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Abstract

Background: A number of studies on biological networks have been carried out to unravel the
topological characteristics that can explain the functional importance of network nodes. For
instance, connectivity, clustering coefficient, and shortest path length were previously proposed for
this purpose. However, there is still a pressing need to investigate another topological measure that
can better describe the functional importance of network nodes. In this respect, we considered a
feedback loop which is ubiquitously found in various biological networks.

Results: We discovered that the number of feedback loops (NuFBL) is a crucial measure for
evaluating the importance of a network node and verified this through a signal transduction
network in the hippocampal CAl neuron of mice as well as through generalized biological network
models represented by Boolean networks. In particular, we observed that the proteins with a
larger NuFBL are more likely to be essential and to evolve slowly in the hippocampal CA| neuronal
signal transduction network. Then, from extensive simulations based on the Boolean network
models, we proved that a network node with the larger NuFBL is likely to be more important as
the mutations of the initial state or the update rule of such a node made the network converge to
a different attractor. These results led us to infer that such a strong positive correlation between
the NuFBL and the importance of a network node might be an intrinsic principle of biological
networks in view of network dynamics.

Conclusion: The presented analysis on topological characteristics of biological networks showed
that the number of feedback loops is positively correlated with the functional importance of
network nodes. This result also suggests the existence of unknown feedback loops around
functionally important nodes in biological networks.

Background and the evolutionary mechanism of network molecules
Topological or structural analysis of biological networks  [1-4]. For instance, it has been widely accepted that bio-
can provide us with new insights into the design principle  logical networks have scale-free characteristics and a few

Page 1 of 9

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/8/384
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17935633
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:384

highly connected network nodes (hubs) play pivotal roles
in maintaining the global network structure [5]. Moreo-
ver, some other topological characteristics such as connec-
tivity, clustering coefficient, and shortest path length have
been proposed to explain the evolutionary rate and/or the
lethality of network nodes. It has been shown that highly
connected proteins in protein-protein interaction net-
works have a higher clustering coefficient and a smaller
shortest path length. Consqeuntly, such proteins are more
likely to be essential and evolve slowly [1,3,6-8]. There is
however a pressing need to develop another topological
measure that can better explain the relationship between
network characteristics and biological importance of net-
work nodes [1,9].

We note that feedback loops are ubiquitously found in
various biological networks and play important roles in
amplifying (positive feedback loop) or inhibiting (nega-
tive feedback loop) intracellular signals [10-15]. It has
been suggested that such a feedback loop could be an
important network motif [16-18]. Yet, it has not been
fully investigated whether there exists a correlation
between feedback loops and the functional importance of
network nodes. Hence, we address this problem here and
propose that the number of feedback loops (NuFBL) is a
novel network measure characterizing such a functional
importance of network nodes.

To prove our hypothesis, we use the random Boolean net-
work models where directed links between nodes are ran-
domly chosen. This random Boolean network model has
been widely used to represent various biological networks
and it has successfully captured some biological proper-
ties [19-23]. For instance, random Boolean network mod-
els were used to prove the properties of the yeast
transcriptional network in that the network converges to a
same stable state and it is robust against mutations of ini-
tial states [19]. They were also used to explain the remark-
able robustness observed in genetic regulatory networks
[20] and some properties of cell cycle networks such as
stability along with genome size and the number of active
genes along with the in-degree distribution [21] were also
explained by Boolean network models. Previous studies
adopt these random Boolean network models to prove
that the global dynamics of the genetic regulatory network
of Hela cells are highly ordered [22] and the dynamics of
various biological networks such as multi-stability and
oscillations are related with positive or negative feedback
loops [23]. These previous studies have validated useful-
ness of the random Boolean network models in analyzing
the dynamical characteristics of biological networks.

http://www.biomedcentral.com/1471-2105/8/384

Results and discussion

Correlation between the functional importance of
network nodes and the NuFBL

The hippocampal CAl neuronal signal transduction network

We considered the large signal transduction network of
the hippocampal CA1 neuron of mice to examine the
NuFBL as a new network measure [6]. We first confirmed
the previous observation that proteins with a higher con-
nectivity are more likely to be lethal and to have a slower
evolutionary rate (data not shown). It has been consid-
ered that the lethal proteins are more essential than other
proteins showing no obvious phenotype when deleted
[1]. Also, it has been known that functionally important
proteins are under a strong regulatory constraint resulting
in relatively slow evolution [24,25]. Similarly, to examine
whether the NuFBL of a protein is related to its functional
importance, the NuFBL was plotted against the degree of
phenotype and the evolutionary rate for grouped proteins
as described in Methods. In Fig. 1, it was observed that
more essential proteins (Fig. 1a) and more slowly evolv-
ing proteins (Fig. 1b) tend to have a larger NuFBL, which
suggests that functionally important proteins in the signal
transduction network are more likely to be regulated by
many feedback loops. On the contrary, the nonessential
proteins indicated by "Not obvious" phenotype group
showed a very small NuFBL and they are less likely to be
regulated by feedback loops. Note that most of the pro-
teins except those with the slowest evolutionary rate have
little difference in the NuFBL.

Boolean network models of biological networks

To further investigate whether the positive correlation
between the NuFBL and the functional importance is an
intrinsic principle of network dynamics, we performed
extensive computer simulations for generalized biological
network models represented by Boolean networks (see
Methods). The importance of a node in the Boolean net-
work model was defined as the probability with which
either an initial state mutation or an update rule mutation
of the node makes the network converge to a new attrac-
tor. In Boolean network models, a state trajectory starts
from an initial state and eventually converges to either a
fixed-point or a limit-cycle attractor. So, these attractors
represent diverse behaviors of biological networks such as
multistability, homeostasis, and oscillation [26-28]. For
instance, in the regulatory network of inducing phenotype
variations in bacteria, some epigenetic traits are repre-
sented by multiple fixed-point attractors [29]. In addition,
mitogen-activated protein kinase cascades in animal cells
[26,27] and cell cycle regulatory circuits in Xenopus and
Saccharomyces cerevisiae [28,30] are known to produce
multistable attractors. On the other hand, the transcrip-
tional network of mRNAs for Notch signaling molecules
shows the oscillation with a 2-h cycle by hes1 transcrip-
tion [31] corresponding to a limit-cycle attractor. ;From
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Correlation between the functional importance of proteins and the NuFBL. (a) The NuFBL's were plotted against
the mutant phenotypes of the proteins in the network where proteins were classified according to the previous report [1]. (b)
The NuFBL's were plotted against the evolutionary rate [1] (dN/dS) of proteins which were grouped into five different classes
according to their evolutionary rates. For each protein group, the average and the confidence interval for 95% confidence level
of the NuFBL are shown on the y-axis (see additional data file 4 for further details).

these examples, we can find that attractors represent
essential dynamics of biological networks. Therefore, con-
verging to a different attractor by some mutations at a
node means that the node has a significant role in the net-
work. This concept has been widely used in a number of
previous studies based on computational approaches [32-
35].

Fig. 2 shows the results of the Boolean networks with |V/|
=14 and |A| = 19. It turns out that the network nodes with
a higher connectivity or NuFBL are more important,
which is consistent with the observation in the above neu-
ronal signal transduction network. And, we observed the
same result for networks with different sizes (see addi-
tional data file 1). Moreover, we found that the NuFBL is
a better network measure than the connectivity in evaluat-
ing the functional importance of a network node.

In addition to the NuFBL, we can think of another meas-
ure that represents the particular characteristics of feed-
back loops. For instance, we have investigated the
relationship between the length of feedback loops at a
node and its functional importance which is defined in
the same way as in Fig. 2. In this case, the nodes with rel-
atively longer or shorter loop lengths were functionally
less important while the nodes with medium loop lengths

were more important (see additional data file 2 for
details). So, the length of feedback loops can be consid-
ered as another measure, but it is no longer linearly corre-
lated with the functional importance unlike the NuFBL.

Comparison of the NuFBL and the connectivity

Correlation between the NuFBL and the connectivity in the neuronal
signal transduction network

We compared the NuFBL and the connectivity as a meas-
ure of network characteristics. As shown in Fig. 3, it was
observed that there is a strong positive correlation
between the connectivity and the NuFBL (the correlation
coefficient is 0.73). Interestingly, the positive correlation
was relatively stronger for the lethal and slowly-evolving
proteins, which have a high connectivity and a large
NuFBL (red plus sign points in Fig. 3a, b). On the con-
trary, there was only a weak correlation for the proteins of
a non-lethal group or a rapidly evolving group (blue circle
points in Fig. 3a, b). The correlation coefficient of 152
proteins whose connectivity ranged from 5 to 9 was only
0.14.

Classification of proteins in the CAl neuronal signal transduction
network

To probe the distribution of proteins, we classified the
proteins into four different groups (see Methods): "no
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Correlation of connectivity and the NuFBL to the functional importance in Boolean networks. (a) Correlation
between connectivity and the functional importance of network nodes with respect to initial state mutations. (b) Correlation
between the NuFBL and the functional importance of network nodes with respect to initial state mutations. (c) Correlation
between connectivity and the functional importance of network nodes with respect to update rule mutations. (d) Correlation
between the NuFBL and the functional importance of network nodes with respect to update rule mutations. In each figure, all
nodes were classified into five groups according to their connectivity or NuFBL ranks. All the results represent the average
over randomly generated 2000 Boolean networks with |V| = 14 and |A| = 19. For each group, the average and the confidence
interval for 95% confidence level of the functional importance are shown on the y-axis. Here, the functional importance of a
network node is defined by the probability with which the network converges to a different attractor when the value of the
node is mutated. For other Boolean networks with different |V| and |A|, we also obtained similar results (see additional data file

1).
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Distribution of proteins with respect to connectivity
and the NuFBL. (a) Proteins were classified into "Lethal",
"Viable", and "Not obvious", respectively, according to their
mutant phenotypes. (b) Proteins were classified into "Slow",
"Middle", and "Fast", respectively, according to their evolu-
tionary rates (see additional data file 3 for further details).

feedback loop & low connectivity", "no feedback loop &
high connectivity", "feedback loop & low connectivity",
and "feedback loop & high connectivity" (Table 1). The
functional importance (R) estimated by the lethal mutant
phenotype or slow evolutionary rate was significantly
higher for the "feedback loop & high connectivity" group.
Note that the connectivity or the NuFBL alone was not
enough to discern all the different network characteristics.

We analyzed the distinct features of the proteins in the
four groups with respect to their functional roles (Fig. 4).
Interestingly, we found that receptor proteins were
enriched in the "high connectivity & no feedback loop"
group (Fig. 4¢) and that downstream kinases and proteins
from receptors were enriched in the "high connectivity &

http://www.biomedcentral.com/1471-2105/8/384

feedback loop" group (Fig. 4d). These suggest that the
downstream proteins from receptors in the signal trans-
duction network are primarily responsible for intensifica-
tion of signals and therefore feedback regulations are
required for the amplification and control of signals
[36,37].

Classification of proteins in the computational networks

By using simulations based on the Boolean network mod-
els, we further investigated the relationship between the
connectivity and the NuFBL. The whole network nodes
were classified into four groups as in Table 1, and the sim-
ulations confirmed that the connectivity is positively cor-
related with the NuFBL with respect to the functional
importance of network nodes (Table 2). This was verified
through other Boolean networks with different sizes (see
additional data file 3). In particular, we note that the
nodes involved with no feedback loop present compara-
tively low functional importance on average. This implies
that if a protein is relatively important among the "no
feedback loop" group, it is likely for us to discover a new
feedback loop around this protein.

Conclusion

We propose the NuFBL as a new network measure that can
characterize the functional importance of network nodes.
We have shown that the NuFBL is positively correlated
with the connectivity in measuring network characteris-
tics, and the network nodes with a higher NuFBL and a
higher connectivity are more essential (lethal) and evolve
slowly. Through extensive computational simulations, we
found that the positive correlation between the NuFBL
and the functional importance is an intrinsic property of
network dynamics.

Unfortunately, at present, there are few large-scale biolog-
ical networks harboring the information about feedback
loops. A future study will therefore include a verification
of the presented results in many other kinds of real bio-
logical networks. As another future study, we need to
investigate the characteristics of feedback loops that can
help us to predict the functional importance of network
nodes from other aspects of the data. Such characteristics
include timing of expression, the number of members in
the loop, and the integrative sign of multiple interactions.

Methods

Connectivity, feedback loop, loop length, and the number
of feedback loops (NuFBL)

Given a network composed of a set of nodes and a set of
links between the nodes, the connectivity of a node is
defined as the number of links connected to the node. A
feedback loop means a closed simple cycle where nodes
are not revisited except the starting and ending nodes. For
instance, vy —> v; > v, > U > v, ; > v, is a feedback loop
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Table I: Classification of proteins and their functional importance in the hippocampal CAIl neuronal signal transduction network

The functional importance with respect to mutant phenotypes

No feedback loop Feedback loop Total
N u R N u R N u R
Low connectivity 49 142 34.5% 9 24 37.5% 58 166 349
High connectivity 19 55 34.5% 60 118 50.8% 79 173 45.7%
Total 68 197 34.5% 69 142 48.6% 137 339 40.4%
The functional importance with respect to evolutionary rates
No feedback loop Feedback loop Total
N U R N u R N u R
Low connectivity 36 208 17.3% 6 40 15.0% 42 248 16.9%
High connectivity 10 71 14.1% 37 136 27.2% 47 207 22.7%
Total 46 279 16.5% 43 176 24.4% 89 455 19.6%

U : The number of proteins belonging to the corresponding class.

N : The number of important proteins with either a "Lethal" phenotype or a "Slow" evolutionary rate.

R: N/U x 100(%).

of length L(> 1) if there are links from v, ; to v; (i = 1, 2,...,
L) with vy = vy and v;# v, for j, k € {0, 1,.., L - 1}. The
NuFBL of a node v denotes the number of different feed-
back loops starting from v.
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Figure 4

Classification of proteins according to their function
in the hippocampal CAI neuronal signal transduction
network and the proportion of each classified group.
The proteins were classified into four groups: (a) "no feed-
back loop & low connectivity" group, (b) "no feedback loop
& high connectivity" group, (c) "feedback loop & low connec-
tivity" group, and (d) "feedback loop & high connectivity"
group. For each group, the proportion of proteins classified
according to their functions is specified.

Analysis of the hippocampal CAIl neuronal signal
transduction network

We considered all 545 proteins and their 1258 interac-
tions in the signal transduction network of the hippocam-
pal CA1 neuron of mice [6]. Following the previous study
[1], proteins were grouped together according to their
lethality and evolutionary rates. As it is difficult to enu-
merate all possible feedback loops in such a large net-
work, we considered only the feedback loops whose
length (i.e., the number of links comprising a feedback
loop) is less than or equal to 10. Important proteins are
defined as those with "lethal" phenotypes and these are
illustrated in the upper of Table 1. 20% of the most
slowly-evolving proteins are illustrated in the lower of
Table 1.

Analysis of generalized biological network models
represented by Boolean networks

Boolean network models composed of a set of Boolean
variables and regulatory relationships between the varia-
bles have been widely used as a useful tool for investigat-
ing the complex dynamics of various biological networks
[38,39]. In spite of their structural simplicity, Boolean net-
works can represent a variety of complex behaviors [23]
and share many features with other continuous models
[40,41]. We employed such a Boolean network model and
described biological networks by a directed graph, G = (V,
A) where V is a set of Boolean variables and A is a set of
ordered pairs of the variables, called directed links (|V]
and |A| denote the numbers of nodes and links, respec-
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Table 2: Classification of network nodes and their functional importance in generalized Boolean network models

Boolean networks with |V| = 14 and |A| = |9 (initial state mutation)

No feedback loop Feedback loop Total
U E(L) E(L) U E(L)
Low connectivity 4281 0.0263 (0.00183) 9592 0.2317 (0.00615) 13873 0.1683 (0.00457)
High connectivity 1246 0.0426 (0.00492) 12881 0.2806 (0.00564) 14127 0.2596 (0.00528)
Total 5527 0.0300 (0.00181) 22473 0.2597 (0.00418) 28000 0.2144 (0.00354)
Boolean networks with |V| = 14 and |A| = |9 (update rule mutation)
No feedback loop Feedback loop Total
u EL) E(L) U E()
Low connectivity 4379 0.1858 (0.00779) 9465 0.2459 (0.00579) 13844 0.2268 (0.00468)
High connectivity 1269 0.2196 (0.01539) 12887 0.2800 (0.00515) 14156 0.2745 (0.00490)
Total 5648 0.1934 (0.00697) 22352 0.2655 (0.00386) 28000 0.2510 (0.00340)

U : The number of proteins belonging to the corresponding class.

E : The average value of the functional importance with respect to either initial update mutations or rule update mutations.

L : The confidence interval for 95% confidence level.

tively). Each v; € V has the value of 1 ("on") or 0 ("off").
A directed link (v v;) has a positive ("activating") or neg-
ative ("inhibiting") relationship from v; to v;. The value of
each variable v; at time ¢ + 1 is determined by the values of

k; other variables v; ,v; ,---,v; having alink to v; at time
1

t through a Boolean function f; :{O,l}ki —{0,1} . Hence,
we can represent the update rule as y(t + 1) =

fiv; (©),v;, (t),-++,v;, (1)) where we randomly use either a

logical conjunction or disjunction for all the signed rela-
tionships in f;. For instance, if a Boolean variable v has a

positive relationship from v, and a negative relationship
from v,, the conjunction and disjunction update rules are
u(t+ 1) =v,(0) A v, (and vt + 1) = v,(£) v v, (£), respec-
tively. We defined the functional importance of a node in
Boolean networks as follows: Given a network with N
Boolean variables, a state denotes a vector consisting of N
Boolean variables; there are 2N states in total. Each state
makes a transition to another state through the Boolean
update function. We constructed a state transition network
that describes the transition of all the states. For a network
node v, its functional importance can be considered in
two ways. One is the functional importance with respect
to initial state mutations. It is defined as the probability
with which two state trajectories starting from s and s' con-

verge to different attractors for all 2N-1 pairs of states s and
s' having different values only at v. The initial state muta-
tion corresponds to the abnormal state (or malfunction-
ing) of a protein or gene caused by mutations. The other
is the functional importance with respect to the update
rule mutations. It is defined as the probability with which
two state trajectories starting from a same state converge
to different attractors where one of the two trajectories is
obtained without the update rule mutation and the other
is obtained by an error in updating the value of v with a
probability 0.2. The update rule mutation corresponds to
the change of relationships between nodes by removal or
addition of links.

List of abbreviations
NuFBL: Number of feedback loops
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Additional material

Additional file 1

The figure shows the correlation of connectivity and the NuFBL to the
functional importance in Boolean networks. (a) Correlation between
connectivity and the functional importance of nodes with respect to initial
state mutations in Boolean networks with |V| = 10 and |A| = 14. (b) Cor-
relation between the NuFBL and the functional importance of nodes with
respect to initial state mutations in Boolean networks with |V| = 10 and
|A]| = 14. (c) Correlation between connectivity and the functional impor-
tance of nodes with respect to update rule mutations in Boolean networks
with |V| = 10 and |A| = 14. (d) Correlation between the NuFBL and the
functional importance of nodes with respect to update rule mutations in
Boolean networks with |V| = 10 and |A| = 14. (e) Correlation between
connectivity and the functional importance of nodes with respect to initial
state mutations in Boolean networks with |V| = 12 and |A| = 16. (f) Cor-
relation between the NuFBL and the functional importance of nodes with
respect to initial state mutations in Boolean networks with |V| = 12 and
|A] = 16. (g) Correlation between connectivity and the functional impor-
tance of nodes with respect to update rule mutations in Boolean networks
with |V| = 12 and |A| = 16. (h) Correlation between the NuFBL and the
functional importance of nodes with respect to update rule mutations in
Boolean networks with |V| = 12 and |A| = 16. All the results are the aver-
age over randomly generated 2000 Boolean networks. For each group, the
average and the confidence interval for 95% confidence level of the func-
tional importance are shown on the y-axis.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-384-S1.pdf]

Additional file 2

The figure shows the correlation between the length of feedback loops
and the functional importance in Boolean networks. (a) Correlation
between the length of feedback loops and the functional importance of
nodes with respect to initial state mutations in Boolean networks with |V|
=14 and |A| = 19. (b) Correlation between the length of feedback loops
and the functional importance of nodes with respect to update rule muta-
tions in Boolean networks with |V| = 14 and |A| = 19. All the results are
the average over randomly generated 2000 Boolean networks. In each fig-
ure, all nodes were classified into five groups according to the average
length of feedback loops that are involved at each node. For each group,
the average and the confidence interval for 95% confidence level of the
functional importance are shown on the y-axis.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-384-52.pdf]

Additional file 3

The table shows classification of network nodes with respect to their
connectivity and feedback loops in generalized biological networks
represented by Boolean models. The first and the second tables show the
results with respect to initial state mutations and update rule mutations,
respectively, in Boolean networks with |V| = 10 and |A| = 14. The third
and fourth tables show the results with respect to initial state mutations
and update rule mutations, respectively, in Boolean networks with |V| =
12 and |A| = 16.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-384-53.pdf]

http://www.biomedcentral.com/1471-2105/8/384

Additional file 4

The table shows classification of proteins in the hippocampal CA1
neuronal signal transduction network. The upper and the lower tables
are the results with respect to classification of proteins according to their
mutant phenotypes and classification of proteins according to their evolu-
tionary rates, respectively.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-384-4.pdf]

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation
(KOSEF) grant funded by the Korea government (MOST) (M10503010001-
07N030100112) and also supported from the Korea Ministry of Science
and Technology through the Nuclear Research Grant (M20708000001 -
07B0800-001 10) and the 21 C Frontier Microbial Genomics and Application
Center Program (Grant MG05-0204-3-0). It was also supported in part
from the Korea Ministry of Commerce, Industry & Energy through the
Korea Bio-Hub Program (2005-B0000002).

References

Liu W, Li D, Zhang J, Zhu Y, He F: SigFlux: a novel network fea-
ture to evaluate the importance of proteins in signal trans-
duction networks. BMC Bioinformatics 2006, 27(7):515.

Yu H, Greenbaum D, Lu Xin H, Zhu X, Gerstein M: Genomic anal-
ysis of essentiality within protein networks. Trends in Genetics
2004, 20(6):227-231.

He X, Zhang J: Why do hubs tend to be essential in protein net-
works? PLoS Genetics 2006, 2(6):e88.

Balaji S, lyer L, Aravind L, Babu M: Uncovering a hidden distrib-
uted architecture behind scale-free transcriptional regula-
tory networks. Journal of Molecular Biology 2006, 260:204-212.
Albert R, Jeong H, Barabasi A: Error and attack tolerance of
complex networks. Nature 2000, 406:378-382.

Ma'ayan A, Jenkins S, Neves S, Hasseldine A, Grace E, Dubin-Thaler
B, Eungdamrong N, Weng G, Ram P, Rice ], Kershenbaum A, Stolo-
vitzky G, Blitzer R, lyengar R: Formation of regulatory patterns
during signal propagation in a Mammalian cellular network.
Science 2005, 309(5737):1078-1083.

Vitkup D, Kharchenko P, Wagner A: Influence of metabolic net-
work structure and function on enzyme evolution. Genome
Biology 2006, 7(5):R39.

Barabasi AL, Oltvai ZN: Network biology: understanding the
cell's functional organization. Nature Reviews Genetics 2004,
5(2):101-113.

Wilhelm T, Behre |, Schuster S: Analysis of structural robustness
of metabolic networks. Systems Biology 2004, 1:114-120.

10. Thomas R, Thieffry D, Kaufman M: Dynamical behaviour of bio-

logical regulatory networks-l. Biological role of feedback
loops and practical use of the concept of the loop-character-
istic state. Bulletin of Mathematical Biology 1995, 57(2):247-276.

I.  Plahte E, Mestl T, Omholt SW: Feedback loops, stability and
multi-stationarity in dynamical systems. Journal of Biological Sys-
tems 1995, 3:409-413.

12.  Gouzé JL: Positive and negative circuits in dynamical systems.

Journal of Biological Systems 1998, 6:11-15.

13.  Snoussi EH: Necessary conditions for multistationarity and

stable periodicity. Journal of Biological Systems 1998, 6:3-9.

14. Mendoza L, Thieffry D, Alvarez-Buylla ER: Genetic control of

flower morphogenesis in Arabidopsis thaliana: a logical anal-
ysis. Bioinformatics 1999, 15(7/8):593-606.

15.  Martinet-Edelist C: Kinetic logic: a tool for describing the

dynamics of infectious disease behavior. Journal of Cellular and
Molecular Medicine 2004, 8(2):269-281.

16. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U:

Network Motifs: Simple Building Blocks of Complex Net-
works. Science 2002, 298(5594):824-827.

Page 8 of 9

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2105-8-384-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-8-384-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-8-384-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-8-384-S4.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16751849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16751849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10935628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10935628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16684370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16684370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17052121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17052121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7703920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7703920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7703920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590

BMC Bioinformatics 2007, 8:384

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31

32.

33.
34.

35.

36.

37.

38.

39.
40.

Yeger-Lotem E, Sattath S, Kashtan N, ltzkovitz S, Milo R, Pinter R,
Alon U, Margalit H: Network motifs in integrated cellular net-
works of transcription-regulation and protein-protein inter-
action. Proceedings of the National Academy of Sciences, USA 2004,
101(16):5934-5939.

Prill R, Iglesias P, Levchenko A: Dynamic Properties of Network
Motifs Contribute to Biological Network Organization. PLoS
Biology 2005, 3(1 1):e343.

Kauffman S, Peterson C, Samuelsson B, Troein C: Random Boolean
network models and the yeast transcriptional network. Pro-
ceedings of the National Academy of Sciences, USA 2003,
100:14796-14799.

Shmulevich |, Léhdesmiki H, Dougherty ER, Astola , Zhang W: The
role of certain Post classes in Boolean network models of
genetic networks. Proceedings of the National Academy of Sciences,
USA 2003, 100:10734-10739.

Kauffman S, Peterson C, Samuelsson B, Troein C: Genetic net-
works with canalyzing Boolean rules are always stable. Pro-
ceedings of the National Academy of Sciences, USA 2004,
101(49):17102-17107.

Shmulevich |, Kauffman S, Aldana M: Eukaryotic cells are dynam-
ically ordered or critical but not chaotic. Proceedings of the
National Academy of Sciences, USA 2005, 102:13439-13444.

Kwon YK, Cho KH: Boolean dynamics of biological networks
with multiple coupled feedback loops. Biophysical Journal 2007,
92(8):2975-2981.

Fraser H, Hirsh A, Steinmetz L, Scharfe C, Feldman M: Evolutionary
rate in the protein interaction network. Science 2002,
296(5568):750-752.

Wouchty S: Evolution and topology in the yeast protein inter-
action network. Genome Research 2004, 14(7):1310-1314.

Ferrell JE Jr, Machleder EM: The biochemical basis of an all-or-
none cell fate switch in Xenopus oocytes. Science 1998,
280:895-898.

Bhalla US, Ram PT, lyengar R: MAP kinase phosphatase as a locus
of flexibility in a mitogen-activated protein kinase signaling
network. Science 2002, 297:1018-1023.

Pomerening JR, Sontag ED, Ferrell JE Jr: Building a cell cycle oscil-
lator: hysteresis and bistability in the activation of Cdc2.
Nature Cell Biology 2003, 5:346-351.

Smits WK, Kuipers OP, W VJ: Phenotypic variation in bacteria:
the role of feedback regulation. Nature Reviews Microbiology
2006, 4:259-271.

Sha W, Moore ], Chen K, Lassaletta AD, Yi CS, Tyson ]J, Sible JC:
Hysteresis drives cell-cycle transitions in Xenopus laevis egg
extracts. Proceedings of the National Academy of Sciences, USA 2003,
100(3):975-980.

Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K,
Kageyama R: Oscillatory expression of the bHLH factor Hesl
regulated by a negative feedback loop. Science 2002,
298:840-843.

Li F, Long T, Lu Y, Ouyang Q, Tang C: The yeast cell-cycle net-
work is robustly designed. Proceedings of the National Academy of
Sciences, USA 2004, 101(14):4781-4786.

Kitano H: Biological robustness. Nature Reviews Genetics 2004,
5(11):826-837.

Ciliberti S, Martin OC, Wagner A: Robustness can evolve gradu-
ally in complex regulatory gene networks with varying topol-
ogy. PLoS Computational Biology 2007, 3(2):el5.

Huang S, Eichler G, Bar-Yam Y, Ingber DE: Cell fates as high-
dimensional attractor states of a complex gene regulatory
network. Physical Review Letters 2005, 94(12):128701.

Xiong W, Ferrell ] |r: A positive-feedback-based bistable 'mem-
ory module' that governs a cell fate decision. Nature 2003,
426(6965):460-465.

Brandman O, Ferrell | Jr, Li R, Meyer T: Interlinked Fast and Slow
Positive Feedback Loops Drive Reliable Cell Decisions. Sci-
ence 2005, 310:496-498.

Kauffman SA: Metabolic stability and epigenesis in randomly
constructed genetic nets. Journal of Theoretical Biology 1969,
22(3):437-467.

Kauffman SA: The Origins of Order: Self-Organization and Selection in Evo-
lution New York: Oxford Univ. Press; 1993.

Stern MD: Emergence of homeostasis and "noise imprinting"
in an evolution model. Proceedings of the National Academy of Sci-
ences, USA 1999, 96(19):10746-10751.

41.

http://www.biomedcentral.com/1471-2105/8/384

Bhattacharjya A, Liang S: Power-Law Distributions in Some Ran-
dom Boolean Networks. Physical Review Letters 1996,
77(8):1644-1647.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 9 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17259267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17259267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11976460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11976460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9572732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9572732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12629549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12629549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16541134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16541134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17274682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17274682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17274682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15903968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15903968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15903968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16239477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16239477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5803332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5803332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10063130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10063130
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Correlation between the functional importance of network nodes and the NuFBL
	The hippocampal CA1 neuronal signal transduction network
	Boolean network models of biological networks

	Comparison of the NuFBL and the connectivity
	Correlation between the NuFBL and the connectivity in the neuronal signal transduction network
	Classification of proteins in the CA1 neuronal signal transduction network
	Classification of proteins in the computational networks


	Conclusion
	Methods
	Connectivity, feedback loop, loop length, and the number of feedback loops (NuFBL)
	Analysis of the hippocampal CA1 neuronal signal transduction network
	Analysis of generalized biological network models represented by Boolean networks

	List of abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

