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Abstract
Background: Microarrays are widely used for the study of gene expression; however deciding on
whether observed differences in expression are significant remains a challenge.

Results: A computing tool (ArrayLeaRNA) has been developed for gene expression analysis. It
implements a Bayesian approach which is based on the Gumbel distribution and uses printed
genomic DNA control features for normalization and for estimation of the parameters of the
Bayesian model and prior knowledge from predicted operon structure. The method is compared
with two other approaches: the classical LOWESS normalization followed by a two fold cut-off
criterion and the OpWise method (Price, et al. 2006. BMC Bioinformatics. 7, 19), a published
Bayesian approach also using predicted operon structure. The three methods were compared on
experimental datasets with prior knowledge of gene expression. With ArrayLeaRNA, data
normalization is carried out according to the genomic features which reflect the results of equally
transcribed genes; also the statistical significance of the difference in expression is based on the
variability of the equally transcribed genes. The operon information helps the classification of genes
with low confidence measurements.

ArrayLeaRNA is implemented in Visual Basic and freely available as an Excel add-in at http://
www.ifr.ac.uk/safety/ArrayLeaRNA/

Conclusion: We have introduced a novel Bayesian model and demonstrated that it is a robust
method for analysing microarray expression profiles. ArrayLeaRNA showed a considerable
improvement in data normalization, in the estimation of the experimental variability intrinsic to
each hybridization and in the establishment of a clear boundary between non-changing and
differentially expressed genes. The method is applicable to data derived from hybridizations of
labelled cDNA samples as well as from hybridizations of labelled cDNA with genomic DNA and
can be used for the analysis of datasets where differentially regulated genes predominate.

Background
DNA microarrays are well established means of monitor-
ing genome-wide patterns of gene expression [1]. The first

level of analysis requires determining whether observed
differences in expression are significant. Data analysis
techniques are actively being developed for this purpose
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including classical ANOVA methods [2,3] and Bayesian
approaches based on both Gaussian [4-9] and non-Gaus-
sian [10,11] models. Several problems arise with classical
statistical inference due to the lack of replications and the
large amount of genes in cases of multiple testing [6].
None of the existing methods estimate the variability of
the measurements from equally expressed genes. Our goal
is to introduce a new Bayesian approach for transcriptome
analysis, ArrayLeaRNA, based on the intrinsic variability
of the equally expressed genes estimated from genomic
DNA features printed on the microarray slide and on the
predicted transcriptional organisation of operons. The
model underlying ArrayLeaRNA assumes that the log
ratios have a Gumbel distribution; this gives an asymmet-
ric posterior distribution with a very steep tail, which is
more discerning than that obtained from the Gaussian
model.

To test ArrayLeaRNA, we compared it with two other anal-
ysis approaches: a constant two-fold cut-off value, i.e.
two-fold changes between intensities, and OpWise [8].
The reasons for the choice of these two methods are that
the two-fold cut-off is a common practice for data analysis
with some commercial analysis packages and OpWise is a
Bayesian approach based on a Gaussian model, as used in
other published approaches [4-9]. OpWise also incorpo-
rates predicted operon structure to inform on systematic
microarray errors and to decide whether the expression is
significantly different. The performance of these analysis
approaches is illustrated using three experimental hybrid-
ization datasets with prior knowledge of expected tran-
scription patterns.

We introduce the use of genomic DNA features printed as
serial dilutions on the microarray slide and demonstrate
that the measurements from these features are equivalent
to the measurements of genes that are equally expressed
under different experimental conditions. The normaliza-
tion approach presented in this paper, based on these
genomic control features, was compared with the so-
called LOWESS normalization [12] based on the LOWESS
non parametric regression [13] applied to describe the
relationship between the difference (M) and the average
(A) of the logarithm of the intensities. We use the
genomic controls not only in data normalization, but also
in data analysis for the estimation of the parameters of the
Bayesian model. Also the Bayesian model includes the
information on the transcription of the predicted operon
to help the correct assignment of genes with low confi-
dence measurements. ArrayLeaRNA is implemented in a
new user-friendly software tool freely available [14].

Description of the analysis
Hybridization datasets analyzed in this study
(Datasets are available at [14])

Dataset I is the result of a microarray hybridization of
cDNA obtained from C. jejuni strains 11168 and 81116
and labelled with Cy3 and Cy5, respectively. There are 6
replicates for each ORF and ca. 8–10 replicates for each
genomic DNA control feature (100, 250, 500, 1000, 3000
and 5000 ng) from each strain.

Dataset II was obtained from a hybridization of cDNA
made from two replicated cultures of S. pneumoniae TIGR
4. The samples of cDNA were differentially labelled with
Cy3 and Cy5. The dataset contains ca. 4 replicated meas-
urements from each ORF and ca. 15 replicated measure-
ments of each genomic DNA feature (10, 50, 100, 500 and
1000 ng).

Dataset III was obtained from two independent hybridiza-
tions. Each hybridization was carried out by mixing
genomic DNA with cDNA both obtained from E. coli. The
mixture was hybridized to the microarray slide. Dataset III
was constructed by combining the fluorescence intensities
measured from the cDNA sample in each hybridization.
The dataset consisted of one measurement of each ORF
and ca. 15 replicated measurements of each genomic DNA
feature (25, 75, 250, 750 and 2250 ng).

Dataset IV was generated from Dataset I. The log ratios of
differentially expressed genes were made positive so that
178 genes were up-regulated in sample 1 and none in
sample 2. Then, a set of 178 equally transcribed genes
were randomly selected. This gives an asymmetric gene
expression dataset with 356 genes from which 178 genes
up-regulated in sample 1 and 178 genes equally tran-
scribed, and therefore the mean ratio of the whole dataset
is very different from the mean ratio of the equally tran-
scribed genes.

Standardization of the hybridization datasets
Data standardization was based on the genomic DNA fea-
tures printed on the microarray slides at different concen-
trations. We reasoned that equal amounts of each
differentially labelled cDNA sample will hybridize to the
genomic control features and can therefore be used as a
reference to standardize the whole hybridization dataset.
In order to do this, the relationship between the intensi-
ties measured on the genomic features is described as:

log2 I1 = αg + βg log2I2

where I1 and I2 are the fluorescence intensities observed
from each sample differentially labelled and hybridized
on one slide in the case of cDNA vs cDNA hybridizations.
For cDNA vs genomic DNA hybridizations, I1 and I2 are
the intensities corresponding to the cDNA samples meas-
ured in two different slides.
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The standardization of the intensities was based on both
parameters αg and βg specifically estimated for each micro-
array hybridization. Both the intensities measured from
ORFs and genomic features were corrected as follows:

log2 I1' = βg log2 I1 + αg

log2 I2' = log2 I2

The value of 2αg, the constant of proportionality between
intensities, should in theory be 1, i.e. αg = 0, because equal
amounts of differentially labelled cDNA should hybridize
to the genomic features. A value of βg different from 1
expresses lack of linearity between the intensities. To
avoid unnecessary non-linear data transformation, βg
took a value different from 1 only if an F test rejected the
null hypothesis βg = 1.

After standardization, the average of the logarithm of the
ratios between the intensities measured from the genomic
features was equal to zero. Accordingly, the logarithm of
the ratios measured from ORFs with equal amounts of
transcripts of both samples hybridized is also expected to
be centred on zero.

Bayesian inference test
We denote the logarithm of the ratio between intensities
as R = log2 (I1) - log2(I2), where I1 and I2 are the fluores-
cence intensities measured for two differentially labelled
samples of cDNA. Samples 1 and 2 are either hybridized
on one slide in the case of cDNA-cDNA hybridizations or
on two slides in the case of cDNA-DNA hybridizations.

We assume that R has a Gumbel distribution with density
function

where A and b are the location and scale parameters,
respectively. After an experiment, there is uncertainty con-
cerning the location parameter, A, which has a prior dis-
tribution ξA prior. The parameter b is invariant and known
using the genomic control features. When b is known a
conjugate family of distributions for the parameter A
exists (see the Appendix).

We wish to know whether a gene is differentially
expressed. For genes that show similar expression in both
samples, the ratios are fairly close to 1 and the value of the
location parameter, A, is centred on a value a0. To avoid
an arbitrary asymmetry in the results, the hypothesis test
is made by using only one tail of the posterior distribution
of A. Additionally, the information on the transcription

pattern of the operon to which the gene belongs is to be
used in the analysis. For these reasons we chose an
informative prior for A given by:

where  is described in the

Appendix (Eq A3) and a0 is the centred value of the

parameter A for those genes equally expressed in both
samples; p0 and p1 quantify the information of the tran-

scription of the operon and comply with p0 + p1 = 1;

 is a normalizing

constant such that .

Bayes theorem gives a posterior distribution for A as:

where  is the density func-

tion of the sample of measurements conditioned by A = a
as described in the Appendix (Eq A2); n is the number of

independent measurements for the gene in study and  is

a sample statistic:  where  is the mean

value of the ratios measured for the gene in study.  is a

reformulation of the statistic k defined in the Appendix. 
is a function of the absolute value of the average of the
ratios so that the sign of the difference between the log
intensities do not affect the result. Also, the effect of out-
lier measurements on the analysis is drastically mini-

mized.  takes values in the interval [1, 8). The greater the
absolute ratio of the intensities, the greater is the probabil-
ity of A to have small values. Thus, the value of A is greater
in genes equally expressed than in differentially expressed

genes. Thus, P = P(A ≥ a0|r1..rn) is the posterior probability

of equal transcription in both samples and it is estimated
as
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where

as shown in the Appendix (Eqs A4, A5 and A6). Then, a
gene can be declared differentially expressed if its poste-
rior probability is smaller than some predefined cut-off.
Throughout this paper, we will use 0.01 as cut-off value

Parameter estimation
The estimation of the parameters was carried out with the
ratios measured from the genomic control features
printed on the same slide as the dataset to be analyzed.

The parameter b of the Gumbel distribution was estimated

by the method of moments as  where sdg rep-

resents the standard deviation of the ratios measured from
the genomic features. In nine experimental hybridizations
the standard deviation of the ratios of genes equally tran-
scribed was greater, from 1.6 to 2.4 fold, if measured in
ORFs features than if measured in genomic features. For
this reason, b was estimated assuming that the standard
deviation of the ratios of the genes equally transcribed is
twice as much as that of the ratios measured from
genomic features.

After data standardization, the ratios of equally tran-
scribed genes are expected to be centred on 0. Thus, the
centred value, a0, of the hyperparameter A is estimated by

the method of moments as 

To estimate the parameters α and β, the first consideration
is that for the genomic features p0 = p1 = 0.5. Thus, the
prior distribution of A for the genomic features can be
simplified as

As indicated in the Appendix, the transformation 

has a gamma distribution with shape parameter α and

scale parameter 1/β. Accordingly, the ratios measured

from the genomic features, rg, are transformed into

. From the transformed ratios, the maxi-

mum likelihood estimates for the parameters α and α of a
gamma distribution are obtained as described by [15]. For
the gamma function we used the approximation derived
by Lanczos [16].

To estimate the expected value and variance of A (see
Appendix), the digamma function was approximated by
using the formula 6.3.16 p.259 of [17].

Table 1 shows the estimations for the three datasets.

The values of p0 and p1 are calculated from the transcrip-
tion pattern of the operon to which the gene in study
belongs. If the operon information is not available, p0 =
p1= 0.5. But if available, p0 and p1 are calculated by iterat-
ing the analysis and could affect the posterior probability
P (equation 4) by taking values different from 0.5. The
greater the value of p0, the greater is P, while the greater the
value of p1, the greater is the chance of that gene being dif-
ferentially expressed. Initially, p0 and p1 do not favour any
result with values p0 = p1 = 0.5. With these initial values,
the hybridization dataset is analyzed for the first time and
a preliminary classification is obtained for each gene in
the dataset. Genes are assumed to have increased or
decreased expression relative to the control sample (i.e.
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Table 1: Estimates from the 1 normalized datasets for 
ArrayLeaRNA approach

Parameters and Statistics Dataset I Dataset II Dataset III

Average of 2R from genomic 
features

0 0 0

Standard deviation of R from 
genomic features

0.566 0.244 0.566

Parameter b of the Gumbel 
distribution for R

0.882 0.381 0.883

Parameter α of the prior 
distribution for A

1.65 4.15 2.87

Parameter β of the prior 
distribution for A

2.11 6.51 4.26

Prior expected value for A -0.509 -0.220 -0.509
Prior variance for A 0.614 0.0393 0.318
Parameter α of the 3posterior 
distribution for A

7.65 8.15 3.87

Parameter β of the posterior 
distribution for A

8.11 10.5 5.26

Posterior expected value for A -0.110 -0.121 -0.389
Posterior variance for A 0.150 0.0189 0.122

1 Normalization is based on the genomic features measurements; 2 

Logarithm to the base 2 of the ratio between the intensities; 3 

Assuming p1= p0 = 0.5, R = 0 and 6, 4 and 1 replicates for Datasets I, II 
and III, respectively.
Page 4 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:455 http://www.biomedcentral.com/1471-2105/8/455
up or down regulated) when P (a ≥ a0) < 0.01. The values
of p0 and p1 are updated as follows:

where N0 and N1 depends on the classification of the gene
in study. When the gene in study is equally transcribed, N0
= Card (genes equally transcribed) and N1 = |Card (genes
up-regulated) – Card (genes down-regulated)| where Card
(.) denotes the cardinal number of the set of genes. If
some genes of the operon are up-regulated and some of
them are down-regulated in the same sample they cancel
each other and do not decrease the probability of the
equal transcription in both samples; hence, N1 is calcu-
lated as the absolute value of the difference between the
cardinal numbers of the up and down regulated genes. If
the gene in study is classified as up-regulated, N0 = Card
(genes equally transcribed) + Card (genes down-regu-
lated) and N1 = Card (genes up-regulated). If the gene in
study is down-regulated, N0 = Card (genes equally tran-
scribed) + Card (genes up-regulated) and N1 = Card (genes
down-regulated). T is the number of genes of the operon
involved in the estimation, i.e. T = N1 + N2 + 1. Therefore,
p1 and p0 are based only on those genes successfully ana-
lysed within an operon. The operons composition is that
published at [18-20]. The analysis of the dataset is iterated
several times. Five iterations have been proven sufficient.
In each iteration genes are reclassified and the values of p0
and p1 are updated.

Results
We demonstrate a Bayesian method of microarray data
analysis based on using internal positive controls for nor-
malisation and as a basis of the Bayesian model, plus
using predicted operon structure to improve assignments
of differentially expressed genes. The method has been
tested on microarray data obtained from three different
bacterial organisms.

Fig 1 shows the results for the analysis of the three data-
sets. Dataset I is the result of a microarray hybridization
prepared from two differentially labelled cDNA samples
obtained from two strains of C. jejuni, 81116 and NCTC
11168. Amplicons specific to strain 81116 (138) should
only hybridize labelled cDNA from this strain and should
therefore represent a set of down-regulated genes in the
strain NCTC 11168. Likewise for amplicons specific to
strain NCTC 11168 (134). Dataset II results from two
samples of differentially labelled cDNA obtained from
two replicated cultures of S. pneumoniae TIGR4 and
hybridized on a single slide. Dataset III was prepared from

two samples of cDNA obtained from two replicated cul-
tures of E. coli K12 but the samples of cDNA were mixed
with labelled genomic DNA and hybridized independ-
ently on 2 microarray slides. The dataset includes the
intensities measured for the cDNA samples only. Datasets
II and III were obtained from replicated cultures and all
the genes are expected to be equally expressed. We expect
these datasets to show different variability, which will be
reflected in the genomic control measurements, as a result
of the different hybridization protocols.

For dataset I ArrayLeaRNA classified 315 differentially
expressed genes. From the features unique to the strain
81116, ArrayLeaRNA misclassified 69 ORFs while 24 mis-
classifications were detected from the features unique to
the strain NCTC 11168. As shown in Fig 2, the intensities
from those misclassified features showed typical values of
equally expressed genes. In dataset II, ArrayLeaRNA mis-
classified 52 genes in dataset II and 93 genes in dataset III.
Some of these misclassified genes showed large ratios and
may reflect real changes in gene expression due to subtle
experimental differences during bacterial culture or tech-
nical microarray artefacts.

The OpWise method was applied by using the computing
tool provided by the authors. The cut-off values for the
posterior probability of equal expression were 0.99 and
0.01 for OpWise. This is equivalent to the cut off chosen
for ArrayLeaRNA that is 0.01 of posterior probability asso-
ciated to the absolute value of the ratio between intensi-
ties.

In dataset I, the 138 ORFs unique to strain 81116 could
not be analysed because the operon composition is not
available for this strain. Regarding the features unique to
the strain NCTC 11168, 26 features were misclassified as
equally expressed. Some of the misclassified features
showed large ratios (Fig 2). The misclassification of fea-
tures with large rations was associated to features with few
replicate measurements as a result of discarding bad qual-
ity measurements. For dataset I, OpWise was too conserv-
ative and failed to classify clearly differentially expressed
genes (Fig 1). Opwise is a Bayesian approach based on a
Gaussian model that can be expressed in terms of the t dis-
tribution. The posterior probability can be formulated
without taking into account the operon information.
When the model underlying OpWise was applied without
operon information, only 33 genes, with ratios greater
than 4.3, were classified as differentially expressed and the
number of features unique to the strain NCTC 11168 that
were misclassified as equally expressed increased to 41.
Therefore, for this dataset, the operon information
decreased the number of misclassified genes. In dataset II,
OpWise misclassified 114 genes that showed equal
expression in both samples. In this case, the model with-
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Comparison of gene expression analysis approaches on experimental datasetsFigure 1
Comparison of gene expression analysis approaches on experimental datasets. Analysis of the three datasets with 
the three approaches: ArrayLeaRNA after normalization based on genomic controls and two fold cut-off and OpWise after 
LOWESS normalization. Genes are classified as equally expressed ( ), and up or down-regulated ( ). Number of genes is 
reported for each category. The cut-off values for the posterior probability of equal expression were 0.01 for ArrayLeaRNA 
and 0.99 and 0.01 for OpWise.
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out operon information performed better and did not
misclassify any gene. Dataset III could not be analysed
with OpWise because there was only one replicate of each
ORF.

When applying the two-fold cut-off value in dataset I, 440
genes showed ratios greater than the arbitrarily chosen
two-fold value; this is significantly higher than the 315
and the 86 genes differentially expressed according to
ArrayLeaRNA and OpWise methods, respectively. Fifty
five features unique to 81116 and 17 features unique to
11168 were incorrectly classified but as mentioned above
and shown in Fig 2, these features exhibited typical values
of identically expressed genes. The two-fold approach did
not misclassify any gene on dataset II but misclassified
615 genes in dataset III. The variability of dataset II was
relatively small because the mixture of differentially
labelled cDNA was hybridized on a single slide and each
ORF had ca. 6 replicates. This contrasts the set-up of the
experiment from which dataset III was derived, where the
labelled cDNA samples were mixed with labelled genomic
DNA and hybridized on different slides and the final data-
set contained only 1 ratio per ORF. Therefore variability of
dataset III was greater and 615 genes of this dataset
showed ratios larger than 2. A constant cut-off value arbi-
trarily chosen is not an advisable analysis technique in
any case.

ArrayLeaRNA was applied after normalizing the datasets
with the correcting factors estimated from the genomic
features. OpWise and the two-fold cut-off were applied

after LOWESS normalization. The effect of the normaliza-
tion technique was studied in Dataset IV which was gen-
erated from Dataset I as described above. Dataset IV is an
asymmetric gene expression dataset with 178 up-regu-
lated genes in one of the samples and 178 equally tran-
scribed in both samples. The mean ratio of the whole
dataset is very different from the mean ratio of the equally
transcribed genes. Dataset IV was analysed using
ArrayLeaRNA, OpWise, and the two-fold cut-off following
a) normalization using the genomic controls, b) LOWESS
normalization (according to the LOWESS regression
scores estimated for this sub-dataset), and c) without
using any normalization method, i.e. non-transformed
data (Fig 3). When applying ArrayLeaRNA, the parameters
of the model were always estimated from the original
genomic features and therefore equal for all the cases. In
the dataset normalized according to the genomic controls,
the performance of the three approaches improved with
respect to the non transformed dataset. However, after
LOWESS normalization all methods misclassified a large
number of genes. OpWise misclassified 153 up-regulated
genes in sample 1 as equally transcribed; the two-fold
approach misclassified 80 genes as up-regulated in sample
2 and 80 genes as equally transcribed. ArrayLeaRNA mis-
classified 85 genes as up-regulated in sample 2 and 81 as
equally transcribed. When applying the normalization
approach based on the genomic features, the genomic fea-
tures and the identically expressed genes showed the same
average ratios, so that the normalized ratios of the equally
transcribed genes were centred in 1 and accordingly the
ratios of the differentially expressed genes were corrected,

Misclassifications in dataset IFigure 2
Misclassifications in dataset I. Misclassified genes in dataset I by ArrayLeaRNA (A), OpWise (B) and the two fold cut-off 
(C). The features unique to the strains NCTC 81116 (�) and NCTC 11168 (�) and misclassified as equally described by 
ArrayLeaRNA and the two fold cut-off showed intensities typical of equally transcribed genes. Only features unique to the 
strains NCTC 11168 (�) could be analysed by OpWise. The features classified as equally expressed ( ) are also shown for each 
approach. The cut-off values for the posterior probability of equal expression were 0.01 for ArrayLeaRNA and 0.99 and 0.01 
for OpWise.
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therefore, results improved with all the analysis
approaches. With LOWESS normalization, the centre of
gravity of the whole dataset was considered to be the cen-
tre of gravity of the equally transcribed genes. Thus the
normalized ratios of the genes located in the centre of
gravity of the whole dataset were close to 1 and wrongly
considered to be equally expressed. On the other hand,
the ratios of the truly equally transcribed genes were

shifted towards typical values of differentially transcribed
genes. Hence, after this normalization approach, misclas-
sification is due to occur with any kind of analysis. Other
problems derived from LOWESS normalization are
described in [21].

In the non-transformed and normalized with genomic
controls datasets, ArrayLeaRNA was more accurate than

Effect of the normalization and analysis approach on dataset IVFigure 3
Effect of the normalization and analysis approach on dataset IV. Effect of the normalization and analysis approach on 
the results on gene expression derived from dataset IV which includes 178 genes up-regulated in sample 1 and 178 genes 
equally transcribed. Genes are classified as equally expressed ( ), and up or down-regulated ( ). Number of genes is reported 
for each category. Crosses (+) show the intensities of genomic controls. The cut-off values for the posterior probability of 
equal expression were 0.01 for ArrayLeaRNA and 0.99 and 0.01 for OpWise.
Page 8 of 14
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the other two approaches. In the non-transformed data-
set, ArrayLeaRNA misclassified 19 genes and only 1 in the
dataset normalized according to the genomic controls.
Some genes equally transcribed showed ratios slightly
greater than 2, therefore, the two-fold approach misclassi-
fied 39 genes in the non-transformed dataset and 15 after
genomic normalization. OpWise misclassified 105 and 80
genes in the non-transformed and normalized dataset,
respectively. OpWise misclassified a large number of
genes up-regulated in sample 1 as equally transcribed. The
two-fold cut-off approach with narrower boundaries
mostly misclassified genes equally transcribed as up-regu-
lated (Fig 3).

Discussion
We present a Bayesian microarray analysis tool which
takes advantage of genomic DNA control features and pre-
dicted operon structure to provide an accurate and
informed analysis of transcriptomic data.

The estimation of the model parameters relies on the
ratios measured from genomic DNA features of the appro-
priate strain(s) printed on the microarray slide. This is the
scenario for which ArrayLeaRNA has been designed. If
genomic DNA features are not printed on the slide, the
computing tool implementing ArrayLeaRNA allows the
user to input the ratio at the boundary between genes
equally and differentially expressed. The parameters of the
model are then estimated to obtain approximately the
desired boundary. An alternative solution could be to
identify genes shown to have consistently non-changing
expression patterns instead of printed genomic DNA

ArrayLeaRNA can be run without knowing the operon
structure of the genome. Operon predictions are not
indispensable for the analysis but help the classification
of genes with low confidence measurements. The operon
information is quantified by p0 and p1, which comply with
p0 + p1 = 1. The greater p0, the greater is the probability that
the gene in study is identically expressed in both samples.
The value of p0 is greater than 0.5 if the number of equally
expressed genes in the operon is higher than the number
of differentially expressed genes. The initial value of p0 and
p1 is 0.5 and has no effect on P. Moreover, P is very robust
to the prior values of these two parameters, even if these
values were completely erroneous, the genes classified
with high confidence would not be affected. Starting from
the initial values, the analysis is iterated to obtain the true
values for p0 and p1, and recalculate P to help correctly
classify genes with low confidence measurements. The
values of p0 and p1, and thus P, depends on both the pre-
dicted structure of the operon and the number of genes of
the operon. Fig 4a shows the effect of the transcription
pattern on P by using an example in which the gene in
study is up-regulated in one sample and belongs to an

operon with 6 additional genes. If all the other genes of
the operon are also up-regulated in that sample then P
decreases by ca. two-fold, while if they are equally tran-
scribed P increases by ca. two-fold; if 3 genes of the
operon are up-regulated and 3 equally transcribed, P is
not affected. The same behaviour is observed if the gene in
study is classified as equally transcribed. That means that
only genes with values for P very close to the cut-off val-
ues, i.e. low confidence measurements, are reclassified. Fig
4b shows the effect of the size of the operon on P. The plot
represents the transcriptional pattern with the greatest
effect on P: the gene in study is temporally classified as
equally (or differentially) transcribed and the rest of the
genes in the operon have the opposite classification.
When the operon has only 2 genes, P remains largely
unaffected. The effect of the transcriptional pattern on P
increases when the size of the operon increases, but it
soon converges so that an operon of 12 genes has practi-
cally the same effect as an operon of 25 genes. We chose
this range of numbers because we observed that the largest
predicted operons for E. coli K12, C. jejuni NCTC 11168
and S. pneumoniae TIGR4 contain, 28, 24 and 15 genes,
respectively. In any case, P is slightly affected so that the
classification of genes truly expressed either in one or both
samples is not modified; for instance, for an operon with
25 genes, only genes with values for P greater than 0.003
would be reclassified as equally transcribed (assuming P =
0.01 as a cut off) and only genes with values for P smaller
than 0.03 would be reclassified as differentially expressed.
ArrayLeaRNA differs from OpWise in this respect. OpWise
does not take into account the size of the operon but uses
only the information of the pair of genes flanking the gene
in study. With ArrayLeaRNA, only genes with low confi-
dence measurements, showing ratios close to the bound-
ary between equally and differentially transcribed genes,
may be reclassified. Thus reclassifications, due to the use
of the operon information, are not possible for genes with
high confidence measurements. In contrast, when taking
into account the operon information, OpWise misclassi-
fied 114 genes as differentially expressed in dataset II
although many of them had ratios with values of ca. 1 (Fig
1). This is a consequence of the fact that OpWise uses the
transcriptional information of only the two genes flank-
ing the gene in study and in Dataset II these genes had
very similar average ratios and relatively small variances.
Thus, several genes with average ratios even smaller than
1.1 were incorrectly classified as differentially expressed.

The underlying model in ArrayLeaRNA is different from
the Gaussian models developed by [4-8]. The approaches
of [4,5,7] model the expression measurements by normal
distributions parameterized by means and variances with
conjugate prior distributions and assuming dependence
between means and variance. As an alternative to full
Bayesian treatment, [4] suggested the use of an intermedi-
Page 9 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:455 http://www.biomedcentral.com/1471-2105/8/455
ate solution using a regularized t-test, in which the vari-
ance is replaced by the posterior mean of the variance of
the model. [6] modified the Gaussian model by introduc-
ing a Bernoulli random variable, indicating whether the
gene is differentially expressed. The parameter, p, of the
Bernoulli distribution describes the proportion of differ-
entially expressed genes and it is estimated by the iteration
of the analysis. The effect of this parameter in the poste-
rior probability is similar to that of p0, or p1, introduced in
ArrayLeaRNA to quantify the operon information. The
model underlying OpWise [8] is also based in the above
Gaussian model but introducing a new component of the
error called systematic error or bias estimated from the
measurements of the genes belonging to the same operon.
The posterior probabilities are estimated for single genes
without operon information and with operon informa-
tion as a mixture of the posterior probabilities of all the
possible operon composition combinations of the gene in
study with the pair of genes adjacent to it.

The model underlying ArrayLeaRNA assumes that the log
ratios have a Gumbel distribution with a known scale
parameter, a location parameter with conjugate prior and

the genes being independent. The probability of equal
transcription is estimated in the steepest tail of the poste-
rior distribution, which results in a steeper probability
curve and a neater boundary between genes equally and
differentially expressed than when using the Gaussian
model (Fig 5). The number of replicates affects the poste-
rior probability but this effect is smaller when using the
Gumbel distribution. ArrayLeaRNA gives more conclusive
results with very low number of replicates than the Gaus-
sian approach (Fig 5). For the case presented in Fig 5, the
log ratio for which the probability of equal expression is
less than 0.01 varies between 1.35, if n = 6, and 2, if n = 1.
As expected in statistical inference, replication leads to
greater resolution of small differences in gene expression
[22]. In general, statistical analysis techniques are conserv-
ative with small sample sizes and may under estimate the
number of genes up- or down-regulated. Researchers
should seek confirmation of results before proceeding to
undertake more elaborate, gene-specific experiments.

The scale parameter of the Gumbel distribution is esti-
mated from the standard deviation of the ratios measured
from the genomic control features. This is an estimation

Relationship between the probability of identical expression in both samples, P, without operon information and with operon informationFigure 4
Relationship between the probability of identical expression in both samples, P, without operon information 
and with operon information. Dashed lines represent the diagonal of equality and the value of P = 0.01 in both axes.(a) 
Effect of the transcriptional pattern on P. The plot represents the case in which the gene in study is up-regulated in sample 1 
and belongs to an operon with 6 more genes from which 0, 1, 2, 3, 4, 5 or 6 are up-regulated in sample 1 (lines from top to 
bottom). (b) Effect of the operon size on P. The most extreme transcriptional pattern is represented: the gene in study is tem-
porally classified as equally (or differentially) transcribed and the rest of the genes in the operon are classified as differentially 
(or equally) transcribed. Different operon sizes, 1 ( ), 6 (0), 12 (�) and 24 ( ) genes, are considered.
Page 10 of 14
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Effect of the assumed distribution, A) Gumbel or B) Gaussian, for the log of the ratio and of the number of replicates on the posterior probability of identical expression, P.Figure 5
Effect of the assumed distribution, A) Gumbel or B) Gaussian, for the log of the ratio and of the number of 
replicates on the posterior probability of identical expression, P. The plots represent the case in which the expected 
value of the log2 (ratio) for genes identically transcribed in both samples is 0 and their variance equal to 1. The number of rep-
licates (n) varies from 1 to 6.
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of the variability in equally expressed genes intrinsic to the
experimental hybridization and overcomes the uncer-
tainty of estimations with low number of replicates and
the fact that replicated measurements, in the same or rep-
licated slides and from the same or replicated experi-
ments, may not reflect the variability of the set of features
with equal amounts of hybridized transcripts from each
sample. Thus the genomic DNA features printed on the
microarray slide offer a significant advantage not only for
data normalization but also for determining whether the
differences in expression are significant based on the
robust estimation of the variability of equally transcribed
genes. Moreover, printed genomic DNA offers distinct
advantages over other types of features designed to be
non-crosshybridizing controls (i.e. yeast ORFs in bacterial
microarrays) in combination with exogenously added
cDNA. Such controls will only account for part of the
experimental variability, compared to printed genomic
DNA, which reflects the variability arising from the exper-
imental hybridization of the labelled cDNA prepared
from the RNA under study.

Conclusion
We have introduced a Bayesian model based on the Gum-
bel distribution, in combination with printed genomic
DNA controls and predicted operon information, and
demonstrated that it is a robust method for analysing
microarray expression profiles. The method is applicable
to data derived from hybridizations of labelled cDNA
samples as well as from hybridizations of labelled cDNA
with genomic DNA. The method can equally be applied to
datasets where differentially regulated genes predominate.
The method we introduce performed better than two
existing methods (OpWise and the two-fold cut-off) when
analysing the experimental datasets presented in this
work.

Methods
Bacterial Strains
Campylobacter jejuni strains NCTC 11168 and 81116
(NCTC 11828) were grown at 37°C under microaer-
ophilic conditions (10% CO2, 5% O2, 85% N2; relative
humidity 80%) on Skirrow agar plates or in Brucella broth
using a MACS-MG-1000 controlled atmosphere worksta-
tion (DW Scientific, UK).

Streptococcus pneumoniae JNR7/87 (also called TIGR4) was
grown at 37°C in tryptone soy broth or on tryptone soy
agar plates supplemented with 5% horse blood.

Escherichia coli K-12 strain MG1655 was grown at 25°C in
Luria-Bertani broth (10 g/l Tryptone, 5 g/l yeast extract
and 10 g/l NaCl; pH 7.2) with 0.2% glucose.

Construction of DNA microarrays
Internal DNA fragments corresponding to unique seg-
ments of each open reading frame (ORFs) annotated in
the genome of the strain were PCR-amplified using gene-
specific primers. DNA probes and various concentrations
of chromosomal DNA were spotted on GAPS II slides
(Corning) using a in-house Stanford designed arrayer and
the recommended software and protocols [23].

The following three DNA microarrays were used: 1. A
microarray representing six replicates of all ORFs from C.
jejuni NCTC 11168 and 138 ORFs unique to strain 81116.
From the ORFs of C. jejuni NCTC 11168, 134 are missing
genes in the strain 81116; 2. A microarray representing
four replicates of all open reading frames from the S. pneu-
moniae TIGR4 [24]; 3. A microarray representing one rep-
licate of all open reading frames from E. coli K-12
MG1655 [25].

All the arrays contained ca.100 features of serially diluted
chromosomal DNA (ca. 15–20 replicates of each dilu-
tion) isolated from the reference strain(s) used to con-
struct the array. These features are referred as genomic
controls and they are used in data standardization and in
data analysis.

RNA and DNA purification and microarray hybridizations
RNA was purified from S. pneumoniae as described in [26];
RNA was purified from E. coli as described in [27]; RNA
was purified from C. jejuni as described in [28]. RNA qual-
ity and quantity was checked using the Agilent 2100 Bio-
analyzer [29]. DNA was isolated from bacteria using the
QIAgen DNeasy™ method (QIAgen)

cDNA was prepared from RNA using Stratascript RT (Strat-
agene) and labelled with Cy3-dCTP and Cy5-dCTP
(Amersham). Labelled cDNA and DNA were purified
using the QIAquick PCR purification kit (QIAgen). Differ-
entially labelled cDNA or cDNA and DNA were mixed and
hybridized on a microarray slide at 62°C overnight. Fol-
lowing hybridization, microarray slides were washed and
scanned using an Axon GenePix 4000A microarray laser
scanner (Axon Instruments, CA) and the feature data gen-
erated using GenePix Pro software (Molecular Devices).
The fluorescence intensity was defined as the median of
the foreground intensities in each feature with the median
background subtracted.

Availability and requirements
ArrayLeaRNA is implemented in Visual Basic and freely
available as an Excel add-in at http://www.ifr.ac.uk/safety/
ArrayLeaRNA/. The user requires Excel 2000 or later ver-
sions installed in their computer.
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Appendix
Conjugate family of distributions for the location param-
eter of the Gumbel distribution

Let R follow a Gumbel distribution with density function

where A and b are the location and scale parameters,
respectively.

The density function for a simple random sample of R
with n independent measurements, r1..rn, is:

It can be shown that  is a sufficient statistic for

the Gumbel distribution

When the scale parameter, b, is known, the Gumbel distri-
bution belongs to the exponential family and a conjugate
family of distributions exists for the parameter A, i.e. the
prior and posterior distributions of A differ only in the
value of a finite parameter vector. A conjugate family of
distributions for the parameter A of the Gumbel distribu-
tion is given by:

where  is the gamma function. Notice

that  is distributed according to a gamma distribu-

tion with shape parameter α and scale parameter 1/β. It
can be demonstrated that a priori, the expected value of A

is E(A) = b(ψ (α)-In β) where  is the dig-

amma function and its variance is .

The conjugate posterior distribution for A is given by

i.e.

The denominator integrates to  and thus the

posterior distribution of A is equal to

which belongs to the same family as the prior distribution

with parameters α' = α + n and β' = β + k. A posteriori, the

expected value of A is E(A) = b(ψ (α + n) - In(β + k) and

its variance is .
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