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Abstract

Background: An important and yet rather neglected question related to bioinformatics
predictions is the estimation of the amount of data that is needed to allow reliable predictions.
Bioinformatics predictions are usually validated through a series of figures of merit, like for example
sensitivity and precision, and little attention is paid to the fact that their performance may depend
on the amount of data used to make the predictions themselves.

Results: Here | describe a tool, named Fragmented Prediction Performance Plot (FPPP), which
monitors the relationship between the prediction reliability and the amount of information
underling the prediction themselves. Three examples of FPPPs are presented to illustrate their
principal features. In one example, the reliability becomes independent, over a certain threshold,
of the amount of data used to predict protein features and the intrinsic reliability of the predictor
can be estimated. In the other two cases, on the contrary, the reliability strongly depends on the
amount of data used to make the predictions and, thus, the intrinsic reliability of the two predictors
cannot be determined. Only in the first example it is thus possible to fully quantify the prediction
performance.

Conclusion: It is thus highly advisable to use FPPPs to determine the performance of any new
bioinformatics prediction protocol, in order to fully quantify its prediction power and to allow

comparisons between two or more predictors based on different types of data.

Background

Bioinformatics prediction methods rely systematically on
the knowledge stored in biological databases and conse-
quently the prediction reliability depends on the amount
and quality of the available information.

For example, early predictions of protein secondary struc-
ture based on amino acidic sequence were rather unrelia-
ble, since the paucity of protein three-dimensional
structures that were available [1]. Later on, both the
growth of the knowledge embedded in the Protein Data

Bank [2,3] and the use of evolutionary information, taken
from protein sequence databases and examined with mul-
tiple sequence alignments, made secondary structure pre-
dictions much more reliable [4,5]. Presently, several
methods for predicting the local backbone conformation
of residues in proteins can be used as routine tools in
molecular biology [6-8].

On the one hand it is obvious that better predictions are
possible if larger amounts of experimental information
are available: ab absurdo, without knowledge, no predic-
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tions can be made. However, on the other hand, it is
impossible to foresee that a prediction method will
become infallible if an infinite number of experimental
data become available. This uncertainty can also be seen
from a different perspective: It is in general rather difficult
to compare the reliability of two (or more) prediction
methods [9]. In fact, besides technical difficulties, due to
the fact that some of them might not be available as pub-
licly accessible computer programs, they should be com-
pared on the same data sets, something that it is not
always possible, given the dynamic nature of biological
databases, where new entries may substitute old entries
(the Protein Data Bank is a typical example), and also
given that usual database browsing tools were not created
for this reason. As a consequence, for example, it is often
impossible to extract exactly the same set of proteins, char-
acterized by a certain feature, like for example the sub-cel-
lular location or the dimension, by scanning the same
database at different dates.

In the present paper, I describe a new procedure to esti-
mate if the reliability of a prediction algorithm is expected
to vary with the amount of experimental information that
is being accumulated. In other words, this is a way to ver-
ify if the quality of the prediction results can be consid-
ered to be independent of the amount of experimental
information that underlies them, provided that sufficient
information is available. If this is verified, it is possible to
assume that the prediction method reached its best per-
formance and thus it is also possible to compare two (or
more) prediction algorithms independently of the data
that were used to develop and validate them.

Results

The concept of Fragmented Prediction Performance Plots
In a simple case in which it is necessary to predict if a pro-
tein is associated with feature A or with feature B (A and B
can be two alternative, mutually exclusive features, like for
example two types of secondary structure, two sub-cellular
locations, etc.), it is necessary to build two learning sets,
one containing type A proteins and the other containing
type B proteins. A query protein can then be predicted to
be associated with feature A or with feature B by compar-
ing it with the two learning sets [10]. From an algorithmic
perspective, such a procedure has an astronomical
number of variations, depending on which type of varia-
bles are used to represent each subject and on which
measure of proximity is used to compare the query pro-
tein with the learning sets. The quality of the final predic-
tions is then estimated by verifying if the feature of the
query is predicted correctly, by using several queries, the
features of which are experimentally known.

The reliability of the predictions is usually estimated by a
Jack-knife procedure, in which each member of the learn-
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ing sets is used as query. It is thus eliminated from the
learning sets used to delineate the prediction method and
if both learning sets contain N members, such a procedure
is performed 2N times and the resulting estimation of the
quality of the predictions is based on 2N queries. Obvi-
ously, if N is small, one is expecting bad quality predic-
tions. However, little attention is usually put on the
eventuality that N is sufficiently large to allow to make
reasonable predictions.

Alternatively, several machine learning methods often
adopt a partial cross-correlation validation. The learning
sets are divided into n subsets, and one of them is used to
compare the reality with the predictions performed by
using all the others n-1 [11]. This is particularly conven-
ient when a complete Jack-knife test would be computa-
tionally too expensive, though it is a simple variants of it.
Also in these cases, however, the relationships between
learning set dimension and prediction reliability is usu-
ally neglected.

To solve such a problem, it is possible to select M elements
from both learning sets, with M<<N, and to define and
test the prediction method on two subsets of the learning
sets, each containing M elements. The reliability R(M) can
be thus estimated. Subsequently, it is possible to repeat
everything by using two learning sets containing 2M ele-
ments each and record the reliability R(2M), and so on
until M = N. This results into a series of reliability values
R(X) (with X =M, 2M, 3M, etc.) that can be plotted against
X. This is defined here as the Fragmented Prediction Per-
formance Plot (FPPP) and some of its properties can be
evidenced here.

At low X values, when the learning sets are small, the reli-
ability of the predictions cannot be estimated well. It may
be either very small or very large but this does not provide,
in general, any consistent information. By increasing X,
the prediction reliability tends to converge towards a sta-
ble value. If X is large enough, the reliability should be
invariant relative to a further increase of X. Such a reliabil-
ity value can be considered to be the intrinsic reliability of
the prediction method.

However, if the number N of proteins contained in the
two learning sets is not large enough, such a plateau is not
observed in the Fragmented Prediction Performance Plot.
In such a case, one can foresee that the reliability of the
prediction method will vary if new data will be inserted
into the learning sets. In other words, given that the exper-
imental information stored in databases increases quite
rapidly, the prediction method should be re-tested at a
later date, when new data will become available.
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Interestingly, if it is possible to determine the intrinsic
reliability of two prediction protocols, it is also possible to
compare their performances, independently of the fact
that they had been developed by using different learning
sets. This is particularly interesting, since, as mentioned in
the introduction, it is often rather difficult if not impossi-
ble to reconstruct data sets used by different scientists at
different dates. Furthermore, the intrinsic reliability val-
ues allow one to compare the performances of methods
that are based on different types of data, like for example
amino acidic sequences and three-dimensional structures,
where identical learning sets cannot be assembled by def-
inition.

In the following sections, three prediction methods are
described, together with their Fragmented Prediction Per-
formance Plots. They are not intended to make predic-
tions suitable to solve real biological and biophysical
problems. They are only examples, selected amongst
many others, for describing some properties of the FPPPs.

General considerations about the predictors

All the examples below share some common features.
There are always two learning sets, each containing a par-
ticular type of subjects. The predictions are made by com-
paring the query with each of the two sets and by
assigning the query to its closest group. In each case, a
Jack-knife complete cross validation was performed.

However, it is important to observe that the FPPPs can be
used also in a general case in which there are more than
two learning sets, independently of the definition of prox-
imity between pairs of single subjects or of groups of sub-
jects, and independently of the variables used to represent
the subjects.

The degree of reliability of each prediction was estimated
with the confusion matrix and some of the figures of merit
associated with it. First, by defining arbitrarily which of
the two features is positive or negative, the following four
quantities were defined: true positives (tp) = number of
positive events that are correctly predicted; true negatives
(tn) = number of negative event that are correctly pre-
dicted; false positives (fp) = number of negative events
that are (incorrectly) predicted to be positive; and false
negative (fn) = number of subjects that are predicted to be
negative despite they are positive.

These four elements of the confusion matrix can be used
in a wide variety of ways to summarize by means of a sin-
gle figure of merit the degree of reliability of a prediction.
The following three figures of merits were considered
here, since they are widely used.

The sensitivity (known also as recall) was defined as
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p
t+ fn

the precision (sometime referred to also as specificity) was
defined as

sensitivity =

4
tp+fp

and the Matthews correlation coefficient was defined as

precision =

(tp-tn)—(fp- fn)
\/(tp+fp)(tp+tn)(m+fp)(m+ﬁ1)

Matthews correlation coefficient =

Several other quantities can be used for estimating the pre-
diction reliability and all of them can be used to produce
Fragmented Prediction Performance Plots. The three fig-
ures of merit that are examined here (sensitivity, preci-
sion, and Matthews correlation coefficient) are however
nearly indispensable for the following reasons. First, sen-
sitivity and precision tend to be anti-correlated and mon-
itor different aspects of the prediction. The sensitivity
indicates the fraction of positive events that are recog-
nized by the predictor and the precision monitors how
many spurious subjects are incorrectly considered to be
positive. Both of them may range from 0 to +1, the latter
value being associated with perfect predictions. Second,
the Matthews correlation coefficient, which can vary from
-1 to +1, with higher values indicating better predictions,
considers both the true positives and the true negatives as
successful predictions and is rather unaffected by sam-
pling biases, which may occur when the dimensions of
the learning sets are very different.

First example

A predictor of protein subcellular location was designed.
Given a single protein sequence, it predicts if the protein
is cytoplasmic or if it is an integral membrane protein.
Each protein chain is represented by its amino acidic com-
position and it is thus associated with twenty variables,
each of which is the percentage of observations of one of
the twenty natural amino acids. The proximity between
two subjects is estimated by the Euclidean distance com-
puted over these twenty variables and the proximity
between a single subject and a group of subjects is defined
as the minimal value of the distances between the single
subject and all the subjects belonging to the group.

The amino acidic sequences of 928 human cytoplasmic
protein and of 565 integral membrane proteins were
downloaded from the UniProt database [12] by using the
Sequence Retrieval System [13]. Predictions were initially
performed on two randomly generated subsets, each con-
taining only 10 entries. Subsequently, the dimension of
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First FPPP analysis. Fragmented Prediction Performance Plots for the first example of predictor (see text for details).

these two learning sets was increased until 510, in steps of
10 residues. Therefore, the second round of predictions
was performed by using two learning sets of 20 subjects,
the third round with sets of 30 subjects, and so on.

The values of sensitivity, precision, and of Matthews cor-
relation coefficient were recorded at each step and are
shown in Figure 1.

Second example

A predictor of quaternary status was designed. It is
intended to predict, on the basis of the amino acidic
sequence, if a protein chain participates in obligate het-
ero-oligomeric assemblies with other, different chains or
if it exists as a monomeric or a homo-oligomeric protein.

Each chain was represented by a vector of twenty ele-
ments, each indicating the percentage of occurrence of
one of the twenty natural amino acids within the chain.
The proximity between two single subjects X = (x1, x2, ...,
x20) and Y = (y1, y2, ..., y20) was estimated by the Tani-
moto coefficient ST, defined as

20
2 XiYi
i=1

20 20 S
Y xiyi+ 2, (% —vi)
i1

i=1

ST

Its values range between -0.33 and +1, if the variables are
standardized with

and it is a similarity measure between the two subjects
that are compared. Therefore, a value equal to +1 indicates
the identity between the two subjects and a value equal to
-0.33 indicates the complete difference between the two
subjects.

The similarity between a single subject and a group of sub-
jects was defined as the maximal value of similarity
betweeh the single subject and the entries of the group. A
query was considered to participate to a hetero-oligomeric
assembly if its similarity to the group of hetero-oligomeric
chains was higher that its similarity to the group contain-
ing non hetero-oligomeric chains.

The amino acidic sequences of 1406 monomeric protein,
2985 homo-oligomeric proteins, and of 1446 hetero-oli-
gomeric proteins were downloaded from the UniProt
database. Initial predictions were performed by using two
learning sets, one containing 10 hetero-oligormeric
chains and the other containing 10 monomeric and 10
homo-oligomeric protein chains. Subsequently, predic-
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tions were performed by enlarging the first learning set to
20 hetero-oligomeric proteins and the other learning set
to 20 monomeric and 20 homo-oligomeric proteins, and
so on, until the first learning set contained 1400 hetero-
oligomeric proteins and the other learning set contained
1400 monomeric and 1400 homo-oligomeric proteins.

The values of sensitivity, precision, and of Matthews cor-
relation coefficient were recorded at each step and are
depicted in Figure 2.

Third example

This was a variation on the second example described
above, the only difference being the definition of proxim-
ity between a single subject and a group of subjects. While
in the second example the maximal similarity criterion
was used, here the similarity between a query chain and a
learning set was defined as the average similarity between
the single subject and all the entries of the group.

Like in the second example, predictions were performed
by enlarging gradually the dimensions of the learning sets
and the values of sensitivity, precision, and of the Mat-
thews correlation coefficient were recorded at each step.
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Figure 3 shows their variation as a function of the learning
set dimension.

Discussion

The Fragmented Prediction Performance Plots describe
the variation of the prediction reliability as a function of
the amount of information used to make the predictions.

Figure 1 shows the FPPPs obtained in the first example, in
which a protein is predicted to be cytoplasmic or mem-
brane-inserted depending on its amino acid composition.
If few data are inserted into the learning sets, the values of
sensitivity, precision, and of Matthews correlation coeffi-
cient are very modest. They rapidly increase if further sub-
jects are included in the learning sets and a plateau is
reached at the abscissa value of about 250. For larger
learning sets, the values of sensitivity tend to be constant
and equal to 0.86. Similarly, the precision tends to con-
verge at 0.91 and the Matthews correlation coefficient at
0.82. These can be considered to be the intrinsic sensitiv-
ity, precision, and Matthews correlation coefficient for
such a predictor. In other words, this prediction protocol
is not expected to provide better results by waiting that
new data will accumulate into the databases in the future.
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Second FPPP analysis. Fragmented Prediction Performance Plots for the second example of predictor (see text for details).
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Third FPPP analysis. Fragmented Prediction Performance Plots for the third example of predictor (see text for details).

One can observe that these values of sensitivity, precision,
and of Matthew correlation coefficient are quite high. And
this is not surprising, since it is obvious that soluble, cyto-
plasmic proteins can easily be distinguished from integral
membrane proteins on the basis of their amino acidic
composition. It must however be observed that the most
reasonable way to further improve the quality of these
predictions is not the enlargement of the learning sets.
Other variables should be included into the representa-
tion of each subject, besides the percentages of the twenty
amino acids, and/or other definitions of the proximity
between the query and the learning sets should be used. A
different algorithmic set-up might also be used.

The FPPPs of the second predictor, which should discrim-
inate protein chains that take part in permanent hetero-
oligomeric supra-molecular assemblies from chains that
do not, are depicted in Figure 2. It appears that the relia-
bility of such a computational protocol is rater variable if
the learning sets are small and tends to decrease by enlarg-
ing the learning sets. Even if the Matthews correlation
coefficient is still positive, when the learning sets contain
1400 subjects, it can be concluded that this is not a good
prediction method.

In fact, not only the values of sensitivity, precision, and of
Matthews correlation coefficient are quite modest, but
also they tend to decrease when the amount of informa-
tion stored into the learning sets increases. It is thus rea-
sonable to foresee that when new data will become
available in the databases the prediction quality will
decrease further. In this example, the intrinsic reliability
of the predictions cannot be estimated.

Figure 3 shows the FPPPs of the third predictor, which
uses a slightly different algorithmic to solve the same
problem encounteres in the second example of predic-
tions. In this case, the sensitivity is very high, close to the
maximal value +1, and nearly independent of the dimen-
sion of the learning sets. On the contrary both the preci-
sion and the Matthews correlation coefficient have the
highest value for small learning sets. This is likely to be an
unfortunate case. The very few proteins that are used to
make the first predictions are casually biased and excellent
predictions can be made. When the learning sets enlarge,
both the precision and the Matthews correlation coeffi-
cient decrease, reach a minimum around the abscissa
value of 300, and then increase nearly linearly.
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Also in this case it is impossible to define the intrinsic reli-
ability of such a predictor and it can be expected that a fur-
ther enlargement of the learning sets might allow one to
improve the quality of the predictions. In other words,
such a prediction protocol seems to be rather promising,
though the amount of information included into the data
sets seems to be insufficient to fully exploit the potential
of this prediction strategy.

The three sets of FPPPs described above (Figures 1, 2, 3)
are very different from each other and exemplify most of
the information that can be extracted from this type of
analysis. In one case (Figure 1), the prediction reliability
is rather stable and roughly independent of the dimen-
sions of the learning sets at abscissa values greater than
250. Here, the intrinsic reliability of the predictor can be
determined. In the second case (Figure 2), the prediction
reliability clearly decreases if the amount of information
stored in the learning sets increases. In the third case (Fig-
ure 3), the quality of the predictions tends to improve as
far as the learning sets are enlarged.

In the experience of the author of the present paper, sev-
eral good predictors tend to behave like in Figure 1,
though many exceptions were observed. In general, it is
impossible to foresee which type of trend is presented by
a predictor without the analysis of the FPPPs and it seems
quite important that the FPPPs of any new bioinformatics
prediction tool are determined and analyzed. In most of
the cases, this should be rather inexpensive and worth-
while. Actually, it is probably impossible to fully quantify
predictor performances without a FPPP analysis.

It must however be observed that the FPPP analysis is not
intended to be the only tool to validate the predictors, the
performances of which can be influenced by many other
factors beside the amount of data that are used to design
them. For example, the training sets might contain clus-
ters that behave quite differently and these differences
would not diminish even if the data used for training is
increased. More in general, three different issues must be
considered in order to evaluate predictive technologies: i)
it is mandatory to verify if the predictions are better than
random guesses; ii) data noise and heterogeneity can seri-
ously affect the prediction quality; iii) different computa-
tional methods can behave differently on the same type of
input data. On the basis of the three examples described
in this paper, it is obvious to observe that the use of larger
learning sets cannot per se guarantee an increase of the
prediction reliability. However, it is clear that the depend-
ence of the prediction quality on the amount of informa-
tion present in the learning sets is a very important issue
as well, since the final prediction reliability may depend
considerably on the learning set dimension. Therefore,
although the FPPP analysis, which remembers many
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bootstrapping procedures, is not the unique tool to vali-
date bioinformatic predictions, it is a useful benchmark
along this validation, which is absolutely necessary.

Methods
All protein sequences were downloaded from the UniProt
database [12] by using the Sequence Retrieval System [13]
and all computations were written with locally written
programs.
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