. In this benchmark, models ini-
tially ranked by a server as the top model achieve a higher
additional score than models initially ranked last. A useful
additional score was found to be (6-r)/40, where r is the
initial server ranking of the model between 1 and 5 (e.g.
the additional score for a TS1 model would be 0.125, a
TS2 model would have an additional score of 0.1 etc.).

Table 11 shows that on average the cumulative observed
model quality score for an individual server can be
increased by 0.69, if the initial ranking score is added to
the ModFOLD score and used as a post filter to re-rank
models. The number of servers improved using the com-
bined score also increases to 74% (26/35) (Table 12). For
all other MQAP methods the scores are also be improved
by using information from the server in addition to the
MQAP scoring. This is a similar technique to that used in
the Pcons method, albeit used here with a more basic
scoring scheme and benchmarked on the few models pro-

duced by individual servers, rather than many models
from multiple servers.

This is a stringent benchmark as there are few models to
choose from each individual server. This means that there
is less information to be gained from a comparison of the
structural features shared between models. Therefore, the
clustering approach (3D-Jury) does not perform well at
this task. The ModSSEA method also performs badly at
this task as it is also dependent on differentiating models
based on structural features. If there is conservation of sec-
ondary structure among the top few models from the
same server, then the ModSSEA method will perform
badly. Indeed, many servers already include secondary
structure scores and so the top models provided by the
same server are often likely to share similar secondary
structures. The value of randomly selecting the top models
(through the assignment of a random score between 0
and 1) has also been included in Tables 9 to 12. A random
selection of the top model on average shows a marked
decrease in model quality as the probability of a correctly
selecting the top model for a given target is 0.2.

Table 10: The added value of re-ranking measured by the proportion of improved servers

TM-score MaxSub GDT Combined

PROQ* 0.69 0.71 0.69 0.69
ModFOLD 0.66 0.66 0.66 0.66
ProQLG 0.60 0.60 0.60 0.63
MODCHECK 0.46 0.51 0.57 0.60
ProQMX 0.43 0.46 0.43 0.49
3D-Jury† 0.44 0.38 0.47 0.44
ModSSEA 0.20 0.17 0.23 0.20
Random 0.03 0.03 0.06 0.03

The proportion of the fold recognition servers (out of the 35 tested) which have been improved according to observed model quality scores 
through the re-ranking of models using each MQAP method. The results achieved from a random re-ranking of models from each server (random 
assignment of scores between 0 and 1) are also shown for comparison. * The official predicted MQAP scores for these methods were downloaded 
from CASP7 website; all other MQAP methods were run in house during the CASP7 experiment. † MQAP methods which rely on the comparison 
of multiple models or additional information from multiple servers; all other methods are capable of producing a single score for a single model.

Table 11: The added value of re-ranking with weighted scores (cumulative observed model quality)

TM-score MaxSub GDT Combined

ModFOLD 0.69 0.67 0.70 0.69
ProQLG 0.56 0.56 0.57 0.56
PROQ* 0.55 0.57 0.55 0.56
MODCHECK 0.48 0.47 0.46 0.47
ProQMX 0.19 0.33 0.33 0.28
3D-Jury† 0.01 -0.04 -0.04 -0.02
ModSSEA -0.07 -0.02 0.00 -0.03
Random -3.41 -3.62 -3.78 -3.58

Similar to Table 9, however the original server ranking is also considered and added to the score as an extra weighting ((6-r)/40, where r is the 
original server ranking between 1 and 5). The results achieved from a random re-ranking of models from each server (random assignment of scores 
between 0 and 1) are also shown for comparison. * The official predicted MQAP scores for these methods were downloaded from CASP7 website; 
all other MQAP methods were run in house during the CASP7 experiment. † MQAP methods which rely on the comparison of multiple models or 
additional information from multiple servers; all other methods are capable of producing a single score for a single model.
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Conclusion
The consensus MQAP method (ModFOLD) is shown to
be competitive with methods which use clustering of mul-
tiple models or information from multiple servers (LEE
and Pcons) according to the cumulative observed model
quality scores of the top ranked models (Σm). Further-
more, according to this benchmark the ModFOLD
method significantly outperforms some of the best "true"
MQAP methods tested here (ProQ-MX, ProQ-LG and
MODCHECK), all of which produce single consistent
scores based on a single model.

Benchmarking based on correlation coefficients is not
always helpful in measuring the usefulness of MQAP
methods. There is not always a linear relationship
between the MQAP score and the observed model quality
score and scores for an individual target may not be nor-
mally distributed. Even with the non-parametric test, out-
liers can affect the results and so the correlation coefficient
should not replace the individual examination of the data.
It is therefore proposed that simply measuring the
observed model quality scores of the top ranked model
(m) on a target by target basis, or the cumulative scores
(Σm) over all targets, may be more useful for benchmark-
ing MQAPs in the context of protein fold recognition, fol-
lowed by measures of the statistical significance. In
practical terms, predictors require the best model to be
selected for a given target and so m is an appropriate meas-
ure of the performance of an MQAP method in this con-
text.

If there are many models available from multiple fold rec-
ognition servers then clustering models using the 3D-Jury
approach is demonstrably the most effective tested
method for ranking models. However, the method can
perform poorly when there are very few models available
and often no value is added by re-ranking of models from
an individual sever. Furthermore, methods such as 3D-
Jury, LEE and Pcons may not produce consistent scores

and therefore scores of models from different targets can-
not be directly compared against one another. Clustering
methods, such as 3D-Jury, are also computationally inten-
sive and the CPU time required for calculating a score
increases quadratically with number of available models.

The so called "true" MQAP methods tested here (Mod-
FOLD, ModSSEA, MODCHECK and the ProQ methods)
are less computationally intensive as they consider only
the individual model when producing a score. Therefore,
the computational time for these methods scales linearly
with the number of available models. They are also dem-
onstrated here to add value to predictions when used as a
post filter to re-rank even very few models from individual
fold recognition servers.

In the context of a CASP assessment it is clear that the
MQAP methods that make use of clustering of multiple
models are currently superior to true MQAP methods that
score individual models. Server developers wishing to per-
form well in CASP will therefore be more likely to use and
develop the former methods as they will have access to
many models produced by many different servers. How-
ever, in a practical context, experimentalists may have col-
lected only very few models from the limited number of
publicly accessible servers which remain available outside
the context of CASP. Therefore, experimentalists would be
advised to consider using the true MQAP methods in
order to rank their models prior to investing valuable time
in the laboratory. However, it is clear that there is room
for the further improvement of both the true MQAP meth-
ods and the methods which make use of clustering and
multiple servers, in the selection of the highest quality
models. This is evidenced by the maximum possible score
that could be achieved by consistently selecting the high-
est quality model.

Table 12: The added value of re-ranking with weighted scores (proportion of improved servers)

TM-score MaxSub GDT Combined

MODCHECK 0.74 0.80 0.77 0.77
ModFOLD 0.74 0.74 0.71 0.74
ProQLG 0.71 0.69 0.71 0.71
PROQ* 0.71 0.74 0.69 0.69
ProQMX 0.57 0.63 0.63 0.63
ModSSEA 0.51 0.51 0.51 0.51
3D-Jury† 0.54 0.49 0.57 0.49
Random 0.03 0.03 0.06 0.06

Similar to Table 10, however the original server ranking is also considered and added to the score as an extra weighting ((6-r)/40, where r is the 
original server ranking between 1 and 5). The results achieved from a random re-ranking of models from each server (random assignment of scores 
between 0 and 1) are also shown for comparison. * The official predicted MQAP scores for these methods were downloaded from CASP7 website; 
all other MQAP methods were run in house during the CASP7 experiment. † MQAP methods which rely on the comparison of multiple models or 
additional information from multiple servers; all other methods are capable of producing a single score for a single model.
Page 13 of 15
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:345 http://www.biomedcentral.com/1471-2105/8/345
Methods
A number of the top performing Model Quality Assess-
ment Programs (MQAPs) were benchmarked using the
fold recognition models submitted by servers in the
CASP7 experiment. Several of the "true" MQAP methods,
which can produce a single score based on a single model
alone (MODCHECK and three versions of ProQ), were
benchmarked against those methods which make use of
the clustering of multiple models or information from
multiple servers in order to calculate scores (3D-Jury, LEE
and Pcons). In addition, two new true MQAP approaches
were tested: ModSSEA, based on secondary structure ele-
ment alignments and ModFOLD, a consensus of MOD-
CHECK, ModSSEA and the ProQ methods.

ProQ and MODCHECK
The ProQ [7] and MODCHECK [9] methods have been
shown previously to be the amongst the most effective of
the "true" MQAP methods according to benchmarking
carried out in a previous study [9]. Executables for each
program were downloaded [22] and run in-house individ-
ually on the test data (see below), using the default
parameters. The ProQ method produced two output
scores per model, ProQ-MX and ProQ-LG, which were
benchmarked separately. The ProQ scores from the ver-
sion submitted for the CASP7 model quality assessment
(QMODE 1) category were also downloaded via CASP7
results website[23].

ModSSEA
The ModSSEA method was developed as a novel model
quality assessment program based on secondary structure
element alignments (SSEA). The ModSSEA score was
determined in essentially the same way as the SSEA score
which have been previously benchmarked [12-14], how-
ever, the PSIPRED [24] predicted secondary structure of
the target protein was aligned against the DSSP [25]
assigned secondary structure of the model, as opposed to
the secondary structure of a fold template. The ModSSEA
score was incorporated along with the MODCHECK and
ProQ scores into the ModFOLD method described below.

ModFOLD
Predictions for the CASP7 model quality assessment
(QMODE 1) category were generated using the ModFOLD
method. The method was loosely based on the nFOLD
protocol [14] and combined the output from a number of
model quality assessment programs (MQAPs) using an
artificial neural network. The scaled output scores from
the in house versions of MODCHECK [9], ProQ-LG,
ProQ-MX [7] and ModSSEA were used as inputs to a feed
forward back propagation network. The neural network
was then trained to discriminate between models based
on the TM-score [26]. The neural network architecture
used for ModFOLD simply consisted of four input neu-

rons, four hidden neurons and a single output neuron.
The models for the training set were built from mGen-
THREADER [27] alignments to > 6200 fold templates
using an in-house program, which simply mapped
aligned residues in the target to the full backbone coordi-
nates of the template and carried out renumbering. The
target-template pairs were then generated from an all
against all comparison of the sequences from non-redun-
dant fold library. Sequences within the training set had
BLAST [28] E-values > 0.01 and < 30% identity to one
another.

The four selected MQAPs were used to predict the quality
of each of the structural models in the training set. The
resulting MQAP scores were scaled to the range 0–1 and
were fed in to the input layer. The network was trained
using the observed quality of each model, which was cal-
culated using the TM-score. The resulting neural network
weight matrix was saved and subsequently used to pro-
vide in-house consensus predictions of model quality.

Pcons and LEE
The Pcons and LEE groups were the overall top perform-
ing groups at CASP7 according to the official assessment.
The Pcons method has been described previously [15] and
is widely used as a consensus fold recognition server.
From the CASP7 abstracts it is understood that the
method used by the LEE group was based on a combina-
tion of the clustering of models, an artificial neural net-
work and energy functions. As the methods produced by
these groups could not be tested in house, the scores sub-
mitted by these groups for the CASP7 model quality
assessment (QMODE 1) category were downloaded via
CASP7 results website [23].

3D-Jury
The 3D-Jury method [29] is a popular and effective
method of clustering models which was not tested in the
CASP7 model quality assessment category. However, the
simplicity of the approach allows it to be run in-house
easily for comparison against the leading methods. There-
fore, for each target, the models were also scored using an
in-house approach similar to that of the 3D-Jury method
[29], however, TM-scores were used to determine the sim-
ilarities between models rather than MaxSub scores (using
the TM-score instead of the MaxSub score was found to
give a marginally better performance).

Testing Data
The fold recognition server models for each CASP7 target
were downloaded via the CASP7 website [30]. The indi-
vidual MQAPs which make up ModFOLD, were used to
evaluate every server model (both AL and TS) for each
CASP7 target. The ModFOLD predictions were then sub-
mitted to assessors prior to the expiry date for each target
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and therefore prior to the release of each experimental
structure. After the CASP experiment, 87 of the non-can-
celled official targets that had published experimental
structures released into the PDB (as of 26/11/06) were
used to provide a common set of models in order to
benchmark the performance of each method.

In addition, several standard test sets were downloaded
from the Decoys 'R' Us [18] database (4state_reduced
[19], lattice_ssfit [20] and LMDS [21]) so that ModFOLD
and ModSSEA may be compared with additional pub-
lished methods. The ability of methods to identify the
native structure from each set of decoys was tested using
standard measures.

Measuring observed model quality
The TM-score program [26] was used to generate the TM-
scores, MaxSub scores [31] and GDT scores [32], which
were used to measure the observed model quality for each
individual model. The combined score was also calculated
for each individual model i.e. the TM-score, MaxSub and
GDT scores were calculated for each model and the mean
score was then taken for each model separately.

The ModFOLD server
The ModFOLD predictions were carried out entirely auto-
matically for all targets throughout the CASP7 experi-
ment. A web server has been implemented for the
ModFOLD method, which is freely available for academic
use [33]. The server accepts gzipped tar files of models –
similar to the official CASP7 tarballs – and returns predic-
tions in the CASP QA (QMODE1) format via email.
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