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Abstract
Background: The identification of transcription factors (TFs) associated with a biological process
is fundamental to understanding its regulatory mechanisms. From microarray data, however, the
activity changes of TFs often cannot be directly observed due to their relatively low expression
levels, post-transcriptional modifications, and other complications. Several approaches have been
proposed to infer TF activity changes from microarray data. In some models, a linear relationship
between gene expression and TF-gene binding strength is assumed. In some other models, the
target genes of a TF are first determined by a significance cutoff to binding affinity scores, and then
expression differentiation is checked between the target and other genes.

Results: We propose a novel method, referred to as BASE (binding association with sorted
expression), to infer TF activity changes from microarray expression profiles with the help of
binding affinity data. It searches the maximum association between bind affinity profile of a TF and
expression change profile along the direction of sorted differentiation. The method does not make
hard target gene selection, rather, the significances of TF activity changes are evaluated by
permutation tests of binding association at the end. To show the effectiveness of this method, we
apply it to three typical examples using different kinds of binding affinity data, namely, ChIP-chip
data, motif discovery data, and positional weighted matrix scanning data, respectively. The
implications obtained from all three examples are consistent with established biological results.
Moreover, the inferences suggest new and biological meaningful hypotheses for further
investigation.

Conclusion: The proposed method makes transcription inference from profiles of expression and
binding affinity. The same machinery can be used to deal with various kinds of binding affinity data.
The method does not require a linear assumption, and has the desirable property of scale-
invariance with respect to TF-specific binding affinity. This method is easy to implement and can be
routinely applied for transcriptional inferences in microarray studies.

Background
Transcription factors (TF) play a central role in many crit-
ical biological processes, such as transcriptional regula-

tion, cell proliferation, development, and apoptosis.
During signal transduction, the extra- or intra-cellular sig-
nals are conveyed eventually to certain transcription fac-
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tors, leading to their activation or repression and
consequently changing the expression of their target
genes. Thus, the identification of transcription factors
associated with a biological process is fundamental to
understanding its regulatory mechanism.

DNA microarray technology has been widely applied to
functional genomic studies, in which mRNA expression
levels for thousands of genes are measured simultane-
ously. In a typical experimental design, gene expressions
are measured for a collection of samples from two classes,
e.g. tumor versus normal tissues. After appropriate
processing of microarray data, we can obtain the mRNA
expression change of every gene between the two classes.
For transcription factors, however, it is often difficult to
infer their activity changes based only on their own mRNA
expression levels for the following reasons: (1) the mRNA
expression levels of many TFs are often relatively low com-
pared to other genes; (2) the activities of TFs are preva-
lently regulated by post-transcriptional modifications, e.g.
protein phosphorylation, which cannot be captured by
gene expression microarrays; (3) other complications in
regulation may also exist.

To overcome these challenges, several approaches have
been proposed in the literature to infer TF activities
through expression changes of their regulated target
genes. These approaches can roughly be divided into two
classes according to the type of binding affinity data used
for inference. The first class, including REDUCE [1] and
MOTIF REGRESSOR [2], identify regulatory motifs (puta-
tive TF binding sites) associated with gene expression
changes. The second class make use of the ChIP-chip data,
which provide direct experimental binding information
of TFs with genomic sequences [3]. This class includes the
network component analysis (NCA) introduced by Liao et
al. [4], the pseudo-inverse projection method described
by Alter et al. [5], the MA-Networker algorithm proposed
by Gao et al. [6], and the partial least squares (PLS) regres-
sion method suggested by Boulesteix et al. [7]. Common
to these approaches, a linear relationship between gene
expression changes and TF-gene binding affinities is
assumed. The two motif-based methods, REDUCE and
MOTIF REGRESSOR, also assume a linear relationship
between expression changes and motif occurrences
(REDUCE) or motif matching-scores (MOTIF REGRES-
SOR) in the upstream regions of genes. Unfortunately, the
linear relationship may not be valid considering the high
complexity of gene transcription regulation. Tsai et al. pro-
posed a statistical method to identify cell cycle associated
TFs in yeast, which used the Kolmogorov-Smirnov (KS)
test to examine whether expressions of the target and non-
target gene sets of a TF are significantly different [8]. This
method does not assume a linear relationship between
gene expression changes and TF-gene binding affinities,

whereas a threshold value, which is more or less arbitrar-
ily selected, must be specified to determine the target and
non-target gene sets for a TF.

In this article, we propose a new method, referred to as
BASE (binding association with sorted expression), to
infer TF activity changes by integrating microarray expres-
sion data with binding affinity data such as ChIP-chip
data or motif data. The basic idea of the method is illus-
trated in Figure 1. In general, activity change of a TF can be
reflected by expression changes of its target genes in the
microarray data. Given a sorted expression change profile,
we would observe different binding affinity patterns for
TFs with enhanced, reduced, or unchanged activities as
shown in Figure 1(b) and 1(c). It should be noted that the
association between TF-gene binding affinities and target
gene expression changes may exist only in a local region
(e.g., most up- or down-regulated region) rather than
across all genes. This local association is difficult to be
detected by standard linear methods. In contrast, BASE is
designed to detect the local association between TF-gene
binding affinities and gene expression changes to increase
the power of transcriptional inference. We illustrate the
method by three case studies using different types of bind-
ing affinity scores: ChIP-chip data, motif discovery data,
and positional weighted matrix (PWM) scanning data. In
these data sets, our methods achieve results that are bio-
logically meaningful and consistent with previous studies.

Results and Discussion
We demonstrate the ability of our method to provide bio-
logical meaningful insights using three examples for
which considerable background information is available.
For the first example, we combine ChIP-chip data with
microarray data from transcription factor perturbation
experiments (TFPE) that measure gene expression changes
in TF-deleted or TF-overexpressed yeast strains with
respect to the wild-type. For the second example, we inte-
grate gene expression data with motif discovery data to
identify transcription factors that may account for the life
span extension in three long-lived yeast mutants. For the
third example, gene expression data is integrated with the
positional weight matrices (PWM) information to detect
transcription factors that are activated or repressed in
three subtypes of human lung tumors.

TF activity changes in TFPE microarray data
We collect 76 microarray gene expression profiles from
previous TFPE in yeast, including 27 deletions and 49
over-expressions of transcription factor [9-12]. We com-
bine these 76 microarray gene expression profiles with
ChIP-chip data to identify the activated or repressed TFs in
these TFPEs. The ChIP-chip data is from the systematic
experiments performed by Harbison et al. [3], where
genomic occupancies of 203 yeast TFs in YPD medium
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were measured. For some of these TFs, genomic occupan-
cies in several other environmental conditions were also
determined, such as heat shock and rapamycin treatment.
We calculate the activity change scores (AC scores) as well
as their significances (refer to the Methods section) for
each combination of the 76 gene expression change pro-
files and the 350 ChIP-chip profiles (203 in YPD condi-
tion and 147 in the other conditions).

Since ChIP-chip experiments are carried out for all the 203
TFs only in the YPD medium, our inference first focuses
on the ChIP-chip data under this condition. Our results
show that in 20 out of 27 TF deletion and 30 out of 49 TF
over-expression TFPEs, the known perturbed TFs are
found to be substantially activated or repressed at the 0.01
significance level (q-value < 0.01, see Additional file 1 and
file 2). It should be noted that deletion or over-expression
of a TF may not always cause expression changes of its tar-
get genes [13]. First, different TFs often form a certain
complex to regulate transcription and thereby over-
expression or removal of a single component of the com-
plex may not lead to apparent expression changes of its
target genes. Second, if the activity of a TF in the wild-type
is inherently high/low, over-expression/deletion of the TF
may not substantially change its target gene expression.
Finally, many confounding factors such as function

redundancy and post-translational modifications may
exist.

Regardless of the complications, when a TF is deleted, by
and large we would expect down-regulation of the target
genes if it is a transcriptional activator, or up-regulation of
the target genes if it is a transcriptional repressor. Con-
versely, when a TF is over-expressed, we would expect to
observe the opposite expression changes of its target
genes. Among these perturbed TFs in the TFPEs, the
majority are transcriptional activators and only 5 (Hir2,
Mbp1, Bye1, Gzf3 and Rox1) function as transcriptional
repressors according to previous studies [14-18]. The
activity inferences of these 5 repressors are consistent with
what are expected: the AC scores for Hir2 in hir2∆ and
Mbp1 in mbp1∆ are 18.2 (q-value = 0) and 15.9 (q-value
= 0), respectively, suggesting the up-regulation of their tar-
get genes; whereas in their over-expressed strains the AC
scores for Bye1, Gzf3, Mbp1 and Rox1 are -9.8 (q-value =
0), -5.9 (q-value = 0.0027), -12.1 (q-value = 0) and -6.8
(q-value = 0.0001), respectively, suggesting the down-reg-
ulation of their target genes. For the remaining perturbed
TFs which are known as transcription activators, the
inferred activity changes of them are also consistent with
our expectations (see Additional File 1 and File 2), but
with a few exceptions. These exceptions may imply more

The schematic representation of our methodFigure 1
The schematic representation of our method. (a) The inputs are the gene expression data and the binding affinity data 
such as ChIP-chip data, motif discovery data or PWMs scanning data. (b) The possible patterns of binding affinities of ranked 
genes in a decreasing order of their expression changes. The top red and bottom blue plot represent cases where the up-reg-
ulated (red) or down-regulated (blue) genes tend to have high binding affinity by a TF. The middle plot (black) shows when 
there is no significant correlation between the gene expression data and the binding affinity data. (c) The presentation of the 
binding affinity patterns using cumulative distribution functions. The binding affinity patterns shown in (b) is regarded as proba-
bility density functions. The lower table shows the relationship between TF activity change and the expression change of the 
target genes.
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delicate mechanism regarding TF activity regulation. For
example, rather than a positive value, the AC score of
Met4 (a transcriptional activator) is -13.2 (q-value = 0) in
its over-expressed strain. This inconsistency may reflect
the difference of Met4 at expression and activity levels,
since it has been reported that Met4 controls its own deg-
radation through a negative feed back loop [19,20]. Alter-
natively, these exceptions may also be caused by
incomplete TF functional annotation or by the difference
in experimental conditions between the micorarray and
ChIP-chip experiments. It is possible that for some TFs,
the TF-gene binding affinities in the ChIP-chip data do
not match the true regulatory relationship under the
microarray experiment condition.

In addition, our results indicate that deletion or over-
expression of a TF can lead to activity change of some
other TFs, suggesting either regulatory relationships
between these TFs or a significant overlapping of their tar-
get genes. For example, there are 7 and 28 other TFs that
are significantly changed in activity in mbp1∆ and gcn4∆,
respectively. Further investigation of these regulatory rela-
tionships may be helpful to understand the TF-TF interac-
tion during transcriptional regulation.

We next examine the inferred TF activity changes based on
the ChIP-chip data under all the available conditions:
YPD (rich nutrient medium), H2O2Hi (highly hyperoxic,
4 mM H2O2), H2O2Lo (moderately hyperoxic, 0.4 mM
H2O2), SM (amino acid starvation, 0.2 mg/ml sulfo-
meturon methyl), Acid (acidic medium, 0.05 M succinic
acid), RAPA (nutrient deprivation, 100 nM rapamycin)
and BUT14 (filamentation inducing, 1% butanol). It
turns out that for some TFs, when the ChIP-chip data
under different conditions are used, the inferred activity
changes in a given microarray experiment can vary sub-
stantially. Let us use Yap7 in yap7∆ as the example: based
on ChIP-chip data from YPD medium, the inferred AC
score is -9.8 (q-value = 0.0002); while based on ChIP-chip
data from H2O2Hi treatment, the inferred AC score is
10.4 (q-value = 0). This conflict results from the dynamic
nature of association between TFs and genes.

According to the ChIP-chip experiments, some TFs includ-
ing Yap7 may associate with a different set of genes under
different cell status, medium, or other conditions [3]. Fur-
ther computation shows no significant correlation
between the binding profiles of Yap7 under the YPD and
H2O2Hi conditions: the Spearman correlation coefficient
is 0.002. Therefore, when combining microarray data with
ChIP-chip data to infer TF activities, we should be cau-
tious of the conditions under which the microarray and
ChIP-chip experiments are performed. If the two experi-
ments are performed under the same or similar condi-
tions, the activity change inferences are reliable.

Otherwise, the inferences are reliable only for those TFs
that bind to invariant sets of genes under different condi-
tions.

Both deletion and over-expression TFPE data are available
for 6 TFs: Gcn4, Hsf1, Mbp1, Ste12, Swi4 and Yap1, so we
examine the consistency of activity inferences for these TFs
in the deletion and over-expression TFPEs. As shown in
Figure 2, in all except two cases, our method achieves con-
sistent results for TF activity inference. For example, Gcn4,
the transcriptional activator of amino acid biosynthetic
genes, is inferred to be activated in Gcn4 over-expressed
yeast strain (the AC scores are 16.3, 25.6, and 26.2 under
YPD, RAPA, and SM condition, respectively) and
repressed in gcn4∆ strain (the AC scores are -15.7, -25.8,
and -25.7 under YPD, RAPA, and SM condition, respec-
tively). Moreover, over-expressed TFPEs for Msn2, Msn4,
and Yap1 have been performed independently by two
research groups [11,12]. We examine consistency of the
activity inferences from both data sets. As shown in Figure
3, our method achieves similar results for the two inde-
pendent microarray expression data sets. It should be
noted that expression profiles from the two Yap1 over-
expression microarray experiments are not significantly
similar with each other (the Spearman correlation coeffi-
cient is 0.02), perhaps due to high noise introduced dur-
ing microarray experiments. Nevertheless, the
transcriptional inferences for Yap1 from both data sets are
still in good consistency, suggesting the robustness of our
method to noise in gene expression data.

We also apply the method proposed by Tsai et al. [8] to
these 76 TFPE microarray profiles. Based on the ChIP-chip
data, a target gene set (p-value < 0.01) and a non-target
gene set (p-value > 0.8) are defined for each TF, and
expressions of genes in these sets are compared using the
Kolmogorov-Smirnov test. As shown in Additional file 3
and file 4, this method detects activity changes of 14 TFs
from their TFPEs (5 out 27 in the deletion strains and 9
out of 49 in the over-expression strains), all of which are
identified by our method. This suggests that our method
is more sensitive, since the BASE method examines the
maximum local association between the expression
change profile and the TF-gene binding affinity profile.
According to our observations, mostly the association
between these profiles only exists at the two end regions
in the sorted expression change profile (e.g. the most up-
or down-regulated region). It is hard to detect these local
associations if we examine correlations across all genes, as
the linear regression based methods do. In fact, for each of
the 76 TFPEs, we calculate the Pearson correlation coeffi-
cient between its expression change profile and its bind-
ing affinity profile of the corresponding TF and it turns
out that only 8 TFPEs have a correlation greater than 0.10.
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TF activity changes in long-lived yeast mutants
Recent studies suggest that three nutrient responsive
kinases: Sch9, PKA, and TOR, may play important roles in
yeast ageing. For example, inactivation of Sch9 kinase
increases the replicative life span (the total number of

daughter cells generated by a mother cell) by 30–40%
[21] and extends the chronological life span (the maxi-
mum survival time of a non-dividing cell population in
liquid medium) by nearly three fold [22]. To understand
the mechanism of ageing, we generate three long-lived

Comparison of inferred AC scores for 6 TFs in their corresponding over-expression and deletion TFPEsFigure 2
Comparison of inferred AC scores for 6 TFs in their corresponding over-expression and deletion TFPEs. The 
upper image shows the AC scores of Gcn4, Hsf1, Mbp1, Ste12, Swi4 and Yap1 under different combinations of the expression 
profiles and ChIP-chip data. The lower table shows the AC scores as well as the significance levels(in bracket). Each row repre-
sents the expression profile when the corresponding TF is over-expressed (OE) or deleted (DE). The columns correspond to 
all conditions under which the ChIP-chip data for the corresponding TF is measured. N/A means not available, which is due to 
the unavailability of the ChIP-chip data under the conditions for the TF. Note there are two rows for YAP1OE, each corre-
sponding to an independent expression profile from Yap1 over-expression experiment.
Page 5 of 12
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:452 http://www.biomedcentral.com/1471-2105/8/452
yeast mutants: sch9∆, ras2∆ and tor1∆, in which Sch9,
PKA, and TOR kinase are inactivated, respectively.
Although the mechanisms of longevity in these mutants
have not been fully understood, two stress response tran-

scription factors, Msn2/4 and Gis1, are likely to be
involved since deletion of Msn2/4 in ras2∆ and deletion
of Rim15, a kinase that activates Gis1 in sch9∆ reverse the
survival extension [22]. We measure the gene expressions

Consistency of inferred AC scores for TFs in the corresponding over-expression TFPEsFigure 3
Consistency of inferred AC scores for TFs in the corresponding over-expression TFPEs. The upper image shows 
the AC scores for Msn2, Msn4, and Yap1 inferred from two independent over-expression TFPE data in combination with ChIP-
chip data from different conditions. The lower table shows the AC scores as well as the significance levels (in bracket). Rows 
are different TFPEs for the corresponding TF and columns are different conditions under which the ChIP-chip data for the cor-
responding TF is measured. The superscript in the first column distinguishes the two independent gene expression profiles. N/
A means not available, which is due to the unavailability of the ChIP-chip data for the TF under the condition.
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of the three mutants and a wild-type yeast strain using
microarrays and obtain three expression change profiles:
sch9∆/wt, ras2∆/wt and tor1∆/wt.

In what follows, we apply the BASE method to identify the
TFs associated with longevity in these mutants by integrat-
ing microarray data with motif discovery data. First, 537
putative regulatory motifs are identified from the pro-
moter regions of all yeast genes using AlignACE, a de novo
motif discovery method [23]. We then scan the promoter
region of each gene to examine their occurrences. For each
of the 537 putative motifs, we end up with a matching-
score vector, which measures the transcriptional poten-
tials of the binding motif for genes. Finally, the matching-
score vectors are combined with the expression change
profiles (sch9∆/wt, ras2∆/wt and tor1∆/wt) to identify the
regulatory motifs associated with gene expression modifi-
cation in the mutants.

The results of our computational inference indicate that
the activities of 53, 57 and 74 motifs are significantly
changed in sch9∆/wt, ras2∆/wt, and tor1∆/wt, respectively
(see Additional file 5). Among these 537 motifs, 42 can be
associated with transcription factors according to litera-
ture and databases [24]. Table 1 shows 16 motifs of these
42 motifs, which have significant activity changes in at
least one of the three long-lived mutants. As shown in the
table, both Msn2/4 and Gis1 are found to be significantly
activated in all three long-lived mutants. Although the
experimental justifications are only available for Msn2/4
in ras2∆ and for Kim15 (Gis1 activator) in sch9∆ [22], our
results suggest that in all three mutants, Msn2/4 and Gis1

may play a critical regulatory role in life span extension.
Consistently, some studies have shown the negative regu-
lation of Msn2/4 activity by PKA and TOR kinase as well
as the negative regulation of Gis1 activity by PKA kinase
[25-28]. In addition to Msn2/4 and Gis1, we identify
other TFs with significant activity changes, such as Fhl1,
Sum1/Ndt1 and Pho4, which may also be critical for life
span extension and further investigations may shed new
light on the mechanism of longevity in these long-lived
yeast mutants.

In a previous study, we identified motifs associated with
life span extension in sch9∆, ras2∆, and tor1∆ using a cut-
off based method [29]. This method applied the Fisher's
exact test to examine the enrichment of each motif in the
up- and down-regulated gene sets from sch9∆/wt, ras2∆/wt,
and tor1∆/wt. Although the selection of cutoff is generally
not trivial, in this case the cut-off based method and the
BASE method achieve similar results. For example, both
Msn2/4 and Gis1 binding motifs are found to be signifi-
cantly activated or enriched in the up-regulated gene sets
in all three long-lived mutants with respect to the wild-
type. In addition, we tried the linear regression based
method, MOTIF REGRESSOR, which did not identify
Msn2/4 and Gis1 as activity changed TFs in these long-
lived mutants. In fact, no significant linear relationship
between gene expression changes in sch9∆/wt, ras2∆/wt,
and tor1∆/wt and the motif matching scores of Msn2/4 or
Gis1 is revealed from scatter plots and their correlation
coefficients.

Table 1: Motifs significantly associated with gene expression changes in long lived mutants, sch9∆, ras2∆, and tor1∆, with respect to the 
wild-type yeast.

sch9∆/wt ras2∆/wt tor1∆/wt
TF Consensus AC p-value q-value AC p-value q-value AC p-value q-value

Fhl1 RTGT-YGGRTG 17.0 0 0 12.4 0 0 16.0 0 0
Msn2/4 AGGGG 15.0 0 0 15.4 0 0 12.5 0 0
Gis1 AWAGGGAT 12.0 0 0 12.5 0 0 10.6 0 0
Sum1/Ndt80 GACACAAAA 8.7 0 0 9.3 0 0 9.2 0 0
Pho4 GY-TSKCACGTG-G 7.3 0.0006 0.0013 9.5 0 0 8.7 0.0006 0.0025
Pdr3 S-TCCGYGGAA 6.0 0.011 0.012 9.1 0.0006 0.0009 4.4 0.067 0.077
Cad1 ATTAGTAAGC 5.9 0.014 0.015 8.5 0.0006 0.0009 4.6 0.033 0.048
Mig1 CGCATMCCCCAC 5.2 0.037 0.029 7.8 0 0 5.6 0.053 0.066
Met31 MWGTGTGGCR 4.9 0.041 0.031 9.2 0 0 5.4 0.047 0.061
Hsf1 GAW-TTCTAGAA 4.3 0.16 0.083 9.1 0 0 4.6 0.087 0.091
Zap1 ACCYT-AGGTT 3.8 0.43 0.16 12.1 0 0 5.2 0.045 0.059
Met4 AMAA-TGTGG 3.4 0.45 0.16 9.8 0 0 5.8 0.054 0.067
Cbf1 RRTCACGTG 3.3 0.45 0.16 9.2 0 0 5.3 0.038 0.054
Swi4 CRCGAAAA 3.2 0.39 0.15 3.5 0.27 0.080 11.8 0 0
Abf1 CGT|-ARTGAT -5.2 0.033 0.027 -9.3 0 0 -9.2 0 0
Xbp1 GCCTCGARGMGR -7.1 0 0 4.4 0.24 0.075 -3.3 0.21 0.17

The 16 motifs that can be associated with a known TF and are significant in at least one of the three long-lived mutants are shown.
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TF activity changes in lung carcinomas
In the third case, we apply our method to study the tran-
scriptional regulation in tumors. We seek to identify TFs
that have significantly different activities in small cell lung
carcinomas (SMC), squamous cell lung carcinomas (SQ)
and pulmonary carcinoids (COID) with respect to normal
lung tissues. We use the microarray data set provided by
Bhattacharjee et al. [30], which includes gene expression
profiles in specimens from SMC, SQ, COID and normal
tissues. We calculate the t-statistic for each gene, which
summarizes the difference of gene expression in SMC, SQ
or COID with respect to normal lung tissues. In the mean
time, we extract all available PWMs from TRANSFAC [31]
and use the MATCH program [32] to calculate their
matching-scores in the promoter regions of all human
genes. To apply our method, the t-scores are taken as the
gene expression change data and the matching-scores are
taken as the binding affinity data. We identify all PWMs
that are significantly associated with the expression differ-
entiation profiles of lung tumors with respect to normal
lung tissues. These PWMs and their associated TFs may
reflect the differences in transcriptional regulation
between lung tumors and normal lung tissues and thus
provide us with biological insights about carcinogenesis.

Table 2 shows 27 PWMs that are significant in SMC, SQ
and COID (q-value < 0.1) according to our method.
Among these PWMs, 10 are binding motifs of E2F family
members or E2F related DNA binding proteins according
to TRANSFAC. E2F is a heterodimeric complex that is
composed of an E2F-family member (E2F-1, E2F-2, E2F-
3, E2F-4) and DP-1. It plays a major role during the G1/S
transition in the mammalian cell cycle via regulating the
transcription of genes that encode cyclins, CDKs, check-
points regulators, DNA repair and replication proteins
[33,34]. The involvement of E2F family members in can-
cer has been shown in previous studies [35,36]. Our
results show significant positive AC scores of these E2F
family members in lung carcinoma (SMC and SQ) and
pulmonary carcinoids (COID), and indicate the high rate
of proliferation of cells. Moreover, AC scores of these
PWMs in carcinomas tend to be higher than those in car-
cinoids (COID), suggesting more active proliferation of
cells in carcinomas. Our results also indicate that the
activity of P53 is repressed in SMC, SQ and COID, espe-
cially in SQ. P53 is known to be one of the most impor-
tant tumor suppressor gene that protects humans from
cancer. More than half of human cancers harbor p53
mutations and have no functional p53 protein [37-39]. In

Table 2: PWMs significantly associated with gene expression changes in SMC, SQ, and COID in comparison with normal lung tissues.

SMC/Normal SQ/Normal COID/Normal
Motif Name AC p-value q-value AC p-value q-value AC p-value q-value

V$CETS1P54_01 9.7 0 0 17.8 0 0 11.1 0 0
V$CETS1P54_03 8.5 0 0 15.2 0 0 9.8 0 0
V$E2F_02 9.2 0 0 6.7 0.0022 0.015 5.0 0.033 0.076
V$E2F_Q2 11.0 0 0 9.4 0 0 7.3 0.0031 0.018
V$E2F_Q4 13.6 0 0 9.2 0 0 5.5 0.0073 0.031
V$E2F1_Q3 18.1 0 0 21.1 0 0 12.0 0 0
V$E2F1_Q6 14.9 0 0 13.9 0 0 7.5 0.0008 0.0066
V$E2F1_Q6_01 13.5 0 0 12.5 0 0 6.2 0.0095 0.037
V$E2F1DP1_01 11.1 0 0 10.9 0 0 6.6 0 0
V$E2F1DP1RB_01 10.3 0 0 7.5 0.0013 0.010 5.2 0.031 0.074
V$E2F1DP2_01 10.0 0 0 9.4 0 0 7.0 0.0013 0.0096
V$E2F4DP2_01 9.4 0 0 9.7 0 0 6.2 0.0055 0.025
V$ELF1_Q6 -6.7 0.0052 0.041 -7.9 0 0 -9.3 0 0
V$ELK1_02 6.7 0.0063 0.047 16.1 0 0 9.6 0 0
V$ETF_Q6 6.6 0.013 0.070 5.2 0.017 0.066 7.6 0 0
V$HNF3_Q6 -5.4 0.015 0.079 -5.9 0.031 0.096 -7.8 0 0
V$HNF3_Q6_01 -5.9 0.0094 0.060 -6.4 0.014 0.059 -8.5 0.0001 0.0010
V$IRF1_Q6 -6.4 0.019 0.089 -5.7 0.019 0.070 -9.0 0 0
V$NFKAPPAB65_01 -6.1 0.0067 0.048 -6.0 0.020 0.072 -8.2 0 0
V$NRF1_Q6 7.7 0 0 8.4 0 0 7.4 0.0012 0.0092
V$P53_02 -5.4 0.022 0.099 -6.3 0 0 -4.9 0.041 0.089
V$PAX3_B 6.0 0.018 0.086 7.6 0 0 5.9 0.0094 0.037
V$PEA3_Q6 -7.3 0.0001 0.0010 -6.2 0.0008 0.0077 -13.0 0 0
V$SREBP1_Q6 -7.4 0 0 -12.0 0 0 -8.3 0.0022 0.014
V$STAF_02 8.4 0 0 8.1 0.0013 0.010 8.3 0 0
V$ZF5_01 10.5 0 0 7.3 0.0050 0.028 7.4 0 0
V$ZF5_B 8.4 0 0 6.3 0.0040 0.023 5.8 0.019 0.058

Only the PWMs that are significant (q-value < 0.1) in all the three tumor subtypes are shown.
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addition, activities of two other transcription factors, IRF1
and NFKB, are revealed to be repressed in SMC, SQ and
especially in COID according to our method. NFKB is a
primary transcription factor found in all cell types and is
involved in cellular responses to stimuli such as stress,
cytokines, free radicals, ultraviolet irradiation, and bacte-
rial or viral antigens [40,41]. IRF1 is important in the reg-
ulation of interferons in response to infection by virus and
in the regulation of interferon-inducible genes [42-44].
The involvement of NFKB and IRF1 in oncogenesis has
been reported in previous studies [45,46]. Further investi-
gation of these identified TFs may provide new insight
into the transcriptional regulations during carcinogenesis.

Conclusion
We have developed a novel method to infer activity
changes of transcription factor by integrating the gene
expression data with binding affinity data such as ChIP-
chip or motif data. Unlike previous approaches, this
method does not assume linear relationship between TF-
gene binding affinities and gene expression changes. Since
this method does not need pre-defined target gene sets, it
requires no threshold selection for binding affinity scores
or gene expression changes. This method is applied to
three different data sets in which the gene expression data
are integrated with ChIP-chip data, motif discovery data
and motif scanning data, respectively. The implications
obtained from each data set are biologically meaningful
and consistent with previous studies. Moreover, the
method is robust to noise in expression data and easy to
be implemented. Potentially, this method may be applied
to many microarray data sets to shed light on the mecha-
nisms of transcriptional regulation.

Methods
Significance assessing of activity change
The goal of our method is to infer activity change of a
given transcription factor by integrating gene expression
data with binding affinity data. Let e = (e1, e2,�, eN) be the
expression differentiation vector for the N genes on the
microarray, where ei describes the gene expression fold
change (log ratio) of gene i between two conditions.
Based on the binding affinity data from ChIP-chip exper-
iments or motif discovery analysis, we extract another vec-
tor called binding vector m = (m1, m2,�, mN), where mi
measures the binding affinity of the given transcription
factor to the upstream region of gene i. Here we assume
that the expression differentiation vector e is already nor-
malized so that it more or less centers around 0 and the
values in the binding vector m are non-negative. A robust
version of binding vector is the replacement of binding
affinities by their ranks. However, our computational
experience indicates some loss of power from the rank
binding vector.

To infer the activity change of the given transcription fac-
tor, we first sort the expression differentiation vector into
e' = (e(1), e(2),�, e(N)), where e(i) ≥ e(i+1) for any 1 ≤ i ≤ N -
1. Suppose the corresponding indices of the ranked genes
is (i1, i2,�, iN), that is, gene ik has the k-th largest gene
expression change.

 and therefore both  and e(j)

correspond to gene ij. Next, we define a non-decreasing

function f (i) based on the two vectors e' and m' as follows:

As a reference, we define another non-decreasing function
g(i) based only on e' itself:

From these two non-decreasing functions, a statistic,
denoted as the pre-score, is calculated to measure the max-
imum difference between f(i) and g(i) as follows:

ps = f(imax) - g(imax)

where .

The statistic has several features. First, if e and m are not
associated with each other, f(·) will be centered around
g(·), leading to a small value of ps. Second, we take the
maximum difference between the two functions as our
statistic, which overcomes the problem of thresholding
on the TF-gene binding affinities. Third, the strengthes of
both gene expression changes and binding affinities are
considered in our statistic, which makes our statistic more
powerful to detect TF activity changes. Fourth, in a special
case where binding affinities are treated as 1 if they are
equal to or larger than a specified threshold and 0 other-
wise, the statistic is similar to the enrichment score used
in GSEA [47]. Finally, our definition of binding associa-
tion with sorted expression is scale-invariant in the sense
that the scores remain unchanged if we apply different
scales to binding scores of different TFs. This is a desirable
property, for binding of TF with DNA is TF-specific.

To assess the significance of ps, we permute the reordered
binding vector M times and obtain M permuted binding
vectors m(1), m(2),�, m(M). For each permutation, the ps is
recalculated by replacing m' in equation (1) with the per-

′ =m m m mi i iN
( , , , )

1 2
mi j

f i
e j mi jj

i

e j mi jj
N

i N( )
( )

( )

, .=
=∑

=∑
≤ ≤

1

1

1

g i
e jj

i

e jj
N

( )
( )

( )
.= =∑

=∑
1

1

i f i g imax
i N

= −
=

arg max ( ) ( )
, , ,1 2
Page 9 of 12
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:452 http://www.biomedcentral.com/1471-2105/8/452
muted binding vector. This permutation procedure results
in M permuted ps statistics, denoted as psperm = (ps1, ps2,�,
psM). Based on these permutated pre-scores, the one-sided
p-value for activity change of the given TF in the gene
expression experiment is defined as

where MEAN(psperm) is the mean of psperm. To correct for
the multiple testing errors, we calculate the q-values using
the "qvalue" package in "Bioconductor" of R [48].

Activity change (AC) score calculation
From the assessed significance above, we can decide
whether the given transcription factor has a significant
activity change in the gene expression experiment. How-
ever, a more interesting problem is how the transcription
factor affects the gene expressions of its target genes. That
is, if the transcription factor is significant, we also want to
know whether it down-regulates or up-regulates its target
genes. Furthermore, limited by the number of permuta-
tions, the permutation test does not give enough accuracy
for the significance estimation. Many transcription factors
may have the same p-value, although they do not have the
same magnitudes in activity change. To address these
issues, we define an activity change (AC) score which is
negative when its target genes are down-regulated and
positive when they are up-regulated. Its absolute value
reflects the magnitude of activity change. The AC score is
defined as

where MEAN(psperm) is the mean of pspermand SD(|psperm|)
is the standard deviation for the absolute values of psperm.
Basically, the above defined AC score is used to standard-
ize the pre-score by a shift-scale transformation. The loca-
tion parameter is taken to be the mean of the pre-scores
from the permutations. The selection of scale parameter is
subtle, since psperm has a bimodal distribution. It can be
shown that the positive pre-scores and the negative pre-
scores from the permutations have the same distribution,
if the expression change profile e is symmetric against
zero, which is approximately satisfied for most microarray
data. Therefore, we use the standard deviation of the
|psperm| rather than psperm to represent the variance of the
permutated pre-scores. If the given TF is an activator, then
a positive AC score and a negative AC score indicate activ-
ity enhancement and reduction, respectively. Conversely,

if the TF is a repressor, then the inferences of activity
change are opposite.

Integration of TFPE with ChIP-chip data
We collect 76 microarray gene expression change profiles
from four groups of transcription factor perturbation
experiments (TFPE) in yeast, each measuring gene expres-
sion changes in the yeast strain where a single TF is deleted
or over-expressed. The 76 gene expression change profiles
include 27 TF deletion profiles and 49 TF over-expression
profiles. In these 27 deletion profiles, 22 are from Hughes
et al. [9] and 5 are from Mnamneh et al. [10]. In the 49
over-expression of of transcription factors, 46 are from
Chua et al. [12] and 3 are from Gasch et al. [11] (see Addi-
tional file 1 and file 2). When we apply BASE to the com-
bined data set, each of the 76 gene expression change
profiles is used separately as the expression differentiation
vector e. The binding affinity data is obtained from the
ChIP-chip data reported in Harbison et al. [3], which
includes 350 ChIP-chip profiles for 203 TFs (some TFs are
measured under multiple conditions). Each ChIP-chip
profile measures the binding affinities of a TF to the pro-
moter regions of all yeast genes under a specific experi-
mental condition. Each of these profiles is taken as the
binding vector m. For every combination of the 76 gene
expression change profiles and the 350 TF-gene binding
affinity profiles, we apply our method to calculate the AC
score as well as its significance.

Integration of Gene Expression with Motif Discovery Data
We measure the expression levels for 5667 yeast genes
using Affymetrix Yeast2.0 microarrays in the wild-type
and three long-lived yeast mutants: sch9∆, ras2∆ and
tor1∆. The binding affinity data is calculated based on the
motif discovery data published by Beer et al. [24]. They
identified 666 enriched motifs in the promoter regions
(DNA sequences from the translation initiation site to 800
bp upstream) of all yeast genes using AlignACE [23]. The
occurrences of each motif in the upstream region of each
gene (800 bp) were then determined by searching the
motif against these sequences. The motif discovery data
contain the number of occurrences and their matching-
scores of each motif in the upstream region of each gene
(the cut-off for matching-score is set to 0.5). Suppose that
for each motif there exists a DNA binding protein (e.g. a
TF) associated with it, these motif matching-scores reflect
the binding affinities of the protein to the promoters of
genes. In this paper, we select 537 from these 666 motifs
after calculating their pairwise similarities and removing
the redundant ones. Matching-scores of all occurrences
for the same motif in the upstream region of a gene are
aggregated. When no occurrence is found in the upstream
of a gene, the score is set to 0. The above described calcu-
lations result in an aggregated matching-score for each
pair of motif and gene, which reflects the binding affinity
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of the corresponding TF to this gene via that motif. To
apply our method, the vector containing the aggregated
matching-scores of a motif in the upstream regions of all
genes is taken as the binding vector m, and each of the
expression change profiles for sch9∆/wt, ras2∆/wt and
tor1∆/wt is treated as the expression differentiation vector
e. For each of the 537 motifs, the BASE method is used to
integrate its binding vector with each of the three expres-
sion change profiles. The AC scores and their significance
are calculated for all 537 motifs in sch9∆/wt, ras2∆/wt and
tor1∆/wt.

Integration of Gene Expression with PWM Scanning Data
In the study reported in Bhattacharjee et al. [30], gene
expression levels in 6 small-cell lung carcinomas (SMC),
21 squamous cell lung carcinomas (SQ), 20 pulmonary
carcinoids (COID) and 17 normal lung specimens were
measured. We calculate the t-statistic for all the genes
using the 6 SMCs, 21 SQs or 20 COIDs versus the 17 nor-
mal samples, resulting in three t-score profiles for SMC/
normal, SQ/normal, and COID/normal, respectively.
Each of these profiles is taken as the expression differenti-
ation vector e. The binding affinity data is calculated based
on the 546 positional weight matrices (PWMs) in verte-
brates extracted from TRANSFAC9.4 [32]. For each of
these 546 PWMs, we used the program MATCH to scan
the upstream regions of all human genes from the tran-
scription start site up to 1000 bp [31]. To minimize the
false positive rate, the pre-calculated cut-off values for
these PWMs (provided by the MATCH program) are used.
The matching-scores for all significant hits of the same
PWM in each upstream region are aggregated. When no
hit is found in the upstream region of a gene, the score is
set to 0. The vector of the aggregated matching-scores for
each PWMs is taken as the binding vector m. The above
data processing results in 3 expression change vectors
(SMC, SQ, and COIDs) and 546 binding vectors. For each
combination of expression change profiles and matching-
score vectors, we applied our method to calculate the AC
score as well as its significance.
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