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Abstract

Background: An indirect approach is usually used to estimate the metabolic fluxes of an organism:
couple the available measurements with known biological constraints (e.g. stoichiometry). Typically
this estimation is done under a static point of view. Therefore, the fluxes so obtained are only valid
while the environmental conditions and the cell state remain stable. However, estimating the
evolution over time of the metabolic fluxes is valuable to investigate the dynamic behaviour of an
organism and also to monitor industrial processes. Although Metabolic Flux Analysis can be
successively applied with this aim, this approach has two drawbacks: i) sometimes it cannot be used
because there is a lack of measurable fluxes, and ii) the uncertainty of experimental measurements
cannot be considered. The Flux Balance Analysis could be used instead, but the assumption of
optimal behaviour of the organism brings other difficulties.

Results: We propose a procedure to estimate the evolution of the metabolic fluxes that is
structured as follows: |) measure the concentrations of extracellular species and biomass, 2)
convert this data to measured fluxes and 3) estimate the non-measured fluxes using the Flux
Spectrum Approach, a variant of Metabolic Flux Analysis that overcomes the difficulties mentioned
above without assuming optimal behaviour. We apply the procedure to a real problem taken from
the literature: estimate the metabolic fluxes during a cultivation of CHO cells in batch mode. We
show that it provides a reliable and rich estimation of the non-measured fluxes, thanks to
considering measurements uncertainty and reversibility constraints. We also demonstrate that this
procedure can estimate the non-measured fluxes even when there is a lack of measurable species.
In addition, it offers a new method to deal with inconsistency.

Conclusion: This work introduces a procedure to estimate time-varying metabolic fluxes that
copes with the insufficiency of measured species and with its intrinsic uncertainty. The procedure
can be used as an off-line analysis of previously collected data, providing an insight into the dynamic
behaviour of the organism. It can be also profitable to the on-line monitoring of a running process,
mitigating the traditional lack of reliable on-line sensors in industrial environments.

Background bolic pathways of organisms of interest are assembled in
Fostered by the importance of studying the cell metabo-  metabolic networks [3,4]. If it is assumed that the intrac-
lism under a system-level approach [1,2], the set of meta-  ellular metabolites of a network are at pseudo steady-
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state, mass balances around each metabolite can be
described by means of a homogeneous system of linear
equations [5]. These equations can be considered as stoi-
chiometric constraints. Then, the constraints imposed by
enzyme or transport capacities and thermodynamics (e.g.
irreversibility of reactions) can be incorporated to the sys-
tem [6]. Thereby the imposed constraints define a space
where every feasible flux distribution lives [7]. Since the
metabolic phenotype can be defined in terms of flux dis-
tributions through a metabolic network, this space repre-
sents (or at least contains) the set of feasible phenotypes
[8]- The environmental conditions given at a certain time
instant will determine which of these flux distributions
corresponds to the actual one [9].

Coupling constraints with experimental measurements

Experimental measurements of fluxes can be incorporated
as constraints, in order to determine the actual flux distri-
bution or at least to reduce the space of possible flux dis-
tributions. However, it must be taken into account that
measurements are not invariant constraints, but specific
condition constraints [8]. There are several methodolo-
gies that use this approach with different purposes: esti-
mate the non-measured fluxes, predict flux distributions,
investigate the cell behaviour or monitor bioprocesses.

Metabolic Flux Analysis (MFA) provides a methodology
to uniquely determine the actual flux distribution by
using a metabolic network and a set of measured fluxes
[5]- It has been intensively used in recent years with suc-
cessful results [10-13]. As it can only consider stoichio-
metric constraints, a considerable number of fluxes need
to be measured to determine the rest of the fluxes. Unfor-
tunately, the available measurements are often insuffi-
cient [14].

The Flux Balance Analysis (FBA) can be used to predict
metabolic flux distributions [15,16]. Firstly, a constraint-
based model is defined as a set of invariant constraints:
stoichiometrics, thermodynamics, etc. Then, only a few
specific condition constraints (usually substrates uptakes)
are imposed. Subject to these constraints, which define a
region of possible flux distributions, an optimal flux dis-
tribution is calculated using linear programming. Yet, the
optimal solution may not correspond to the actual flux
distribution. It must be hypothesized that i) the cell has
identified the optimal solution, ii) the objective sought by
the cell is known, and iii) it can be mathematically
expressed. However, FBA predictions based on different
objective functions (e.g. maximize growth) are consistent
with experimental data [17-19].

Estimating the evolution over time of flux distributions
Typically, calculation of a flux distribution (e.g. with MFA
or FBA) is done under a static point of view: the measured
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fluxes are assumed to be constant. That means that the
obtained flux distribution will only be valid during a cer-
tain period of time, while the environmental conditions
and the cell state remain steady (e.g. during the growth
phase). However, if these conditions change along time,
as it happens in an actual culture, the flux distribution will
change. The estimation of the flux distribution over time
can be useful to investigate the dynamic behaviour of the
microorganism or to monitor the progress of industrial
fermentations [20]. In [21], the classical FBA is extended
to predict the dynamic evolution of flux distributions. In
[22], an approach based on elementary modes and the
assumption of optimal behaviour is used to estimate the
flux distributions of Corynebacterium glutamicum at differ-
ent temporal phases of fermentation. Elementary modes
are also employed in [23], where the cell life is decom-
posed in a succession of phases, and then the time-varying
intracellular fluxes are obtained by switching the flux dis-
tributions calculated at each phase. In [24], on-line MFA
is successfully applied to quantify coupled intracellular
fluxes. Takiguchi et al. [25] use a similar approach to rec-
ognize the physiological state of the cells culture. They
also show how this information can be used to improve
Lysine production yield. Very recently [26] has presented
an on-line estimation of intracellular fluxes applying MFA
to an over-determined metabolic network.

To calculate the succession of flux distributions, it is usu-
ally assumed that intracellular fluxes are in quasi-steady
state within each measurement step. However, that does
not mean that the intrinsic dynamic nature of the cultiva-
tion is being disregarded. Instead, the intracellular fluxes
will follow the change of environmental conditions as
mediated by the measured fluxes (e.g. substrate uptakes).
Hence, steady states may undergo shifting from one state
to another depending on the evolution of the measured
fluxes [27]. Such assumption has been successfully
applied in the works cited in above and in the develop-
ment of several dynamic models [23,28-32]. This
approach makes it possible to study the dynamic behav-
iour of the organism, without considering the still not
well-known intracellular kinetics.

Using the flux spectrum approach to estimate the fluxes

MFA can be successively applied to estimate the evolution
of a flux distribution over time. However, this approach
has three main difficulties: i) It cannot be used when meas-
urements are scant (i.e. when the system is underdeter-
mined). This happens very often due to the lack of
measurable fluxes. ii) The uncertainty of the measured fluxes
cannot be considered. Not only gross errors may appear -
which could be managed only in case there are redundant
measured fluxes- but also most sources of measurements
are intrinsically uncertain and the propagation of this
uncertainty to the estimated fluxes is not controlled, and
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iii) only equalities can be used as constraints. For instance,
reversibility constraints or maximum flux values cannot
be taken into account. FBA solves the first difficulty and
provides a framework to deal with the other ones. But the
use of FBA in this context could be problematic due to the
appearance of a time-variant metabolic objective [22]. For
these reasons, the procedure introduced in this work uses
the Flux Spectrum Approach (FSA) [33]. It is a variant of
MFA that includes some characteristics of FBA (e.g. it is
not restricted to stoichiometric constraints) and provides
some additional benefits (e.g. it allows to consider meas-
urements uncertainty). The use of FSA will make it possi-
ble to face the difficulties described above without
assuming an optimal behaviour of the organism.

Although FSA is capable of considering a wide range of
constraints, in this work we will only use stoichiometric
relationships and simple thermodynamic constraints
(reactions directions), and we assume them to be known
a priori. However, it must be noticed that the incorpora-
tion of thermodynamic constraints -based on measure-
ments or estimations of the standard Gibbs free energy
change of reactions- is capturing attention in recent times.
A genome-scale thermodynamic analysis of Escherichia coli
has been recently carried out [34]. Kimmel et al. have
introduced an algorithm that -based on thermodynamics,
network topology and heuristic rules- automatically
assigns reaction directions in metabolic models such that
the reaction network is thermodynamically feasible [35].
Interestingly, the reaction directions obtained can be
incorporated as constraints before using FSA. Standard
Gibbs free energy changes have been also used to incorpo-
rate thermodynamic realizability as constraint for FBA
[36] -or in an analogous manner to FSA-, and to develop
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a new form of MFA with the capability of generating ther-
modynamically feasible fluxes [37].

The objectives of this article are twofold: first, introduce a
procedure for the estimation of the metabolic fluxes over
time by using a metabolic network as a constraint-based
model and a reduced set of measurable species. This pro-
cedure is capable of coping with lack of measured species
and with its intrinsic uncertainty, thanks to the use of the
Flux Spectrum Approach (FSA). Second, illustrate this
procedure with a real example: the estimation of non-
measured fluxes during a cultivation of CHO cells in
batch mode in stirred flasks.

Results and discussion

Procedure overview

In most cases, only a few extracellular species are measur-
able during fermentation processes. This is the reason for
use an indirect approach to estimate the fluxes that cannot
be measured: couple the available measurements with
known biological constraints. Under this philosophy, the
proposed procedure is structured as follows (Figure 1): 1)
obtain experimental measurements of the concentration
of some extracellular species and biomass, 2) convert
these concentrations to measured fluxes and 3) estimate the
non-measured fluxes using the Flux Spectrum Approach
(FSA).

It is sometimes overlooked that extracellular fluxes are not
directly measured. Instead, the concentrations of a set of
species are measured (step 1), and those data are con-
verted to flux units or measured fluxes (step 2). The
importance of a good conversion should not be disre-
garded: error in the measurements of concentrations may

(1) Measure concentrations
of species

&) &) &®
x(t)

(2) Calculate fluxes of measured
species

(3) Estimate the non-measured fluxes

Biomass measured
3 measured species

Vi) vat)

vi(t)

Figure |

Procedure overview. Step |: get experimental measurements of concentration of some extracellular species and biomass.
Step 2: convert this concentrations to measured fluxes. Step 3: estimate the non-measured fluxes by using the Flux Spectrum
Approach (FSA). £(t) is the concentration of an extracellular specie and v(t) its flux.x(t) is the biomass concentration. Subind-

exes |, 2 and 3 denote the measured fluxes and 4, 5 and 6 the non-measured ones.
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be amplified through the conversion, incorporated into
the measured fluxes, and then propagated to the estima-
tion of the non-measured fluxes. To minimize this hitch,
the conversion should be done carefully. Afterwards, the
non-measured fluxes can be estimated by coupling the
metabolic network and the measured fluxes (step 3). This
has been done before by means of the MFA methodology
[24-26]. Yet, this approach has certain limitations. We will
overcome some of them using FSA.

It must be remarked that the procedure can be used in two
main scenarios: as an off-line analysis of previously col-
lected data or as an on-line monitoring of an industrial
process. The structure of the procedure and its fundamen-
tal step (step 3) are exactly the same in both cases. Never-
theless, there are several differences concerning step 2.
These differences will be briefly described along the article
and illustrated in an additional file [additional file 3].

Preliminaries: choice and analysis of the metabolic
network

A metabolic network can be represented with a stoichio-
metric matrix S, where rows correspond to the m metabo-
lites and columns to the n fluxes. Assuming that the
intracellular metabolites are at pseudo-steady state, mate-
rial balances around them can be formulated as follows
[38,39]:

S'v=0 (1)

where v is a flux distribution. Assuming that S has full row
rank, the number of independent equations is m. As typi-
cally n becomes larger than m, the system (1) is underde-
termined (n-m degrees of freedom). That means that there
is not a unique flux distribution fulfilling (1), but an infi-
nite number of feasible flux distributions. In order to
determine which of these feasible flux distributions is the
current one, the constraints imposed by the measured
fluxes will be incorporated -latter on it will be shown that
other constraints, for example the reversibility constraints,
can be added.

Thereby, when choosing the metabolic network to be
used through the procedure, it must be taken into account
that its degree of detail needs to be compatible with the
number of available measurements -i.e. the available
measurements must be sufficient to offset the underdeter-
minacy of the network. In order to study this, we can ana-
lyze the system formed by the stoichiometric constraints
given by (1) and the constraints imposed by the measured
fluxes. This system -which constitutes the fundamental
equation of MFA- can be obtained making a partition
between measured (subindex m) and non-measured or
unknown fluxes (subindex u):
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“Um (2)

System Determinacy and Calculability of Fluxes

System (2) is determined when there are enough linearly
independent constraints for uniquely calculate all non-
measured fluxes v,; i.e, when rank(S,) = u (u is the
number of non-measured fluxes). On the contrary, when
rank(S,)>u, the system is classified as underdetermined
because at least one non-measured flux, and probably
most of them, is non calculable [14]. If the system is
underdetermined, the traditional MFA methodology can-
not be used to calculate the non-measured fluxes. Fortu-
nately, the use of FSA may provide an estimation of the
non-measured fluxes even in this situation. However, it
must be taken into account that the likelihood of obtain-
ing a precise estimation increases as the underdetermi-
nancy reduces, as the set of flux distributions compatible
with the measured values will be smaller.

System Redundancy and Consistency of Measurements

System (2) is redundant when some rows in S, can be
expressed as linear combinations of other rows; i.e., when
rank(S,)<m. This can lead to an inconsistent system if the
vector v,, contains such values that no v,, exists that exactly
solves (2). Therefore, when the system is redundant, the
inconsistency of the measurements can be checked and its
importance can be estimated (see methods). Unfortu-
nately some measured fluxes have no impact on the con-
sistency of the system, so they cannot be considered in the
analysis of consistency. These fluxes are called non-bal-
anceable. The balanceable fluxes can be detected as
explained in [14], and they should be adjusted (or bal-
anced) in case the system is inconsistent (see methods).
All these methods are commonly applied when MFA is
used [12,24,26]. They can also be used within our proce-
dure, but in addition the use of FSA provides new meth-
ods to deal with inconsistency as it will be shown in a
subsequent section.

Step I: Getting experimental measurements of species
There are several alternatives to measure the concentra-
tion of species -e.g. on-line sensors, isotopic tracer experi-
ments or laboratory procedures- but providing a detailed
description of each one is out of the scope of this work. In
any case, it must be remembered that the more measure-
ments are available, the more non-measured fluxes may
be accurately estimated. However, it is necessary to be pre-
pared to overcome a lack of measurements, especially
when the procedure is done on-line (due to the lack of
reliable on-line sensors).

Step 2: conversion of measured concentrations in
measured fluxes

A mass balance around each extracellular species whose
concentration is measurable can be stated as:
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d
d—f=U§~X—D-§+F§ (3)

where & is the specie concentration, v, its flux (substrate
uptake or product formation), X the biomass concentra-
tion,D the dilution term and F; the net exchange of the
specie with the outside. Notice that this equation is only
valid for extracellular species; however, the biomass
growth and the mass balance around an internal metabo-
lite not assumed to be at pseudo-steady state can be repre-
sented in a similar way [40,41].

It is possible to calculate v:as a function of & X, D, F.and
d&/dt. But this presents two main difficulties: i) approxi-
mate a derivative (directly or indirectly) and ii) deal with
the presence of errors and noise in the measurements of
the concentration & [42]. The underlying problem is how
precision can be combined with robustness with respect
to measurement errors. The most straightforward
approach is to approximate the derivative with a simple
method (e.g. Euler or Runge-Kutta methods) and then
solve (3) [42]. Very often this straight approximation
needs to be combined with the use of filters to eliminate -
or at least to reduce- the presence of noise. This approach
provides very good results when centred methods can be
used to approximate the derivative and to filter the result-
ant signal, i.e. when the whole procedure is done off-line,
or when it is done on-line but certain delay in the calcula-
tion of the fluxes is allowable (i.e. when past, k-i, and
future information, k+i, is available for the calculation of
ve(k)). Furthermore, there are methods especially aimed
to the on-line approximation of the derivative. If the noise
signal is well characterized (e.g. the frequency band or a
stochastic feature is known) a linear differentiator [43] or
even a Luenberger observer may be used [44]. If nothing
is known on the structure of the signal, then sliding mode
techniques are profitable. For example, the method intro-

- Backward or centred?
- Window size?

Enl) v

Filter?

c: Other

v

Figure 2

Online/Offline

[
a: Aprox. d&/dt
b: Use an observer

Convert
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duced in [45] combines exact differentiation for a large
class of input signals with robustness with respect to any
small noises. Finally, there are other approaches to calcu-
late the extracellular fluxes that avoid the approximation
of the derivative, as for example the use of extended
Kalman filters [26,46] or the observers based on concepts
from nonlinear systems theory, such as the high gain esti-
mators described in [40,47]. These methods do not use
future information because they are aimed to the on-line
operation mode.

The importance of the use of filters should be remarked:
not only the signal of measured concentrations should be
filtered to reduce its noise, but also the calculated extracel-
lular fluxes may be filtered to get a smooth signal. Filters
based on the moving average will be used in this work
since they are simple and versatile. Basically, the filtered
value at time k is calculated by averaging the values of the
original signal within a time window. There are several
versions that differ in the time window used (backward or
centred) and in the distribution of weight over the aver-
aged values (uniform or exponential). Interestingly, this
kind of filters has already been successfully applied to the
calculation of metabolic fluxes [42].

To provide a complete description of our procedure, two
conversion approaches are described in the methods sec-
tion: the combination of an Euler method with a moving
average filter, and the use of a nonlinear observer (see Fig-
ure 2). The first one is especially suitable when the proce-
dure is done off-line, while the second one is aimed to
work on-line. Nevertheless, it must be taken into account
that there is not a universal solution for the conversion
problem. In real applications, the particularities of the
concentrations measurements (accuracy, sample rate,
importance and characteristics of the noise, etc.) and the
operation mode (off-line, on-line with an acceptable
delay or purely on-line) will determine which method is

- Backward or centred?
- Window size?

v

Filter?

Conversion of measured concentrations to measured fluxes. First, the measured concentrations should be filtered.
Then, fluxes are calculated from the concentration data (e.g. approximating the derivative or using a dynamic observer). Finally,
the calculated fluxes may be filtered to get a smooth signal. Each step is conditioned by the operation mode (on-line or off-

line).
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the most suitable one. A real off-line conversion is
described below, but the most illustrative example of the
step 2 is given in the Additional File 3, which addresses
the on-line and the off-line operation modes and the use
of filters. A practical guide about step 2 is also given in the
mentioned file.

Step 3: estimation of the non-measured fluxes using FSA
Finally, the measured fluxes obtained in step 2 are cou-
pled with known biological constraints in order to esti-
mate the non-measured fluxes (Figure 1). Basically, this
implies that a solution for system (2) has to be found at
each time instant k. Traditionally MFA was successively
applied with this purpose. Unfortunately, as mentioned
in the background section, this has some limitations -
which become especially critical if the procedure is done
on-line, due to the traditional lack of reliable on-line sen-
sors. To overcome them, the Flux Spectrum Approach
(FSA) will be used instead in the third step of our proce-
dure.

Using FSA, the estimation of the non-measured fluxes at
each time instant k is obtained as follows [33]: 3.1)
impose the set of constraints given by (2) and the reversi-
bility constraints. They define a region where the actual
fluxes may live. 3.2) calculate the interval of possible val-
ues for each non-measured flux by solving two linear pro-
gramming problems, one to compute its maximum value
within the region and the other one to compute its mini-
mum (details are given in the methods section). Thus, at
each time k, and for each non-measured flux, an interval
bracketing its possible values will be obtained: v,;(k) = [v,;
min Vuj, max]- The size of the intervals (i.e. the imprecision
of the estimation) depends on the number of non-meas-
ured fluxes, the irreversible reactions, the available meas-
urements and the degree of uncertainty considered. Of
course, the more constraints are available, the tighter
intervals are obtained. If uncertainty is not considered,

Table I: Comparison between MFA and FSA
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reversibility constraints are not used, and the system (2) is
determined, FSA gives the same unique solution as MFA
[33]. But in addition, the use of FSA provides several
advantages to the estimation procedure (see Table 1):

¢ It makes it possible to consider the uncertainty of exper-
imental measurements and even qualitative knowledge
(e.g. maximum values of certain fluxes). Hence, if meas-
urements uncertainty is indeed present and it is well char-
acterized, the estimation of non-measured fluxes will be
more reliable (Figure 3E). FSA provides not only a predic-
tion of the fluxes, but also an indication of the reliability
of this prediction.

e [t considers the reversibility constraints of certain fluxes.
This provides an estimation of the non-measured fluxes
even when measurements are insufficient, i.e. when (2) is
underdetermined (Figure 3A). This estimation will be pre-
cise if the degree of underdeterminancy is limited and
there are irreversible fluxes. On the contrary, the estima-
tion could be poor and some intervals may be
unbounded. The reversibility constraints will also restrict
the intervals of the estimated fluxes when uncertainty is
considered (Figure 3C). Finally, the reversibility con-
straints can also provide a means to detect inconsistencies
even when the system is not redundant (Figure 3F).

e [t provides a straight method for coping with inconsist-
ency: a band of uncertainty is used instead of adjusting the
inconsistent measurements. As any inconsistent set of
measurements is necessarily uncertain, it seems reasona-
bly to define a band of uncertainty around the measured
values trying to enclose nearby consistent sets of measure-
ments. Thus, every consistent set of measurements
enclosed by the band will be taken into account in the
estimation of the non-measured fluxes (Figure 3B). Fur-
thermore, the band size needed to find the nearest consist-

Traditional Metabolic Flux Analysis (MFA)

Flux Spectrum Approach (FSA)

Flux estimation Consistency Flux estimation Consistency
Determined Yes. Consistency check y2. Yes. Consistency check y2.
Redundant Flux adjustment. Considers uncertainty. Flux adjustment or use of a band of uncertainty.
Detects sensitivity problems.
Determined Yes. No. Yes. Detect some inconsistencies.
Not Redundant No. Considers uncertainty.

Detects sensitivity problems.

Underdetermined No. Consistency check y2.

Yes (not guaranteed).
Considers uncertainty.

Consistency check y2.
Flux adjustment or use of a band of uncertainty.

Detects sensitivity problems.

Redundant Flux adjustment.
Underdetermined No. No.
Not Redundant No.

Yes (not guaranteed).
Considers uncertainty.

Detect some inconsistencies.

Detects sensitivity problems.
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Flux spectrum approach in use. Each figure shows a schematic projection of a high-dimensional flux space into two dimen-
sions. The space of possible solutions (before taken into account v, and v,) is represented by a polygon or a solid black line and
tagged with a label. Subindex m denotes a measured flux, and c a calculated one. The band of uncertainty around measured
fluxes is represented with a blue, solid interval in the axis. The estimations provided by FSA are represented with red, thick
lines. Dotted lines are just auxiliary projections. (A) Underdetermined case. The interval of possible values for v, is computed
even when the system is underdetermined. (B) Determined and redundant case. Both fluxes are measured, but its values are
inconsistent. With the band of uncertainty used, all the values of v, and v, within the red line are considered valid. Due to the
shape of the band, the values given by a least squares adjustment (denoted with an x) are not considered as a valid solution. (C)
Reversibility constraints. A reversibility constraint reduces the interval of possible values for v,. (D) Detection of sensitivity
problems. The strangely large interval of possible values for v, may indicate a problem of sensitivity. (E) Representation of
uncertainty. A non-measured flux is estimated from an uncertain measurement. (F) Detection of large errors. A large error in
the measured flux v, is detected with the reversibility constraint.
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ent flux distribution gives an indication of the degree of
inconsistency.

Additional advantages arise when FSA is used in a succes-
sive way to estimate the temporal evolution of the meta-
bolic fluxes:

e [t may detect sensitivity problems. Assume that a band
of uncertainty is being used and that the measured fluxes
change smoothly over time. If the interval of values for an
estimated flux is strangely large at a certain instant k, it
indicates that a slight change in the measured fluxes has a
big effect over the estimated flux, i.e. that a sensitivity
problem exists (Figure 3D). Thereby, an analysis of sensi-
tivity is incorporated in the estimation procedure.

e The peak values at certain time instants k -which may
appear when MFA is used- are avoided with FSA. These
peaks are consequence of slight errors in the measure-
ments (which are common due to the lack of reliable
sources of measurements and due to the uncertainty of the
conversion of concentration data into measured fluxes).
Since FSA considers a band of uncertainty around the
measured values, it avoids, or at least reduces, this phe-
nomenon.

¢ The estimation given by FSA for a certain flux at time k
(an interval of possible values), combined with the
inspection of past and future estimations and with our
qualitative knowledge about cell behaviour, may be used
to hypothesize which of the possible temporal evolutions
corresponds to the actual one. That is to say, the richness
of the estimation given by FSA makes it possible to exploit
our qualitative knowledge to support certain hypothesis
without being confused by measurements uncertainty.

Application: estimation of the fluxes during a cultivation of
CHO cells

The three-step procedure described in the previous section
is now applied to a real problem taken from the literature:
the estimation of the intracellular fluxes of CHO cells cul-
tivated in batch mode in stirred flasks. The available
experimental data are the typical data measured off-line
(accurate measurements of the concentration of a few spe-
cies but with a low sample rate), and therefore this exam-
ple will be approached assuming that the procedure is
done off-line. This assumption is important during the
second step of the procedure, and for this reason an exam-
ple has been included in the Additional File 3 that illus-
trates the differences between the on-line and the off-line
operation modes. However, hereinafter we will pay spe-
cial attention to the third step of the procedure because it
is the most important one. In particular, the benefits pro-
vided by the use of FSA will be compared with those
obtained with the well-established MFA methodology,
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which is the basis of most of the similar procedures [24-
26]. This comparison illustrates the advantages of the new
estimation procedure in three different scenarios:

S1. When measurements are almost sufficient. The number
of measured fluxes is almost sufficient when there are
enough to determine all the non-measured fluxes but
there are not redundant measurements (i.e. when the sys-
tem (2) is determined and not redundant).

S2. When measurements are sufficient, i.e. when the
measured fluxes are enough to determine the non-meas-
ured fluxes and there are also redundant measurements
(the system (2) is determined and redundant).

S3. When measurements are insufficient. The number of
measured fluxes is insufficient when there are not enough
to determine all the non-measured fluxes (i.e. when the
system (2) is underdetermined and not redundant).

For completeness, the most uncommon case (when the
system is underdetermined but redundant) is illustrated
with a toy example in an appendix [Additional File 2]. In
the three scenarios, the intrinsic uncertainty of the meas-
ured fluxes is taken into account.

Metabolic network of CHO Cells

The metabolic network (Figure 4) has been taken from
[48]. The network describes only the metabolism con-
cerned with the two main energetic nutrients, glucose and
glutamine. Thus, the metabolism of the amino-acids pro-
vided by the culture medium is not included. Four path-
ways are considered: the glycolysis, the glutaminolysis,
the TCA cycle and the nucleotides synthesis. All reactions
are assumed to carry flux only in only one direction,
except reactions 2, 4, 5, 6 and 7 that are reversible (e.g.
when glucose is exhausted lactate and alanine are con-
sumed instead of produced). The complete lists of species
and reactions are given in the Additional File 1.

The mass balance around intracellular metabolites at
pseudo-steady state is given by eq. 1 (the stoichiometric
matrix S is given in the Additional File 1). There are 12
metabolites (m) and 18 intracellular fluxes (n). Therefore,
the system is underdetermined and has 6 degrees of free-
dom. The extracellular fluxes v, v; and v, coincide with
the fluxes -v;, v, and v,. Three equations that link vy, vq
and v, with the intracellular fluxes can be obtained by
inspection of the metabolic network. Moreover, it is a nat-
ural assumption to consider that the formation of purine
and pyrimidine nucleotides is the same. As a result, four
equations are incorporated by the authors [48]:
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Metabolic Network of CHO cells. Extracted from [41]. Initial substrates (dark grey ovals), extracellular products (light
grey ovals), terminal internal metabolites (white ovals) and internal metabolites (white ovals with dashed line). The CO, forma-
tion and the nucleotide synthesis are described separately. The nomenclature is given in the additional file I.

Unia V19 = V15 + V16
_UQ : U20 = U16 +U17 +2- 1)18

(4)

Veoy “ V1 =V3+ Vg + Vg + V1 +113

Vg V22 =0 =117 —V1g

These constraints can be represented with a 4x18 matrix S
fulfilling (11). Then, (11) and (1) can be joined to define
an extended homogeneous system of linear equations
(see methods). The extended system has 16 metabolites
(mx) and 22 reactions (nx).

The mathematical model, formed by the stoichiometric
matrixes S and S; , is given in a Matlab script and a stand-
ard SBML file [see Additional File 4].

Step [: getting experimental measurements of species

The experimental data taken from [28] is given in Figure
5. The cell density (X) and the concentration of 5 extracel-
lular species are measured; two substrates, glucose (G)
and glutamine (Q), and three excreted products, lactate
(L), alanine (A) and ammonia (NH4). This data was col-
lected with a sample rate of 24 h. These measurements
cannot be filtered because -due to the low sample rate- it
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Concentration of measured extracellular species and biomass during a cultivation of CHO cells. The measure-
ments correspond to cell density (X), glucose (G), glutamine (Q), lactate (L), alanine (A) and ammonia (NH4).

is impossible to distinguish between noise and true  three different approximations of the derivative are

changes of the signal. depicted in Figure 6 (see methods). Since the procedure is

being done off-line, a centred approximation is the most
Step 2: conversion of measured concentrations in measured fluxes advisable choice. Therefore, the fluxes calculated with the
The second step of the procedure is the conversion of the =~ middle point Euler approximation will be used hereinaf-
measured concentrations in measured fluxes. The meas-  ter. We obtained similar results (not shown) when the

ured fluxes (and the biomass growth) calculated with ~ complete example was done using a backward Euler
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Extracellular fluxes and growth rate calculated from the measured concentrations. x is the biomass growth rate,
vy the flux of glucose, v, the flux of glutamine, v, the flux of lactate, v, the flux of alanine and vy4 the flux of ammonia. Fluxes

are calculated with the middle point Euler approximation (black solid line) and the backward Euler approximation (green dot-
ted line). In addition, fluxes calculated with the backward Euler approximation and filtered with a standard moving average of
order 2 are also depicted (blue solid line).
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approximation (which would be more suitable in case the
procedure were done on-line). It is also remarkable that
Figure 6 already gives the idea of uncertainty -differences
between the conversions obtained with different methods
are significant. In fact, the different conversions, along
with the precision of the sensors and the protocols used to
measure the concentration of species, could be used to
characterize the uncertainty in the measured fluxes.

Step 3 (S1): estimation of fluxes if measurements are almost
sufficient and uncertain

If the five measured fluxes are used (v, (G), v (L),v, (A),
V9 (NH,) and v,, (Q)) and it is assumed that the forma-
tion of purine and pyrimidine nucleotides is the same (v,,
= 0), the rank of S, (16) is equal to the number of
unknown fluxes (22-5-1). Thereby the system (2) is deter-
mined but not redundant. In this case we could use MFA
to determine the non-measured fluxes. More precisely, at
each time instant k, the unique flux distribution fulfilling
(2) can be obtained by using the inverse matrix of S,, (see
methods). However, as it can be observed in Figure 7
(green solid line) the results obtained are not very satisfac-

tory:

e The estimated values at time 24 h an 168 h for fluxes vy,
Vo, V19, V11, V1, and v,; seem unreasonable: the measured
fluxes evolve in a smooth way, but these fluxes show peak
values.

e The estimated fluxes vy, v,and v,,do not fulfil the revers-
ibility constraints (they are not considered by MFA).

e MFA assumes that there is not any kind of error in the
measurements, which is unlikely, and therefore the esti-
mated fluxes are unreliable.

A new estimation has been done at time 24 h, where the
measured values for fluxes v; and v, are slightly modified
(+2% and -5% respectively). In a similar way, a new esti-
mation at time 168 h assumes a slight variation of the
measured values for v, and v, (-0.05 and +0.05 mM/
(d-10°-cells), respectively). As it can be observed in Fig-
ure 7 (red crosses), the peak values in fluxes vg, vy, v, V5,
v;, and v,, are eliminated or reduced, while the values of
the rest of non-measured fluxes remain almost
unchanged. This demonstrates that the peak values at
times 24 h and 168 h could be caused by slight errors in
the measured fluxes. The same issue is illustrated with fig-
ure Al (Additional File 7). Hence, the main weakness of
MFA in the determined case is pointed out: the effect of
slight errors in the measured fluxes is not under control.
These slight errors will exist in virtually all the measured
fluxes (none sensor has a precision of 100%). Moreover,
even the conversion of the measured concentrations into
measured fluxes may introduce slight errors. For this rea-

http://www.biomedcentral.com/1471-2105/8/421

son, the fluxes estimated with MFA are unreliable in this
scenario.

The same scenario is now approached following the pro-
cedure introduced in this paper, i.e. using FSA instead of
MFA in the third step. If uncertainty is not considered and
all reactions are assumed to be reversible, FSA provides
the same solution that MFA (results not shown). But it is
possible to include the reversibility constraints for those
reactions classified as irreversible. By using these con-
straints, FSA has detected a high inconsistency at 24 h and
a lower one at 144 h (i.e. the region defined by the
imposed constraints does not contain any solution at
these time instants). It must be highlighted that the sys-
tem is not redundant, so methods to check consistency
based on redundancy cannot be used; however, FSA is
detecting inconsistencies thanks to the reversibility con-
straints. Afterwards, it is also interesting to consider the
intrinsic uncertainty of the measurements. We will define
a band of uncertainty around the measured values, and
then we will use FSA to estimate the non-measured fluxes.
The most common ways to define a band of uncertainty
are the use of a relative error around the measured values
(e.g. of the 5%) and the use of an absolute one (e.g. 0.05
mM/(de109ecells)). Herein, we use a mixed approach.
For each measured flux v,,, at each time instant k, the band
is defined as:

If relErr - v, > absErr
Else

—  band = v, T relErr - v,
—  band = vy, £ absErr

(5)
With this expression the relative error (relErr) will be con-
sidered when the measured value is high, and the absolute
one (absErr) when it is near to zero (see figure A2 in the
Additional File 7). If more information about the meas-
urements sources were available, the range of uncertainty
of each measured flux could be defined accordingly. For
example, if a commercial sensor is employed, its technical
specifications can be used to define the band.

The non-measured fluxes estimated with FSA -when the
band of uncertainty is considered and the reversibility
constraints are incorporated- are shown in Figure 7 (black
intervals). If they are compared with those obtained when
MFA was used, several conclusions can be pointed out:

¢ The peaks at time 24 h an 168 h for fluxes vg, vo, vy, v;;,
v;, and v,; -which appeared when MFA was used- are
avoided with FSA. As it was shown, when the measure-
ments were slightly modified, these peak-values were
replaced by more sensible predictions. Since these modi-
fied measurements are included in the band of uncer-
tainty, the obtained intervals for vg, vy, v;,, v;;, V1, and vy,
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contain the sensible predictions. In principle, the peak-
values would be within the intervals. However, a peak
value could not satisfy the reversibility constraints and
therefore it will not be considered a valid solution by FSA
-this is the case at k = 24 h.

e The uncertainty of experimental measurements is non-
trivially propagated to the non-measured fluxes. Hence,
the use of FSA provides not only a prediction of the non-
measured fluxes, but also an indication of the reliability of
this prediction. For example, the predicted v, v, and v,
are highly influenced by measurements uncertainty, while
v,, v, and vs are quite insensitive. Although all fluxes can
be determined, FSA highlights that the estimated values
for vg, vy and v, are less reliable (or less precise) than
those assigned to v,, v, and vs. This issue is more deeply
analyzed in a subsequent section.

e Reversibility constraints provide a method to detect
inconsistencies. For example, it can be easily checked that
the solution provided by MFA do not satisfy the reversibil-
ity constraints at 24 h (a negative value is given to the irre-
versible fluxes vy, v, and v,;,). This inconsistency is
detected and avoided with FSA.

¢ The underdeterminancy introduced as uncertainty in the
measurements can be partially neutralized with the revers-
ibility constraints. Hence, the estimated fluxes are more
reliable but not necessarily highly imprecise.

This example shows that the procedure provides a reliable
and rich estimation of the evolution along time of the
non-measured fluxes when the measurements are only
almost sufficient, i.e. when the system is determined but
not redundant. In particular, the use of FSA in the third
step of the procedure -instead of the well-established
MFA- provides several benefits, thanks to taking into
account the uncertainty of measurements and considering
the reversibility constraints.

Step 3 (S2): estimation of fluxes if measurements are sufficient and
uncertain

When the system (2) is determined and redundant, an
estimation based on MFA will work as follows (approach
1): firstly, the importance of the inconsistency is checked
and the measured flux values are adjusted; then, the
pseudo-inverse matrix is used to estimate the non-meas-
ured fluxes. These two properties -checkable consistency
and adjustable measurements- are responsible of the suc-
cess of MFA in this scenario. However, FSA provides a new
approach (approach 2) which holds the property of
checkable consistency, but replaces the adjustment of the
measurements by the definition of a band of uncertainty.
We will apply both alternatives to our example.

http://www.biomedcentral.com/1471-2105/8/421

The system (2) was determined and not redundant when
six fluxes were known. If another independent flux is
measured, the system will be redundant because the rank
of S, (15) will be less than m (16). Since no more fluxes
were measured in [28], we will assume that the evolution
of v,;(C0O2) has been measured -we chose it because it is
a well-known extracellular flux. We assume that v,
evolves smoothly and that its values are within the inter-
vals estimated with FSA in the previous section. Hence, at
each time instant k, except 24 h and 168 h, the values
given by MFA in the previous section are used as measured
values (they lay within the intervals). The values at 24 h
and 168 h are calculated by the approximation of a spline
curve (see Figure A3 in the Additional File 7).

First of all, we apply the x-square method to estimate the
importance of the inconsistency at each time instant k (see
methods). The data fails the consistency check at time 168
h, what indicates that the set of measurements contains
gross errors at this point (see table Al in the Additional
File 7). Afterwards, we estimate the non-measured fluxes
at each time instant k with the two approaches described
above. In the first one, the measured values are adjusted
to be consistent (as explained in methods). Then, the
non-measured fluxes are estimated with MFA. In the sec-
ond one, a band of uncertainty around the measured val-
ues is defined trying to enclose some nearby consistent
sets of measured fluxes (the band is the same that in the
previous section). Then, the non-measured fluxes are esti-
mated with FSA. The results (shown in Figure 8) illustrate
the benefits of using FSA in this scenario:

¢ All the consistent sets of measured values enclosed by
the band of uncertainty are considered by FSA. That guar-
antees that the intervals obtained enclose the actual values
of the fluxes if the band was correctly chosen. Contrarily,
when MFA is used (approach 1), the actual values of the
measured fluxes need to be exactly found to ensure that
the estimations fit in with the actual fluxes. To illustrate
this idea a consistent flux distribution within the band of
uncertainty has been highlighted in Figure 8 (dotted line).
This flux distribution corresponds to a set of measured
values very near to the original ones; nevertheless the evo-
lution of vg, vy, v;,and vy, is quite different to the estima-
tion given by MFA. That proves that the values estimated
with MFA may be deviated from the actual ones, even if
there are only slight errors in the measured fluxes. Con-
versely, FSA shows that two qualitatively different inter-
pretations of fluxes v, v, and v, are possible: they can be
stable around 0.6 or evolve from 0.2 to 0.7 mM/(d * 10°
cells). If there were other evidences supporting one alter-
native over the other one, we could hypothesize which of
these two scenarios corresponds to the actual one. Hence,
FSA not only reduces the number of wrong predictions,
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FSA and MFA in the determined and redundant case (S2). The known fluxes are: v,(G), v4(L), v;(A), v;o(NH,), v50(Q),
v;;(CO2) and v,,. The measured fluxes have a grey background and its band of uncertainty is represented with a black interval.

Figure 8

The non-measured fluxes estimated by FSA are denoted with a black interval, and the non-measured fluxes estimated with

MFA with a green line. One consistent flux distribution within the intervals given by FSA has been highlighted (blue dotted line)

to show its discrepancy with the one calculated with MFA. Notice that this flux distribution corresponds to a set of measure-

ments very close to the original ones (£ 5% or + 0.05 mM/(d+10%«cells)).
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but may also provide a quantitative support for our qual-
itative knowledge.

e Although there is a gross error in the measurements at
168 h, FSA finds at least one consistent set of measured
values within the band of uncertainty (providing an error
bound that complements the y-square method). The esti-
mations provided by FSA at 168 h seem sensible: the
measurements are only slightly adjusted (the adjustment
is limited by the band size) and the peak values are
avoided. On the contrary, the fluxes estimated with MFA
are very sensitive to the gross error. The value of v, is sig-
nificantly changed by the adjustment method resulting in
a peak. Moreover, this insensible peak also appears in the
estimated values of vg, vy, v;, v;; and v;,. In fact, the fluxes
calculated with MFA are generally discarded when the
measurements fail the y-square method.

¢ When FSA is used, the uncertainty of experimental meas-
urements is non-trivially translated to the non-measured
fluxes. Again, FSA provides not only a prediction of the
non-measured fluxes, but also an indication of the relia-
bility of this prediction.

This example has shown that the procedure can be useful
to estimate the evolution of the fluxes even when meas-
urements are sufficient but uncertain, i.e. when the system
is determined and redundant. Although this is the scenar-
ios were the procedures based on the use of MFA are most
successful, the use of FSA provides a more reliable estima-
tion of the non-measured fluxes and offers an interesting
approach to cope with inconsistency.

Step 3 (S3): estimation of fluxes if measurements are insufficient and
uncertain

Finally, it will be shown that our procedure can be used
even when the available measurements are insufficient
(i.e. when system (2) is underdetermined). In this situa-
tion procedures based on MFA cannot be applied, but the
use of FSA allows our procedure to estimate the interval of
possible values for each non-measured flux. In particular,
the non-measured fluxes will be estimated by using differ-
ent sets of 5 and 4 measured fluxes -remember that 6 were
necessary to get a determined system. In all cases, uncer-
tainty has been considered using the band described
above. All results are given in Table 2 and two illustrative
cases are depicted in Figure 9.

With four sets of 5 measurements (G, F, E and C) the evo-
lution over time of all the non-measured fluxes can be
estimated. Case G, where v,, is not known, provides the
best results. There is a mean interval increment of 39%
with respect to the determined case and the increment is
minor than 25% for 12 fluxes (out of 17). This case is
depicted in Figure 9 (in green). The intervals are practi-
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cally the same than in the determined case for most fluxes
(vy, vy, Vs, Vg, Vo, Vg Vi1s Vg0 Vi3s Vs and v,;). Intervals for
vy and v, are larger, but still accurate, and only the estima-
tions of v, v;,and v 5 are highly imprecise. Moreover, the
temporal evolution -that can be characterized by using the
middle point of the interval- is almost the same than of
the determined case even for these fluxes (see figure A4 in
the Additional File 7). Case C, where v, is not measured,
provides very good results. All fluxes are predicted (with a
mean interval increment of 122%), the interval increment
is minor than 25% for 5 fluxes and minor than 100% for
9 fluxes. Case F, where v,, is not measured, provides good
results too. There is a mean interval increment of 155%
and the interval increment is minor than 100% for 11
fluxes (out 17). Case E, where v,, is not measured, pro-
vides slightly worse results than F. With the other sets of 5
measurements (B and A), some non-measured fluxes can-
not be estimated. Nevertheless the intervals of the fluxes
that can be estimated (10 and 7 fluxes respectively) are
exactly the same that in the determined case.

Two sets of 4 measurements have been studied (I and H).
Case I, where v,, and v,, are not measured, provides
remarkable results. There is a mean interval increment of
180% with respect to the determined case and the incre-
ment is minor than 100% for 11 fluxes (out 18). This case
is depicted in Figure 9 (in blue). For most fluxes the inter-
vals are similar to the determined case (v, v,, Vs, Vg, Vo, V4
Vi1 Vios V3 V35 and v,;). Intervals for v, 4 and v, are larger
but still useful, and only v;, v;,, v;, and v,z are highly
imprecise. Again, the temporal evolution of the estimated
fluxes is similar to the determined case (see figure A4 in
the Additional File 7).

This scenario has illustrated an important feature of the
introduced procedure: it can estimate the evolution of the
non-measured fluxes even when there is a lack of measur-
able species (i.e. the system is underdetermined) and the
available measurements are uncertain.

Unbalanced propagation of measurements uncertainty
As it has been shown in previous sections, the uncertainty
of the experimentally measured fluxes is not equally prop-
agated to the estimated fluxes (i.e. not all the estimated
fluxes are equally affected by measurements uncertainty).
On the contrary, the structure of the metabolic network
(the stoichiometric relations and the reversibility con-
straints) will determine how the uncertainty is propagated
from the measured fluxes to the estimated ones.

A convenient way of measuring this effect is to calculate
the interval size for each estimated flux at each time
instant -in absolute and relative terms. The complete data-
set has been included in the Additional File 6, but, as a
summary, the average interval size (AIS) for each esti-
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Table 2: Comparison of different estimations of the non-measured fluxes
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Ref (v, Vg, V7, Vi9s Va0, V22) G (no vy) F (no vy) E (novyy) B (no vg) A (nov)) C (novy) I (novyvy;)  H(novigvy,)
Reactions ¢ Mia[b] MI[?]] [%] MI[?] [%] MI [*] [%] MI[] [%] MI[P] [%] MI[®] [%] MI [*] [%] MI [*] [%]
1: G>G6P 0.267¢  0.267 - 0.267 - 0.267 - 0.267 - X - 0.267 - 0.267 - 0.267 -
2: G6P—G3P+DAP 0367 0.387 5% 0628 71% 0541 47% 0398 8% X - 0627 71% 0628 71% 0572  56%
3: G6P—R5P+C02 0.131  0.199 53% 0526 303% 0340 160% 0.131 0% 0.131 0% 0401 207% 0.526 303% 0383 193%
4: DAP—G3P 0367 0.387 5% 0628 71% 0541 47% 0398 8% X - 0627 71% 0628 71% 0572  56%
5: G3P—Pyr 0.735 0.774 5% 1256 71% 1.082 47% 0.795 8% X - 1253  71% 1256 71% 1.144  56%
6: Pyr—L 0475 0.475 - 0.475 - 0.475 - X - 0.475 - 0.475 - 0.475 - 0.475 -

7: Pyr+Glu—A+aKG 0.100 0.100 - 0.100 - 0.100 - 0.100 - 0.100 - 1.488 inf 0.100 - 0.100 -

8: Pyr—ACA+CO2 1.031  1.031 0% 1.562  51% 1901  84% X - X - 0957 7% 1.562  51% 1.906  85%
9: Oxa+ACA—Cit 1.031  1.031 0% 1.562  51% 1901 84% x - X - 0957 7% 1.562  51% 1.906  85%
10: Cit—>aKG+CO02 1.031  1.031 0% 1.562  51% 1901  84% X - X - 0957 7% 1.562  51% 1.906  85%
1'1: aKG—>Mal+C02 1.156  1.156 0% 1.604 39% 2532 119% x - X - 1443  25% 1.604 39% 2530 119%
12: Mal—-0xa 0.994 0.994 0% 1.398  41% 1.769  78% X - X - 1.093 10%  1.398  41% 1.769  78%
13: Mal—Pyr+C0O2 0209 0.240 I5% 0352 68% 0920 341% 0209 0% 0209 0% 0903 332% 0352 68% 0918 340%
14: Oxa+Glu—Asp+aKG 0.131  0.199 53% 0526 303% 0340 160% 0.131 0% 0.131 0% 0401 207% 0526 303% 0383 193%
15: Glu—aKG+NH4 0.150 0.182 2% 0298 98% 0.870 479% 0.150 0% 0.150 0% 0.586 289% 0298 98% 0.870 479%
16: Q—>Glu+NH4 0.117 0.145 23% 0325 177% 0553 372% 0.117 0% 0.117 0% 0569 386% 0325 177% 0548 367%
17: R5P+Asp+Q—Pu 0.104 0277 165% 0293 181% 0200 91% 0.104 0% 0.104 0% 0225 116% 0.526 404% 0383 267%
18: R5P+Asp+2Q—Py 0078 0.132 69% 0283 262% 0.177 126% 0.078 0% 0.078 0% 0209 168% 0263 237% 0.163 108%
19:>NH4 0.141  0.141 - 0.141 - 1419 904% 0.141 - 0.141 - 0.141 - 0.141 - 1412 899%
20:—Q 0.132  0.132 - 1.127  752% 0.132 - 0.132 - 0.132 - 0.132 - 1.107  737% 0.132 -
21:—>C02 3.338  3.338 0% 4770 43% 6.966 109% x - X - 3.843 15% 4770 43% 6966 109%
22: Pu-Py (constraint) 0.100 0.354 254% 0.100 - 0.100 - 0.100 - 0.100 - 0.100 - 0.526 426% 0383 283%
Mean 0554 0587 39% 0899 155% 1.138 196% 0.217 2% 0.156 0% 0.802 122% 0.927 180% 1.168 214%
Measured fluxes [number] 6 5 5 5 5 5 5 4 4
Estimated fluxes [number] 16/16 17117 17117 1717 717 10/17 1717 18/18 18/18
<25% (-Ref) 12 0 0 10 7 5 0 0
25-100% (<2-Ref) 3 I 8 0 0 4 I 7
100-300% (2—4-Ref) 2 3 5 0 0 5 2 7
>300% (>4-Ref) 0 3 4 0 0 3 5 4

Column Ref: FSA is applied by using the six available measurements (Determined case). Columns F, G, E B, A and C: FSA is applied by using a
different set of 5 measurements in each case (underdetermined, | degree of freedom). Columns | and H: FSA is applied by using two different sets
of 4 measurements (underdetermined, 2 degrees of freedom). In all cases the band of uncertainty described in the text has been used. 2 Mean
interval size along time evolution; bin [mM/(d * 1079 cells)]; < Intervals enlargement w.r.t. case Ref. (in percentage); ¢ The nomenclature is given in

the additional file |; e Measured values are in bold.

mated flux is given in Table 3. It can be observed (deter-
mined case) that certain fluxes -such as v;,, v;, and v,;- are
highly affected by the uncertainty of the measurements
(they have an average interval size larger than 1 mM/
(d-10?-cells)), while other fluxes -such as v;, and v, ,-are
less sensitive (values around 0.1 mM/(d-10°-cells)).
Although it is obvious that in relative terms the smaller
fluxes are usually more affected by the uncertainty, this
phenomenon is not the only responsible for the unbal-
anced propagation of the uncertainty. For example, the
calculated fluxes vg and v;, have a similar maximum value
(around 1 mM/(d- 107 cells)), but the effect of the uncer-
tainty over them is dramatically different: vy is the flux
more influenced by the uncertainty (with an AIS of 90.3%
in relative terms) whereas v, is quite insensitive to it (an
AIS of 15.12%). Another example is given by v,;: although
being one of the fluxes with a bigger maximum value (8.6
mM/(d- 107 cells)), it is highly affected by the uncertainty
(an AIS interval size of 3.4 mM/(d- 107 - cells), which rep-
resents a 39.1%).

Furthermore, the data given in Table 3 provides a quanti-
tative indication of the benefits of incorporating a redun-
dant measurement. When seven fluxes are assumed to be
measurable instead of six, the estimations of the non-
measured fluxes are more precise (the interval sizes are
reduced around 71% on average). This is particularly
important for those fluxes that were poorly estimated in
the determined case (reductions of 78% for vg, v, and v,
and 76% for v;,).

Non-linear propagation of measurements uncertainty

In the previous section we analyzed the unbalanced prop-
agation of the uncertainty from the measured fluxes to the
estimated ones. Herein we investigate some characteristics
of this propagation and, in particular, the interrelation
between the uncertainty of the different measured fluxes
and their combined effect over the estimated fluxes.

Again, the time series of the five measured species (G, L, A,

NH, and Q) have been used, under the assumption that
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Figure 9

Non-measured fluxes estimated with FSA in two underdetermined cases (S3). The estimations when five fluxes are
measured (v}, v, V7 V;9and v,) are depicted in green (second interval). The estimations when four fluxes are measured (v, v,
v;and v,y) are depicted in blue (third interval). The estimations obtained in the determined case (when six fluxes were meas-
ured) are included for the shake of comparison (in black).
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Table 3: Imprecision of the estimated fluxes caused by measurements uncertainty

Determined case

Determined/Redundant case

Comparative

Max [7] AlS [7] AIS [%b] Max [9] AlS [1] AIS [%b] Diff. [7] Diff. [%]
v, 6,041 0,377 6,25% 6,032 0,321 5,32% 0,057 14,97%
V3 0,853 0,129 15,12% 0,859 0,123 14,35% 0,006 4,41%
vy 6,041 0,377 6,25% 6,032 0,321 5,32% 0,057 14,97%
Vs 12,081 0,755 6,25% 12,065 0,642 5,32% 0,113 14,98%
Vg 1,166 1,053 90,37% 0,715 0,231 32,32% 0,822 78,07%
\D) 1,166 1,053 90,37% 0,715 0,231 32,32% 0,822 78,07%
Vio 1,166 1,053 90,37% 0,715 0,231 32,32% 0,822 78,07%
v 3,769 1,180 31,30% 3,073 0,165 5,37% 1,015 86,02%
Vi 1,854 1,017 54,89% 1,263 0,241 19,05% 0,777 76,34%
Vi3 1,813 0,209 11,52% 1,809 0,195 10,78% 0,014 6,58%
Via 0,853 0,129 15,12% 0,859 0,123 14,35% 0,006 4,41%
Vis 1,113 0,150 13,52% 1,109 0,147 13,27% 0,003 2,11%
Vie 2,665 0,117 4,39% 2,668 0,114 4,26% 0,003 2,91%
vi7 0,426 0,101 23,64% 0,442 0,087 19,60% 0,014 14,10%
Vis 0,426 0,079 18,42% 0,417 0,063 15,17% 0,015 19,48%
Vo 8,698 3,407 39,17% - - - -
Mean 0,699 32,31% 0,202 14,32% 0,497 71,09%

Max: Maximum value of the estimated flux along time; AlIS: Averaged interval size for each estimated fluxes (average of its interval sizes along time);
Diff: Difference between determined and overdetermined cases; 2in [mM/(d % 109 x cells)]; b the interval size for each estimated flux is expressed
w.r.t. its maximum value. The complete dataset is given in the additional file 6.

the formation of purine and pyrimidine are equal (v,, =
0). Then, 15-15 executions of the estimation procedure
have been carried out with different degrees of uncertainty
for the measured fluxes v; and v, (between + 2% and +
30%). Afterwards, the averaged interval size for each esti-
mated flux was calculated. This makes it possible to ana-
lyze how the different combinations of uncertainty in v,
and v, affect to the estimated fluxes.

Figure 10 shows the averaged interval size (AIS) of one of
the estimated fluxes (v,) for each execution (similar fig-
ures are given in the Additional File 7). As it was predicta-
ble, the interval size tends to increase as the uncertainty of
the measurements is increased. Therefore, the less precise
estimation (i.e. the biggest AIS) corresponds to the execu-
tion with maximum uncertainty for v, and v,. It is also
seen that, as it was expected, the uncertainty of all the
measured fluxes has not the same effect over the estimated
ones. For instance, the uncertainty of v, has a bigger effect
over v, than the uncertainty of v;,. More even, the figures
illustrate two important properties of the propagation of
the measurements uncertainty to the estimated fluxes.

On the one hand, the propagation of the uncertainty does not
satisfy the principle of superposition. Let f(u;) be the interval
size of a calculated flux when the degree of measurements
uncertainty is u;, then: f (u;) + f (u,) #f (u; + u,). To remark
this, the result of summing up the independent effect of
the uncertainty of v, and v, has been depicted in Figure 10

(black dots). Interestingly, if the uncertainty of one of the
two measured fluxes is kept low then f (u;) + f (u,) > f (1
+ U,); but if the uncertainty of both fluxes is increased, this
is inverted: f (u;) + f (u,) <f (u; + u,). This implies that the
net result of considering the uncertainty of two (or more)
measured fluxes can not be predicted just by summing up
the results of considering only the uncertainty of one
measured flux at a time. On the contrary, the net result
may be given by a complex non-linear function, as it hap-
pens in the example of Figure 10, where:

e The uncertainty in v, is always translated to the esti-
mated v, (see right bottom figure). When v, uncertainty
increases, the AIS of v, increases -even if there is not v,
uncertainty. However, the bigger v, uncertainty gets, the
bigger the effect of adding v, uncertainty is.

e When v, uncertainty is low, the addition of v; uncer-
tainty has a low effect over the estimated v, (see right bot-
tom figure) More precisely, the first small addition of v,
uncertainty has a slight effect, but the subsequent addi-
tions do not (there is a saturation). However, the satura-
tion limit increases with v, uncertainty, and, therefore, the
more uncertainty there is in v, the more important effect
has addition of uncertainty in v,. In summary, v; uncer-
tainty has not an important effect itself, but its combina-
tion with v, uncertainty boosts it.
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the measured fluxes v, and v,. In the top left figure the results of summing up the independents effects of v, uncertainty and v,

uncertainty are depicted with black dots.

On the other hand, as the superposition principle is not
fulfilled the effect of the uncertainty of one measured flux over
one estimated flux is not linear, i.e. f (k-u;) # k-f (u,) For
example, assume that the uncertainty of v is fixed in 10%
(fourth row in the right top figure). It can be observed that
the effect of adding a first 4% of uncertainty to v, is higher
than the effect of adding a second one. In fact, when the
uncertainty of v; is bigger than 16%, the addition of more
uncertainty has practically zero effect (there is a saturation
phenomenon).

In the last two sections it has been shown that the rela-
tionship between the uncertainty of the measurements
and the precision of the estimation is a complex one. On
the one hand, the propagation of measurements uncer-
tainty to each estimated flux will be different. On the
other hand, the net effect of considering the uncertainty of
two (or more) measured fluxes simultaneously does not
correspond to the sum of the effects of considering the
uncertainty of each measured flux one at a time. Finally,

the effect of the uncertainty of one measured flux over one
estimated flux is not linear.

Therefore, when the procedure introduced in this paper
considers the propagation of the uncertainty from the
measurements to the estimated fluxes, it provides non-
trivial information.

Analysis of the effect of the uncertainty of each measured

flux

In this section we analyze the effect of the uncertainty of
each measured flux over the imprecision of the estimated
fluxes. Basically, we can apply the estimation procedure
over previously logged data -considering the uncertainty
of each measured flux one at a time- in order to determine
which measured fluxes have the more critical uncertainty.
There are two similar approaches to carry out the analysis:

a) Direct approach. Calculate the increase of the impreci-
sion of the estimated fluxes when the uncertainty of one
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measured flux is increased. This calculation is repeated for
each measured flux.

b) Indirect approach. Calculate the reduction of the impre-
cision of the estimated fluxes when the uncertainty of one
measured flux is decreased. This is repeated for each meas-
ured flux. Notice that the effect of decreasing the uncer-
tainty is not the inverse of increasing it, i.e. f (u + x).+ f (u

+x) #f(0).

The direct approach (a) informs about the effect of con-
sidering the uncertainty of each measured flux over the
estimated ones (it is similar to a classical analysis of sensi-
tivity). This information may be useful during the setting-
up of a process plant in order to choose the sources of
measurements (the equipment and the protocols). Never-
theless, the indirect approach (b) is probably more prom-
ising. It calculates how much the imprecision of the
estimated fluxes will be reduced, if we reduce the uncer-
tainty of one of the measured fluxes. Given the character-
istics of our current equipment and our measuring
protocols (e.g. our sensors provide measurements with a
+ 5% of uncertainty), we can calculate which of the meas-
ured fluxes should be more accurately measured in order
to improve the precision of the estimations (e.g. using a
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more accurate sensor or taking redundant measure-
ments).

The indirect analysis has been applied to the cultivation of
CHO cells (using the set of 5 measurements described
above and the assumption of equal formation of purine
and pyrimidine). Figure 11 shows the reduction of the
imprecision of each estimated flux when the uncertainty
of a measured flux is decreased a 3%. This is repeated for
each measured flux (v;, v, v,, v;9 and v,,). Those data pro-
vide valuable information. For example, it is shown that
the maximum reduction of the imprecision occurs when
the uncertainty of v, is reduced at time 144 h: the impre-
cision of v;, v,,, v;5and v, 4 is reduced more than 85%. It
can be also observed that during the first 96 h removing
the uncertainty of v,, slightly reduces the imprecision of
the estimated v,,, but this reduction is very important
between 120 h and 192 h. Those data are summarized in
Figure 12. The left figure shows the averaged reduction at
each time instant, and the one on the right the averaged
reduction for each estimated flux. For example, it can be
observed that removing the uncertainty of v, or v; has no
effect over the estimations of v;, vy, v;5 V)4V, and vy,
This information can be used to improve our estimations
in a rational manner. For example, one could be inter-
ested in increasing the precision of the estimation of v;. In
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Effect of the uncertainty of each measured flux over the imprecision of the estimated fluxes along time. The fig-
ures show the reduction of the imprecision of the estimated (or calculated) fluxes when the uncertainty of the measured flux is
decreased a 3%. The reductions are quantified between 0% (white colour) and 100% (black).
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(Left) Averaged reduction at each time instant of the imprecision of the estimated (or calculated) fluxes when the uncertainty
of the measured flux is decreased a 3% (Right) Averaged reduction of the imprecision of each estimated (or calculated) flux
when the uncertainty of the measured flux is decreased a 3%. The reductions are quantified between 0% (white colour) and

100% (black).

this case the indirect analysis indicates that the best
option is to reduce the uncertainty of the measured v,,.
However, if we want to improve the estimations during
the transition phase (between 72 h and 120 h) we should
reduce the uncertainty of v,. Finally, if we prefer to
improve the overall precision of the estimations we
should reduce the uncertainty of v, although reducing the
uncertainty of v, or v,, brings similar benefits.

More details about this analysis -including the complete
dataset- are given in the Additional File 8. In addition, the
results obtained with the direct analysis are also included
there.

Conclusion

In this contribution we have presented a new procedure to
estimate the temporal evolution of the metabolic fluxes. It
copes with the intrinsic uncertainty of experimental meas-
urements and with the lack of measurable species by
means of the use of the Flux Spectrum Approach (FSA).
The potential of the procedure has been demonstrated
using a real problem: the estimation of the intracellular
fluxes of CHO cells cultivated in batch mode in stirred
flasks. Using this example, the benefits that the use of FSA
brings to the whole procedure have been illustrated
through a comparison with the use of Metabolic Flux
Analysis (MFA), a well-established methodology that is
the basis of related procedures [24-26]. When the availa-
ble measurements are only almost sufficient (i.e. the sys-
tem is determined but not redundant), the procedure
provides a more reliable and richer estimation of the evo-
lution of the fluxes, because it takes into account measure-
ments uncertainty and it considers the reversibility
constraints. It has been also shown that even when meas-
urements are insufficient (i.e. the system is underdeter-
mined), the procedure is capable of estimating the

evolution of the non-measured fluxes. Finally, when
measurements are sufficient (i.e. the system is determined
and redundant), the procedure provides a reliable estima-
tion of the non-measured fluxes -because it considers
measurements uncertainty- and offers an interesting
approach to cope with inconsistency.

The procedure to estimate the metabolic fluxes can be
applied off-line (with previously collected data), provid-
ing an insight into the time-varying behaviour of the
organism. This can help in the understanding of its
dynamic metabolic regulation and its adaptation to the
environmental conditions. It can also be useful for physi-
ological studies, strain characterization tasks, and to guide
research to improve strain and processes. On the other
hand, the procedure is a promising tool for on-line mon-
itoring processes in industrial environments, where there
is still a lack of reliable on-line sensors. The features of the
procedure are especially suitable for this application.

In summary, it has been shown that the temporal evolu-
tion of non-measured fluxes can be estimated by using a
set of measurable species and a set of known biological
constraints. Moreover, the procedure proposed considers
the intrinsic uncertainty of the experimental measure-
ments and could be applied even if there is a lack of meas-
urable species.

Methods

Calculation of the measured fluxes by approximating the

derivative

If the concentration of an extracellular specie is measured,
the value of its corresponding flux can be worked out from
eq. 3. But that means the derivative d£/dt has to be approx-
imated. The Euler methods provide the most straightfor-
ward approximations:
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df(k) _ f(k) = f(k=1)
dt t(k)—t(k—-1)
df(k) _ f(k+1)—f(k-1)
dt tk+1)—t(k—-1)

Backward :

(6)
Middlepoint :

The backward version does not introduce an intrinsic
delay (the derivative of f(.) at k is calculated with the val-
ues of f(.) at k and k-1), but the middle point provides a
less noisy approximation. In any case, usually this
approach needs to be combined with the use of filters.

Moving average filters

These filters calculate each value of a new signal by aver-
aging the values of the original signal within a time win-
dow. Thus, the new signal becomes smoother. The centred
moving average (CMA) provides the best results because it
uses past and future information. The filtered value for
instant &k (CMA,) is calculated by averaging the values of
the original signal (S) between k-n and k+n:

n n
zsk—i +S +Zsk+i (7)

CMA), = - 1
2-n+1

If only past values of the original signal are available, the
standard moving average (SMA) can be used instead:

Z Sk—i ( 8)

SMA = ?1+ 1

The key parameter of moving average filters is the size of
the window (i.e., the number of averaged values of the
original signal). The optimal size would be one observa-
tion in order to be as close as possible to the original sig-
nal. However, as noise rejection is desired, the window
size needs to be increased. Hence, there is a trade-off
between sensitivity to noise and delay with respect to the
original signal. A typical variant of these filters includes
multiplying factors to give a different weight to each value
within the time window (e.g. the exponential moving
average).

Calculation of the measured fluxes with a nonlinear
observer

A high-gain nonlinear observer of the extracellular fluxes
can be directly synthesized from (3) by using the method
proposed in [47]:

http://www.biomedcentral.com/1471-2105/8/421

B o X_D.E-2.0-(¢ -
E_Uex Dée 29(66 5)

dv, _ 6°-(5, =)
dt X

where &, denotes the observed concentration of the extra-
cellular specie and v, the observed flux. The unique adjust-
able parameter is 6. Not only these observers are proved to
be stable, but also its asymptotic error can be made arbi-
trarily small by choosing sufficiently large values of 6.
However, very large values need to be avoided in practice
since the observer may become noise sensitive. Thereby
the choice of Orepresents a trade-off between fast conver-
gence (minor delay) and sensitivity to noise.

)

Flux spectrum approach

The non-measured fluxes at a certain time instant k can be
estimated using the Flux Spectrum Approach (FSA). The
method works as follows [33]:

1. Impose the set of constraints given by (2) and the
reversibility constraints for the irreversible reactions, v; >
0. Then, in order to consider the uncertainty of the meas-
ured fluxes, the unique value of each measured flux v,, can
be replaced by an interval [v,, iw Vi ma]- Accordingly,
each equation of (2) is substituted by two inequalities.
The resultant constraints define a region where the actual
flux distribution may live.

2. Calculate the minimum and maximum values within
the region for each non-measured flux v,;, by solving a set
of min/max linear programming problems (1, minimiza-
tions and n, maximizations):

Vvuj,j = 1,...,nu
Min{v,;}  subject :

Su-Vu 2{-Sy ~[vm]}rnin Sy Vu <{-Sm ~[vm]}nrlaX v; 20

Max{v,;} subject :
Su-Vu 2{-Sn ~[vm]}min Sy Vu <{-Sm ~[Vm]}InaX v; 20

(10)
where 1, is the number of unknown fluxes, v, is the vector
of non-measured fluxes, v, represents each irreversible flux
and [v,,] represents the two vectors [Vi, mins Vin, max
formed with the uncertain representation of the measured
fluxes. {-S,, [Vp]}™i» and {-S,, [v,,]}™a are vectors
formed with the maximum and minimum row values of
the product -S,,- [v,,]. To calculate each row, maximum
and minimum values of v, need to be combined taking
into account the signs of the elements of the correspond-
ing row of S,, (you can find a detailed description of the
algorithm in the Additional File 5).
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The obtained v, ,;, and v, ., for each non-measured flux
define an interval bracketing its possible values: v,(k) =

[Vuj, min’ qu, max]'

Auxiliary: link between extracellular and intracellular

fluxes

A set of ne extracellular fluxes can be linked with the intra-

cellular fluxes by using a matrix S fulfilling;
Ve=8sV (11)

where v, is the vector of extracellular fluxes and v the vec-

tor of intracellular fluxes. Eq. 11 can be easily joined with
eq. 1 as follows:

K MEHC
Sgnexn Inexne Vg O

Hence, the extended system holds the structure of a
homogeneous system of linear equations.

Auxiliary: inconsistency of the measured fluxes
A redundant system will be consistent if it fulfils the con-
sistency condition:

(13)

where R is the redundancy matrix and S, * the Penrose
pseudo-inverse of S,,. In case inconsistency is detected, the
method described in [38,39] can be used to estimate its
importance. It is based upon statistical hypothesis testing
to determine if redundancies are satisfied to within
expected experimental error. The test is performed by cal-
culating a consistency index h as follows:

R-vy, =0 R=S,,-S, S-S,

h=el.Ppl.¢

eE=-R vy (14)

P=R, -F-R!

where R, is the reduced redundancy matrix and F the vari-
ances-covariances matrix of the measurements in v,,. If a
given set of measured fluxes v, fails the consistency check
(h>x2), then there is a (confidence level)% chance that
either v, contains gross errors or the assumed stoichio-
metric matrix is incorrect. The %2 values for two confi-
dence levels are given in Table 4. It must be noticed that
some measured fluxes have no impact on the consistency
of the system, so they are not considered in the analysis of
consistency. These fluxes are called non-balanceable. On
the contrary, a measured flux is called balanceable if the
consistency of the system depends on its value. They can
be detected as explained in [14]. The balanceable fluxes
can be adjusted (or balanced) if they are inconsistent. Fol-

http://www.biomedcentral.com/1471-2105/8/421

Table 4: Chi-square values for two confident levels

Degrees of freedom 90% 95%
| 2.71 3.84
2 461 5.99
3 6.25 7.81
4 7.78 9.49

lowing the method described in [38,39], the adjusted
fluxes can be calculated as:

Vm =(1-F-RT PR ) vy (15)

where R* denoted the Penrose pseudo-inverse of the
matrix R,. This equation provides the adjusted values for
the balanceable fluxes and the original values for the non-
balanceable ones.

Auxiliary: Metabolic flux analysis

When the system (2) is determined but not redundant the
unique solution can be calculated by using the inverse
matrix of S:

(16)

When the system is determined but redundant, matrix S,
is not invertible so the Penrose pseudo-inverse is used
instead (providing a least squares solution):

S|
Vu __Su 'Sm "V

(17)

Finally, if system (2) is underdetermined, Metabolic Flux
Analysis cannot be used. Only some fluxes may be
uniquely calculable by using the method explained in
[14].

_ #
Vu __Su 'Sm'Vm

List of abbreviations
MFA: Metabolic flux analysis

FSA: Flux spectrum approach
FBA: Flux balance analysis
CHO: Chinese hamster ovary (cells)

AIS: Average along time of the interval size of an estimated
flux.
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