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Abstract
Background: The mechanisms underlying protein function and associated conformational change
are dominated by a series of local entropy fluctuations affecting the global structure yet are
mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to
detect these changes in local protein flexibility between different conformations arising from, for
example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses
TDA to identify important residue contact changes that have a large impact on global fluctuation.
We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with
crystal structures of this protein in multiple functionally relevant conformations and experimental
data revealing the importance of local fluctuation changes for protein function.

Results: TDA and PIVET successfully identified select residues that are responsible for
conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2
(CDK2). The detected local changes in protein flexibility have been experimentally confirmed to
be essential for the regulation and function of the kinase. The methodologies also highlighted
possible errors in previous molecular dynamic simulations that need to be resolved in order to
understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a
possible allosteric mechanism for protein function is reported for CDK2.

Conclusion: The methodologies embodied in TDA and PIVET provide a quick approach to
identify local fluctuation change important for protein function and residue contacts that
contributes to these changes. Further, these approaches can be used to check for possible errors
in protein dynamic simulations and have the potential to facilitate a better understanding of the
contribution of entropy to protein allostery and function.

Background
The traditional view of allostery has been redefined as a
consequence of an observed shift in protein conforma-
tional preference [1-3] upon allosteric interaction largely

influenced by a select set of key residues. This is evidenced
through an examination of dihydrofolate reductase using
COREX[4], an ensemble-based computational model that
generates all probable conformational states adopted by
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the protein thus revealing local stabilizing and destabiliz-
ing regions that facilitate conformational shifts. In
another example, the conformational state preference of
guanine nucleotide binding proteins impacts the prefer-
ence for their corresponding binding partners[5,6]. In
both cases, it has been found that a select set of key resi-
dues has a large impact on conformational preference.

With this expanded view of allostery, the model allows for
the consideration of other contributing factors and possi-
ble mechanisms such as entropy that was initially pro-
posed by the Cooper-Dryden model[7]. This model states
that, in an extreme case, the allosteric nature of proteins
can be achieved though a shift in vibrational modes with-
out a conformational change in structure. Associated with
this model is the idea of entropy compensation where a
decrease in local fluctuation in one region of a protein is
compensated by an increase in fluctuation in another dis-
tant region. This mechanism was first proposed for ade-
nylate kinase[8] and has since been observed in studies
performed on, for example, lysozyme[9], staphylococcal
nucleases[10], and Tet repressor[11]. The same phenome-
non is also observed during ligand binding to dihydro-
folate reductase as modeled by COREX[4].

In earlier work, we showed that flexible regions of func-
tional importance can be detected in proteins using only
sequence information[12]. This suggests that there are
specific sequence patterns that are evolutionarily selected
to facilitate allosteric changes. We extend this work to
understand the role of these flexible regions associated
with particular conformational changes. This is achieved
by developing a new structure-based method named Tran-
sitional Dynamics Analysis (TDA) to quickly identify
these local large-amplitude fluctuation changes between
different structural conformers that are important for pro-
tein allostery. The procedure involves normalizing large
amplitude fluctuations before making a comparison
between different protein conformational states to
improve the detection of local regions experiencing a
change in fluctuation during processes such as regulation
and catalysis.

Similar to COREX, the objective of this work is to identify
local stabilizing and destabilizing regions that are neces-
sary for protein function. We investigate the contribution
of entropy defined by changes in localized fluctuation.
While the methods presented here is not as energetically
descriptive compared to the assessment of free energy
change provided by COREX, it is a computationally less
demanding approach to qualitatively identify local
regions with changes in flexibility between different con-
formational states based on normal modes of protein
motion.

In addition to detecting local fluctuation changes, we also
created an approach to understand the position-specific
contributions to global fluctuation, thereby identifying a
select set of key residues having a large impact. These con-
tributions to global fluctuation are particularly important
in the study of allostery, where networks of interacting res-
idues have been shown to be important[5,6,13,14]. Thus
far these networks of interactions have been identified
using a sequence-based approach that requires a large
number of homologous sequences to detect co-evolving
residues. Here we have created a structure-based
approach, PIVET (Positional Impact Vertex for Entropy
Transfer), to gauge the long-ranged impact of residue pairs
in close structural proximity on protein dynamics.

TDA and PIVET were applied to the Cyclin-Dependent
Kinase 2 (CDK2) activation cycle where there are repre-
sentative crystallographic structures and dynamic data
using various experimental techniques for each activation
stage [15-21]. As will be shown, the available experimen-
tal data supports the findings using TDA and PIVET. The
CDK2 activation cycle is regulated by cyclin A and
involves a series of binding and phosphorylation events
to fully activate the kinase leading to the control of cell
proliferation[22,23]. The cycle begins with the two-
domain CDK2 enzyme in a closed conformation with
subsequent ATP binding, followed by complex formation
with cyclin A, dephosphorylation of the glycine rich loop
(G-loop), and phosphorylation of the activation loop (T-
loop). We will demonstrate the importance of under-
standing fluctuation changes throughout this cycle and
consider the broader implications for protein design. Spe-
cifically, identified fluctuation changes will be shown to
occur in regions that serve as important sites for catalytic
or regulatory roles at each specific activation stage.

The approach presented here offers advantages over cur-
rent approaches that consider structure-flexibility rela-
tionships. First, while structural comparison of alternative
conformers is a popular approach that can provide valua-
ble insights into the direction of positional change and
detect flexible regions such as hinges, it cannot identify
fluctuation changes. Second, comparing experimental
temperature factors (B values) from X-ray crystallography
may miss important fluctuation changes resulting from
limitations in the quality and resolution of the data as
well as being a local phenomenon. This limitation will be
apparent in the analysis of CDK2. Third, Molecular
Dynamics (MD) simulations provide highly detailed fluc-
tuation descriptions that cannot be matched by our
approach, but because of computational demands, MD
simulations are limited to tens of nanoseconds. The
approaches presented here can address fluctuation
changes that occur over longer time scales by using a
coarse-grained protein dynamic modeling algorithm.
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Finally, as a consequence of relatively short computa-
tional times, the approach can be used in a high-through-
put mode addressing the rapid growth in protein
structures generated by structural genomics efforts. In
summary, TDA and PIVET offer a fast, computationally
tractable approach to conduct large-scale analysis of
motions to understand the fluctuation changes that corre-
spond to conformational changes.

Results and discussions
Transitional Dynamic Analysis conducted on the CDK2 
activation cycle
TDA and PIVET are algorithms designed to identify signif-
icant changes in protein fluctuations as modeled by the
Gaussian Network Model (GNM)[24]. GNM is a coarse-
grained approach that makes a good approximation of
protein fluctuations using only the Cα atoms as nodes of
connectivity. All resolvable atoms are accounted for with
the construction of the Kirchoff matrix (see Materials and
Methods). Decomposing the inverse of this matrix yields
a set of eigenvalues and eigenvectors that describe protein
fluctuation partitioned into different modes of motion.
This decomposition allows us to concentrate our analysis
on the two largest amplitude modes because they have
been found to sufficiently describe large global motions
in proteins [25-28]. We use these decomposed modes to
conduct our analysis.

The advantage in analyzing extracted modes over experi-
mental temperature factors (B factors) derived from X-ray
crystallography studies is that detected changes only
reflect changes in large amplitude fluctuations that are
responsible for global motions. Fluctuations arising from
higher frequency modes, such as side chain rotations,
have little contribution to the global motion and are not
considered in this analysis. B factors tend to represent
local motions at each atomic position. While there are
some agreements in the flexible regions identified by the
large-amplitude modes of the GNM and B factor profiles,
the descriptions for protein fluctuations are different as
observed for CDK2 (Figure 1). With this focus on large-
amplitude fluctuation, we conduct TDA on the activation
cycle of CDK2 to demonstrate the success of this method-
ology in identifying fluctuation changes that are impor-
tant, possibly mechanistically, for protein function
(Figure 2). While this method is limited in providing
quantitative insights into protein flexibility, it provides
qualitative identification of regions with significant
changes in fluctuation that are presumed to represent a
functional role.

The first step in CDK2 activation is the binding of ATP to
the monomer. Structurally the apoenzyme and the ATP
bound conformation are very similar with an overall
RMSD of 0.39 Å excluding residues 37–40 which are not
resolved in either structure[19]. Within the ATP binding
pocket, residue conformations are mostly conserved

Comparison of GNM and B Factor Profiles for CDK2Figure 1
Comparison of GNM and B Factor Profiles for CDK2. (A) Structural mapping of GNM dynamic modeling results for the 
apo form of CDK2 (PDB ID: 1 HCL; see Materials and Methods). The N-terminal lobe (top) is more flexible (red) when com-
pared to the C-terminal lobe (blue). (B) Comparison of modal plots for the two largest amplitude fluctuations are shown for 
the apo (red) and ATP bound (blue) conformers of ATP. Flexible regions defined by the GNM differs from those defined by 
experimental temperature factors (dashed line). Locating bars at top represent (a) N-terminal lobe, (b) PSTAIRE helix, (c) T-
Loop, and (d) G-loop.
Page 3 of 13
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:45 http://www.biomedcentral.com/1471-2105/8/45
despite the presence of ATP. GNM shows large global fluc-
tuations are mostly localized to the N-terminal lobe with
a distinctive stable core in the CDK2 apoenzyme (Figure
1A). The shape of the GNM plot between apoenzyme and
ATP bound complex were also found to be highly similar

(Figure 1B). This finding is expected since previous mod-
eling efforts with GNM illustrated that proteins with sim-
ilar architectures employ similar mechanistic modes[29].

TDA on the CDK2 Activation CycleFigure 2
TDA on the CDK2 Activation Cycle. Fluctuation changes detected by TDAmode are mapped to individual structures of the 
CDK2 activation cycle. To fully activate the kinase, a series of steps must occur involving (1) ATP binding, (2) cyclin A binding 
(cyclin not shown), and (3) T160 phosphorylation leading to (4) substrate binding (substrate not shown). Values have been nor-
malized such that positive and negative values respectively indicate increasing (red) and decreasing (blue) fluctuations when 
compared to the previous conformational state. ATP is shown in yellow.
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However, despite similarities in structure and modal
shape, TDAmode (see Materials and Methods) reveals
regional changes in dynamics with functional importance
for the kinase (Figure 3A). Significant changes in the
dynamics identified by TDAmode between apo and ATP
bound form of CDK2 are localized to the N-terminal lobe
in the first activation stage. The apoenzyme displays a sup-
pressed PSTAIRE helix (residues 46–57) with an increase
in fluctuation located to the N-terminal lobe, particularly
the G-loop (residues 9–19), as well as residues 242–246.
These changes indicate that ATP binding leads to the
destabilization of the PSTAIRE helix and stabilization of
the G-loop (Figure 2). The PSTAIRE helix is an important
binding site for cyclin A to allosterically regulate this
kinase.

In contrast to TDAmode, performing the same analysis using
temperature factors (TDABfactor) (see Materials and Meth-
ods) identifies fluctuation changes localized to the T-loop
(residues 152–171) while the N-terminal lobe shows no
change (Figure 3A). One reason for this disagreement may
be that the GNM does not adequately model the temper-
ature factors in the T-loop when compared to the experi-
mental values for the apo and ATP-bound conformers
(data not shown). Experimental temperature factors show
that the T-loop is more flexible than that was calculated by
the GNM therefore indicating that the large amplitude
fluctuation is poorly modeled in this region. However, the
detection of significant changes in the T-loop at later
stages of CDK2 activation is not precluded. Conversely,
we find that TDAmode identifies functionally important
fluctuations that were missed by TDABfactor, including
effects on the N-terminal lobe upon ATP binding. The
implication is that TDAmode identifies activation stage-spe-
cific fluctuation changes important for function. That is,
ATP binding does not significantly alter the fluctuation
state of the T-loop at this stage. Instead, the fluctuation
change in the overall N-terminal lobe is identified to be
more important with changes in the T-loop being more
significant at later stages.

Following ATP binding, the inactive monomeric CDK2 is
then partially activated with the binding of cyclin A that
displaces the T-loop by 20Å to open the catalytic cleft to
allow for substrate binding[16] (Figure 3B). TDAmode
between CDK2-ATP and CDK2-ATP-cyclin A shows an
increase in G-loop fluctuation countered by stabilization
in the PSTAIRE helix, T-loop, residues 238–242 and the C
terminal tail. Changes in the major functional regions are
in agreement with fluctuation changes identified using
temperature factors between these two conformers.
Despite a poor correlation between calculated and experi-
mental temperature factors in the T-loop as discussed ear-
lier, using mode information, TDAmode identifies a
decrease in large-amplitude fluctuation in this region.

Experimental studies show that phosphorylation of the T-
loop does not occur until after CDK2 is bound to cyclin
A[30,31] therefore suggesting that TDA, with large-ampli-
tude modes, identifies changes in fluctuation when the
change is necessary for a particular stage of activation.

To fully activate the kinase after binding of cyclin A, phos-
phorylation of T160 is required to structurally shift the T-
loop for optimal ATP alignment and substrate stabiliza-
tion leading to subsequent phosphoryl transfer[18]. The
resulting stabilizing effect is also detected by circular
dichroism and isothermal titration calorimetry[32]. How-
ever, other experimental data suggest that T160 phospho-
rylation, results in a more flexible and disordered T-
loop[21,33], irrespective of the presence of cyclin A. This
contradictory data can be explained by TDAmode which
shows fluctuation changes in the T-loop, decreasing at the
outer edges of the loop while increasing at the center,
peaking at residue 162 (Figure 3C) upon phosphoryla-
tion. Similar changes were not observed with TDABfactor.
Rather, TDABfactor shows changes in a different part of the
molecule, with increasing fluctuations for residues 6–15
and 36–40 along with decreasing fluctuations in residues
93–99. These fluctuation changes for the G-loop (residues
9–19) and residues 36–40 disagree with those reported by
TDAmode which shows a decrease in fluctuation of the G-
loop and residues 37–38 accompanied by an increase in
fluctuation for residues 72–74 and 81. TDAmode also disa-
grees with previous MD simulation results and we will
return to discuss these disagreements later.

The phosphorylated CDK2-cyclin A complex is now struc-
turally primed for substrate binding during the final stage
of activation. Minimal changes in protein conformation
were observed and the substrate is found to interact only
with the larger C-terminal lobe leading to the exposure of
Y15 to solvent and phosphorylation[20]. The T-loop,
which is already observed to have a decreased amount of
fluctuation in the outer edge of the loop when transition-
ing from semi-active to active state, undergoes further sup-
pression at the center with substrate binding (Figure 3D).
The findings here are in agreement with MD simulations
that show the T-loop to have decreased fluctuation upon
phosphorylation at T160 [30].

The discussion thus far has been mostly focused on the
changes in fluctuation observed for the G-loop and T-
loop, however, TDAmode also identifies fluctuations in
other regions of functional importance that have been
experimentally validated. First, residues 237–242 were
found to be stabilized early in the activation cycle with the
binding of ATP followed by cyclin A. This region, also
referred as the CDK insert because it is not found in other
kinases, has been implicated as a binding interface for
other diverse proteins such as CksHS1 [34] and KAP [35]
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Fluctuation and Structural Changes Detected in the Activation Cycle of CDK2Figure 3
Fluctuation and Structural Changes Detected in the Activation Cycle of CDK2. Deviation of fluctuation changes 
(Zdiff) between different CDK2 conformers: (A) apo and ATP bound structure, (B) ATP bound and cyclin binding, (C) phospho-
rylated and unphosphorylated T160, and (D) fully activated CDK2 and substrate bound conformer. Structural and fluctuation 
changes are plotted separately against the residue index of CDK2 only. Different fluctuation changes are observed for the 
kinase when comparing large amplitude modes (solid lines) and experimental temperature factors (dashed lines) between con-
formers. Significant changes are identified based on the threshold of 1.5 standard deviations from the mean fluctuation centered 
at zero (red lines). Structural changes are measured by RMSD between Cα atoms. At top, black bars mark regions of particular 
interest: (a) N-terminal lobe, (b) PSTAIRE Helix, (c) T-Loop, (d) G-Loop, (e) residues 34–47 important for phosphoryl transfer 
as well as substrate binding, and finally (f) the CDK insert that is an important binding site for other regulatory proteins.
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that regulate the kinase. MD simulations also show that
this region adopts a highly mobile state indicating that
this is a site of conformational change [36]. Second, stabi-
lization of the C-terminal tail was also observed at the
beginning of the activation cycle with no change in fluctu-
ation in subsequent stages. Third, residues 34–38 were
found to have changes in fluctuation during the later
stages of the activation cycle. In a corresponding region of
cAMP dependent protein kinase (PKA), the B-helix is
observed to undergo an order-disorder transition associ-
ated with the phosphoryl transfer process [37]. This tran-
sition in PKA was detected by monitoring the backbone
flexibility using time-resolved fluorescence anisotropy
and suggests that the internal entropy found in this region
contributes to the catalytic process. Based on homology
between PKA and CDK2, our findings suggest the same is
true for CDK2. Finally, another region detected by TDA-

mode defined by residues 37 and 41–47 shows a decrease in
fluctuation with the binding of cyclin A. MD simulations
comparing ligand binding effects between CDK2 and
CDK4 show that residues 37–44 are disordered with con-
formational flexibility affecting ligand binding affinities
and potencies[38].

G-loop fluctuation disagreement with Molecular 
Dynamics simulations
Decreasing fluctuation changes in the G-loop determined
by TDAmode is in disagreement with both TDABfactor and a
previous MD simulation study reporting increased fluctu-
ation [39] during the T160 phosphorylation stage to fully
activate the kinase. However, the findings presented here
should not be discounted for the following reasons. First,
a different MD simulation performed for a longer dura-
tion (0.25 μs) showed that the activating phosphate has
an overall stabilization effect on global fluctuation,
including the G-loop [36]. Second, if we consider the
sequential order of regulatory events, the 3 ns MD simula-
tion [39] suggests that a decrease in G-loop fluctuation is
observed during the binding of ATP to monomeric CDK2
and is followed by a continual increase in fluctuation
until the end of the activation cycle. Based on this MD
interpretation of G-loop fluctuation, it is not evident
when the loop will form ATP stabilizing interactions that
are needed during phosphoryl transfer, an event that
occurs several stages after ATP binding [40]. Alternatively,
TDAmode identifies G-loop stabilization at two stages, dur-
ing the initial binding of ATP and the full activation of
CDK2 primed for phosphoryl transfer with T160 phos-
phorylation. Third, from an experimental perspective,
structural data shows that Y15 is buried in the active
pT160-CDK2-ATP-cyclin A complex [18] and this finding
would be incongruous with the idea that the G-loop has
an observed increase in fluctuation. Lastly, the G-loop is
important for the exclusion of water molecules and posi-
tioning the ATP molecule for phosphoryl transfer to sub-

strate[19]. Again, MD simulation that models the G-loop
to have a continual increase in fluctuation after the initial
binding of ATP is not supported experimentally. In sum-
mary, although the 3 ns MD simulation is in agreement
with changes identified by experimental temperature fac-
tors [16,18], the lack of agreement with other experimen-
tal data and our findings suggest that a longer MD
simulation should be undertaken to fully understand the
dynamics of the G-loop during the activation cycle.

TDA identifies potential entropy compensation 
mechanisms in CDK2
As mentioned earlier, our purpose is to identify fluctua-
tion changes that are functionally important and may
have a contributing role to the allosteric nature of the pro-
tein. From the results presented here, TDAmode determined
for various stages of the activation cycle of CDK2, suggests
that entropy compensation mechanisms are indeed
involved. Fluctuation changes for the G-loop and T-loop
were observed to be inversely related to each other
throughout the activation cycle, most noticeably after the
binding of cyclin A. For example, fluctuation changes
associated with T160 phosphorylation show a decrease in
G-loop fluctuation counterbalanced with an increase in T-
loop fluctuation (Figure 4). Upon substrate binding, the
G-loop was observed to increase in fluctuation while the
T-loop became more stabilized. These changes were not
detectable when comparing experimental temperature
factors, making TDAmode a useful approach to quickly
identify the contribution of internal entropy, defined by
fluctuation changes, to protein function.

Have protein architectures and functional residues evolved 
to take advantage of fluctuation changes?
Structural constraints inherently impose a certain amount
of evolutionary pressure on sequences [41-43] and we
propose that the dynamic restraints needed for function
also contribute to this selection and can be identified
using TDA. Within the G-loop, TDAmode identified residues
G13, T14 and Y15 to be the three residues with the most
dynamic change at different stages of CDK2 activation. Of
the three glycines in the Gly-X-Gly-X-X-Gly motif, residue
G13 was found to be the most conserved and critical for
catalysis [44-46]. Unlike the other glycines of this motif,
G13 is also highly conserved in other kinase families
besides the typical protein kinase family of which CDK2
is a member [47]. Site directed mutation studies of the
corresponding glycine in PKA (G52 in PKA) suggests that
this residue serves a structural role by providing the neces-
sary flexibility to interact with ATP [44]. TDA reports G13
to have the largest change in fluctuation of the three gly-
cines in the motif throughout the activation cycle thus
highlighting the possible evolutionary pressure imposed
by dynamic restraints.
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The other two residues, T14 and Y15, are important inhib-
itory phosphorylation sites in the G-loop that regulate the
activity of CDK2 [48]. The dephosphorylation of these
residues has been found to be the rate limiting step in acti-
vating the kinase [49-51]. From this analysis, TDA has
identified T14 to have the most fluctuation change during
the first two stages of the activation cycle encompassing
the transitions from apoenzyme to ATP bound conformer
followed by cyclin binding. Subsequently, Y15 was
observed to undergo the most dynamic change during the
remaining stages of the activation cycle, full activation of
the kinase with T160 phosphorylation and substrate bind-
ing.

Lastly, similar observations to those above suggest a pos-
sible correlation between the degree of dynamic change
and conservation of functionally important residue T160
in the T-loop. This activating phosphorylation site is
observed to have one of the most significant fluctuation
changes in this region occurring in response to cyclin A
binding and phosphorylation to fully activate the kinase.
Given that G13, T14, Y15, and T160 are highly conserved
it is conceivable that their positioning is part of an archi-
tectural design to either maximize or take advantage of the
fluctuation change at these sites. Such selective pressure
cannot be concluded from a single example, but is worthy
of further study.

PIVET: Identifying important contact changes with long 
distance effects on fluctuation
To identify the impact of residue pairs on global fluctua-
tion we developed an approach called PIVET (Positional
Impact Vertex for Entropy Transfer). First we identify the
changing interaction between residue pairs found in two
different conformers. Then we conduct serial in silico
mutations to each of these changing pairs and obtain the
resulting large amplitude fluctuation with GNM for com-
parison to the native dynamic fluctuation (see Materials
and Methods). This is achieved through comparison of
the Kirchoff matrices (KM) used in the GNM calculation.
Since the KM is constructed based on neighboring resi-
dues within a given radius threshold surrounding each C-
α atom, the residue pairs may not actually be in contact as
defined by hydrogen bonding, electrostatic interaction, or
van der Waals forces. Therefore this analysis gauges the
positional impact for a given protein architecture on glo-
bal fluctuation based on changes in residue neighbors.

For example, comparing residue pair changes between the
apo and ATP-bound form of CDK2, we find a total of 27
changes in residue pair neighboring (Figure 5) based on a
distance threshold of 7 Å between C-α atoms. The neigh-
boring of residues 17 and 35 was observed to have the
most impact on global fluctuation (see Materials and
Methods), effecting 22.11% of the protein, while residues

Entropy Compensation in CDK2Figure 4
Entropy Compensation in CDK2. An example of entropy compensation in CDK2 serving as a possible mechanism for pro-
tein allostery. The transitional changes from a semi-active to active state (dashed line) and finally from an active state to sub-
strate bound state (solid line) are shown. The changes in fluctuation between the (a) G-loop and (b) T-loop are observed to 
have an inverse relationship with each other.
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2 and 5 have little to no contribution impacting only
1.70% of total residues.

During the second stage of activation involving the bind-
ing of cyclin A to CDK2, 177 changes in pairing relation-
ships were observed in CDK2 with a total of 218 changes
including the contacts between CDK2 and cyclin A. Per-
turbations were conducted only in CDK2 to modify pair-
ing relationship from the ATP bound conformer state to
the semi-activated conformer bound to cyclin A. PIVET
shows that residues 114 and 142 have the most impact on
backbone fluctuations in CDK2 effecting 23.5% of resi-
dues with residues 44 and 41 having the least impact
(Table 1). The top 10 residue pairs with the most impact
on global fluctuation all involve residues within, or in
close proximity to, the T-loop and PSTAIRE helix.

Phosphorylation at T160 (1 FIN to 1 JST) resulted in
changes between 77 pairs of residues with a total of 143

pairs when including CDK2-cyclin A contacts and those
found within cyclin A itself. With substrate binding (1 JST
to 1 QMZ), 63 residue pairs were changed in CDK2 with
a total of 108 pairs including cyclin A. The interactions
between ATP and substrate were not included in this anal-
ysis. As expected, positional changes in cyclin A were
ranked amongst the lowest impacting residue pairs for
these two stages. However, some changes of residue pairs
found in cyclin A were ranked amongst the top 10 most
influential positions effecting global fluctuation.

In summary, changes in residue pairing have less impact
over the course of the activation cycle as the kinase adopts
a fully active final conformation. At the start of the cycle
with the binding of ATP and Cyclin A, 22.1% and 23.5%
of CDK2 residues were impacted. In the final stage, only
17.1% of the residues were affected. This is also expected
since these regulation steps, binding of Cyclin A and phos-
phorylation of T160, serve to stabilize the kinase to cata-

PIVET Results Between Apoenzyme and ATP Bound CDK2 ConformerFigure 5
PIVET Results Between Apoenzyme and ATP Bound CDK2 Conformer. Residue pair changes between apo and ATP 
bound conformers of CDK2 and their effect on global fluctuation. 27 residue pairs were observed to have a change in neigh-
boring. Shown are: gain of a neighbor (red), loss of a neighbor (blue), loss of 2 neighbors (green), and no net change observed 
(orange). The table lists the impact of residue pairs as a percent of overall structure and direction of change where -1 indicate 
loss of a neighbor (disruption) and 1 a gain of a neighbor in going from the apo to the ATP bound conformer.
Page 9 of 13
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:45 http://www.biomedcentral.com/1471-2105/8/45
lyze the phosphoryl transfer from ATP to substrate. This
analysis is important in providing insight into possible
sites sensitive to mutations with a long distance effect on
global fluctuation and ultimately protein function. Fur-
thermore, PIVET can also be used to identify potential
small molecule binding sites and localize the correspond-
ing impact on protein fluctuation for drug design.

Conclusion
TDAmode successfully detects fluctuation changes that cor-
respond to changes in protein conformation located in
functionally important regions, while PIVET is able to
provide insights into the positional contribution to global
fluctuation. The success of both these algorithms has been
demonstrated in the activation cycle of CDK2 confirming
previous findings while raising the need to revisit another.
Both approaches allow us to understand the contribution

of fluctuation changes to protein allostery and function by
comparing the large amplitude profiles between different
conformational states.

Although protein conformations are structurally very sim-
ilar, TDAmode was able to identify significant, localized dif-
ferences in fluctuation profiles as illustrated by comparing
the apoenzyme and ATP bound monomeric CDK2. These
changes cannot be detected using structure directly or by
experimental temperature factor comparisons. TDA
requires normalizing fluctuations in a particular mode so
that two different protein conformers can be directly com-
pared.

GNM reduces the details of the global protein structure
down to just the positional information defined by the Cα
atoms, yet it is possible to detect local fluctuation changes

Table 1: Top 10 Most and Least Impacting Residue Pairs on Global Fluctuation for CDK2

TOP 10 PIVET BOTTOM 10 PIVET

Residue Pairs Impact Δ Residue Pairs Impact Δ

Activation Stage 2 (1 HCK to 1 FIN) A 114 A 142 23.47% 1 A 231 A 238 3.06% 1
A 156 A 163 22.11% -1 A 294 A 103 3.06% 1
A 149 A 146 15.65% 1 A 15 A 36 2.38% -1
A 56 A 67 15.31% -1 A 90 A 296 2.38% 1
A 151 A 122 14.63% 1 A 163 A 160 2.38% 1
A 123 A 149 14.63% 1 A 162 A 157 2.04% -1
A 122 A 152 14.29% 1 A 295 A 137 1.70% 1
A 124 A 149 14.29% 1 A 157 A 160 1.36% -1
A 151 A 123 13.95% 1 A 36 A 16 1.36% -1
A 177 A 158 13.95% 1 A 44 A 41 1.02% -1

Activation Stage 3 (1 FIN to 1 JST) A 278 A 113 20.81% 1 A 241 A 221 2.35% 1
A 222 A 216 20.47% 1 B 284 B 287 2.35% -1
A 110 A 142 20.47% 1 B 284 B 281 2.01% -1
B 310 B 230 19.46% 1 B 372 B 370 2.01% 1
B 292 A 40 17.11% -1 B 266 B 271 2.01% -1
B 302 B 241 17.11% 1 A 180 A 158 1.68% -1
A 158 A 177 16.78% -1 A 245 A 221 1.68% 1
A 74 A 38 16.78% -1 B 389 B 386 1.68% -1
B 350 B 390 16.78% 1 B 279 B 284 1.68% -1
A 180 A 177 16.44% 1 B 362 B 395 1.01% -1

Activation Stage 4 (1 JST to 1 QMZ) B 181 A 121 17.11% -1 A 223 A 228 1.68% -1
B 193 B 241 16.11% -1 B 279 B 284 1.68% 1
A 37 A 45 15.44% -1 A 253 A 248 1.01% 1
A 279 A 283 15.10% 1 B 198 B 202 1.01% -1
B 292 A 39 14.77% -1 B 279 B 291 1.01% -1
B 308 B 305 14.77% -1 B 334 B 359 0.67% -1
B 340 B 394 14.77% -1 B 284 B 287 0.67% 1
A 113 A 278 14.43% -1 B 347 B 341 0.67% 1
B 289 A 40 14.43% -1 B 419 B 414 0.34% -1
A 42 A 38 14.09% -1 B 391 B 362 0.34% -1

The 10 residue pairs with the most and least impact on global fluctuation for each activation stage as determined by PIVET. The impact and 
direction of change for each residue pair with corresponding chains (A and B) are indicated by a loss (-1) and gain (1) of neighbors. Residues are 
ranked according to their impact on fluctuations in CDK2 only.
Page 10 of 13
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in the absence of specific side chain information. As such,
without any a priori knowledge, TDA identifies function-
ally important and highly conserved residues undergoing
the largest dynamical changes in that local region. These
regions are sensitive to residue changes and have impact
on the enzymatic or regulatory function of the protein.

PIVET identifies and gauges the impact of residue pairs on
global fluctuation. Similar to the recent discovery of inter-
acting networks facilitating allostery [5,6,13], we show
that there are sensitive hotspots in the protein structure
that have an impact on global fluctuation. While the role
of these residues remains to be confirmed experimentally,
the modulation of global fluctuation with this small sub-
set of residue pairs could ultimately modulate protein
function.

There are several advantages of using approaches based on
coarse-grained protein dynamic modeling algorithms
over MD simulations. Large-scale analysis can be con-
ducted with TDA and PIVET to address global fluctuation
changes occurring at longer time scales. Compared to MD,
the approaches presented here are computationally fast,
captures protein motions on a larger time scale, and do
not require proteins to be at a global minimum energy
state. Conceivably, mode information obtained from any
coarse-grained approach can be used to perform TDA but
the effectiveness must be tested. GNM is a modeling tech-
nique that accounts for all resolvable residues in the pro-
tein structure and allows us to focus on backbone
fluctuations. Understanding protein dynamics with meth-
ods presented here will help guide experiments by identi-
fying target regions for study. With the growing number of
available structures, both TDA and PIVET will be espe-
cially useful in conducting large-scale analyses between
protein conformations.

Methods
Gaussian Network Model
The Gaussian Network Model (GNM) is a coarse grain
model using only the positions of Cα atoms in a protein
structure to model protein fluctuations. GNM has roots in
polymer network theory and involves taking the inverse of
a Kirchoff matrix Γ where:

and rc = 7 Å is the cutoff radius for each position. The cor-
related fluctuation between two sites at equilibrium is:

where kb is the Boltzmann constant, T the absolute tem-
perature and γ a single parameter harmonic potential that
accounts for the fluctuation of a residue about a mean
axis.

Decomposing the inverse matrix yields a set of eigenval-
ues and eigenvectors representing the breakdown of fluc-
tuation into modes of motion where the sum describes
the overall fluctuation for the given protein. The weighted
average of the two largest amplitude modes is used for
TDA.

Transitional Dynamic Analysis
TDA is a two-step normalization procedure that identifies
regional fluctuation changes between two protein confor-
mations. The first step normalizes the large amplitude
fluctuation between two systems to make a comparison
and the second step identifies significant changes in fluc-
tuations. The weighted average of the two largest modes of
motion, as calculated by the GNM, is used to identify
changes in fluctuation (TDAmode). We also apply this pro-
cedure using isotropic temperature factors (B values)
derived from the X-ray experiment for comparison (TDAB-

factor).

The first normalization step is necessary for comparison
of backbone fluctuation between two different systems
(conformational states). This is achieved by normalizing
large amplitude fluctuations with respect to the intrinsic
native fluctuation for each system. A median based
approach is used to exclude outliers when calculating the
mean fluctuation of the protein and standard deviation
needed for normalization. The weighted average of the
two largest amplitude fluctuations is used. First the dis-
placement (mad) from the median fluctuation (m1) of the
protein for each position (x) is calculated. Then, a M score
for each residue is obtained where:

M = |0.6745*(x - m)/mad|

Residues with an M score greater than 3.5 were considered
outliers and excluded from the calculation of the mean
(μmode) and standard deviation (σmode) of the intrinsic fluc-
tuation found for the specific mode. Fluctuations were
normalized (Snorm) for each protein as follows:
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The second normalization step is conducted on the differ-
ence between normalized fluctuations (diff) obtained
from the first step to identify regions with significant
changes in fluctuation. This is represented as Z scores to
identify significant differences in fluctuation where:

This transformation shifts the mean difference to 0 (no
change in dynamics between the two states) such that pos-
itive values indicate an increase in fluctuation from the
reference state and negative values indicate a decrease in
fluctuation. Regions with Z scores > 2 or < -2 are consid-
ered to be important for the conformational change
between states. TDA only reports regions with increasing
or decreasing changes in dynamics and does not provide
quantitative insights regarding the actual magnitude of
fluctuation.

Positional Impact Vertex for Entropy Transfer
Changes in structural proximity between residues (7 Å
radius) are detected by comparing Kirchoff matrices con-
structed for the GNM calculation. Each identified changes
were then modified in the Kirchoff matrix for subsequent
calculation with the GNM to understand the effects of
changing these relationships. Fluctuations obtained with
the GNM with these modified systems were compared to
the original results to identify changes in global fluctua-
tion using the TDA algorithm. The impact of residue pairs
on global fluctuation was ranked by the impact factor (I)
defined by the ratio of residues with a significant change
in fluctuation (NTDA) to the total number of residues in
the protein or isolated region of interest (Nresidues). Since
we focus on fluctuation changes in the CDK2 kinase only,
we normalize to the length of this protein instead of the
combined total number when including cyclin A. (Nresidues
= 298 residues)

Authors' contributions
JG participated in the design and execution of the study,
and drafted the manuscript. PEB conceived of the study,
participated in the design and helped to draft the final
manuscript. All authors read and approve the final manu-
script.

Acknowledgements
The authors would like to thank Eric Scheeff for helpful discussions on 
kinases and the laboratory of Ivet Bahar for the Gaussian Network Model 
source code. This work was funded in part by NIH GM63208.

References
1. Kern D, Zuiderweg ER: The role of dynamics in allosteric regu-

lation.  Curr Opin Struct Biol 2003, 13(6):748-757.
2. Daniel RM, Dunn RV, Finney JL, Smith JC: The role of dynamics in

enzyme activity.  Annu Rev Biophys Biomol Struct 2003, 32:69-92.
3. Gunasekaran K, Ma B, Nussinov R: Is allostery an intrinsic prop-

erty of all dynamic proteins?  Proteins-Structure Function and Genet-
ics 2004, 57(3):433-443.

4. Pan H, Lee JC, Hilser VJ: Binding sites in Escherichia coli dihy-
drofolate reductase communicate by modulating the confor-
mational ensemble.  Proc Natl Acad Sci U S A 2000,
97(22):12020-12025.

5. Lockless SW, Ranganathan R: Evolutionarily conserved pathways
of energetic connectivity in protein families.  Science 1999,
286(5438):295-299.

6. Hatley ME, Lockless SW, Gibson SK, Gilman AG, Ranganathan R:
Allosteric determinants in guanine nucleotide-binding pro-
teins.  Proceedings of the National Academy of Sciences of the United
States of America 2003, 100(24):14445-14450.

7. Cooper A, Dryden DT: Allostery without conformational
change. A plausible model.  Eur Biophys J 1984, 11(2):103-109.

8. Muller CW, Schlauderer GJ, Reinstein J, Schulz GE: Adenylate
kinase motions during catalysis: an energetic counterweight
balancing substrate binding.  Structure 1996, 4(2):147-156.

9. Post CB, Dobson CM, Karplus M: A Molecular-Dynamics Analy-
sis Of Protein Structural Elements.  Proteins-Structure Function
and Genetics 1989, 5(4):337-354.

10. Whitten ST, Garcia-Moreno EB, Hilser VJ: Local conformational
fluctuations can modulate the coupling between proton
binding and global structural transitions in proteins.  Proc Natl
Acad Sci U S A 2005, 102(12):4282-4287.

11. Vergani B, Kintrup M, Hillen W, Lami H, Piemont E, Bombarda E,
Alberti P, Doglia SM, Chabbert M: Backbone dynamics of Tet
repressor alpha8intersectionalpha9 loop.  Biochemistry 2000,
39(10):2759-2768.

12. Gu J, Gribskov M, Bourne PE: Wiggle - Predicting Functionally
Flexible Regions from Primary Sequence.  PLoS Comput Biol
2006, 2(7):e90.

13. Suel GM, Lockless SW, Wall MA, Ranganathan R: Evolutionarily
conserved networks of residues mediate allosteric commu-
nication in proteins (vol 10, pg 59, 2003).  Nature Structural Biol-
ogy 2003, 10(3):232-232.

14. Dima RI, Thirumalai D: Determination of network of residues
that regulate allostery in protein families using sequence
analysis.  Protein Science 2006, 15(2):258-268.

15. Debondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH:
Crystal-Structure of Cyclin-Dependent Kinase-2.  Nature
1993, 363(6430):595-602.

16. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pav-
letich NP: Mechanism of CDK activation revealed by the
structure of a cyclinA-CDK2 complex.  Nature 1995,
376(6538):313-320.

17. Radzio-Andzelm E, Lew J, Taylor S: Bound to activate: conforma-
tional consequences of cyclin binding to CDK2.  Structure 1995,
3(11):1135-1141.

18. Russo AA, Jeffrey PD, Pavletich NP: Structural basis of cyclin-
dependent kinase activation by phosphorylation.  Nat Struct
Biol 1996, 3(8):696-700.

19. Schulze-Gahmen U, De Bondt HL, Kim SH: High-resolution crys-
tal structures of human cyclin-dependent kinase 2 with and
without ATP: bound waters and natural ligand as guides for
inhibitor design.  J Med Chem 1996, 39(23):4540-4546.

20. Brown NR, Noble MEM, Endicott JA, Johnson LN: The structural
basis for specificity of substrate and recruitment peptides for
cyclin-dependent kinases.  Nature Cell Biology 1999, 1(7):438-443.

21. Brown NR, Noble MEM, Lawrie AM, Morris MC, Tunnah P, Divita G,
Johnson LN, Endicott JA: Effects of phosphorylation of threo-
nine 160 on cyclin-dependent kinase 2 structure and activity.
J Biol Chem J Biol Chem 1999, 274(13):8746-8756.

22. Morgan DO: The dynamics of cyclin dependent kinase struc-
ture.  Curr Opin Cell Biol 1996, 8(6):767-772.

23. Morgan DO: Cyclin-dependent kinases: engines, clocks, and
microprocessors.  Annu Rev Cell Dev Biol 1997, 13:261-291.

24. Bahar I, Atilgan AR, Erman B: Direct evaluation of thermal fluc-
tuations in proteins using a single-parameter harmonic
potential.  Fold Des 1997, 2(3):173-181.

Z
diff

diff
diff

diff
=

− μ
σ

I
N

N
TDA

residues
=

Page 12 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14675554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14675554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12471064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12471064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11035796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11035796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11035796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10514373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10514373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6544679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6544679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8805521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8805521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8805521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15767576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15767576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15767576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10704228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10704228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16839194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16839194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8510751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8510751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7630397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7630397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8591024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8591024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8756328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8756328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8917641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8917641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8917641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10559988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10559988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10559988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8939669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8939669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9442875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9442875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9218955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9218955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9218955


BMC Bioinformatics 2007, 8:45 http://www.biomedcentral.com/1471-2105/8/45
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

25. Yon JM, Perahia D, Ghelis C: Conformational dynamics and
enzyme activity.  Biochimie 1998, 80(1):33-42.

26. Hayward S, Kitao A, Berendsen HJC: Model-free methods of ana-
lyzing domain motions in proteins from simulation: A com-
parison of normal mode analysis and molecular dynamics
simulation of lysozyme.  Proteins Proteins 1997, 27(3):425-437.

27. Chau PL, van Aalten DMF, Bywater RP, Findlay JBC: Functional con-
certed motions in the bovine serum retinol-binding protein.
J Comput Aid Mol Des J Comput Aid Mol Des 1999, 13(1):11-20.

28. Temiz NA, Meirovitch E, Bahar I: Escherichia coli adenylate
kinase dynamics: comparison of elastic network model
modes with mode-coupling (15)N-NMR relaxation data.  Pro-
teins 2004, 57(3):468-480.

29. Keskin O, Jernigan RL, Bahar I: Proteins with similar architecture
exhibit similar large-scale dynamic behavior.  Biophys J 2000,
78(4):2093-2106.

30. De Vivo M, Cavalli A, Bottegoni G, Carloni P, Recanatini M: Role of
phosphorylated Thr160 for the activation of the CDK2/Cyc-
lin A complex.  Proteins 2006, 62(1):89-98.

31. Fisher RP, Morgan DO: A Novel Cyclin Associates with Mo15/
Cdk7 to Form the Cdk-Activating Kinase.  Cell 1994,
78(4):713-724.

32. Bowman P, Galea CA, Lacy E, Kriwacki RW: Thermodynamic
characterization of interactions between p27(Kip1) and acti-
vated and non-activated Cdk2: Intrinsically unstructured
proteins as thermodynamic tethers.  Bba-Proteins Proteom Bba-
Proteins Proteom 2006, 1764(2):182-189.

33. Morris MC, Gondeau C, Tainer JA, Divita G: Kinetic mechanism
of activation of the Cdk2/cyclin A complex. Key role of the
C-lobe of the Cdk.  J Biol Chem 2002, 277(26):23847-23853.

34. Bourne Y, Watson MH, Hickey MJ, Holmes W, Rocque W, Reed SI,
Tainer JA: Crystal structure and mutational analysis of the
human CDK2 kinase complex with cell cycle-regulatory pro-
tein CksHs1.  Cell 1996, 84(6):863-874.

35. Song H, Hanlon N, Brown NR, Noble ME, Johnson LN, Barford D:
Phosphoprotein-protein interactions revealed by the crystal
structure of kinase-associated phosphatase in complex with
phosphoCDK2.  Mol Cell 2001, 7(3):615-626.

36. Barrett CP, Noble MEM: Molecular motions of human cyclin-
dependent kinase 2.  J Biol Chem J Biol Chem 2005,
280(14):13993-14005.

37. Li F, Gangal M, Juliano C, Gorfain E, Taylor SS, Johnson DA: Evidence
for an internal entropy contribution to phosphoryl transfer:
a study of domain closure, backbone flexibility, and the cat-
alytic cycle of cAMP-dependent protein kinase.  J Mol Biol 2002,
315(3):459-469.

38. Park H, Yeom MS, Lee S: Loop flexibility and solvent dynamics
as determinants for the selective inhibition of cyclin-depend-
ent kinase 4: comparative molecular dynamics simulation
studies of CDK2 and CDK4.  Chembiochem 2004,
5(12):1662-1672.

39. Bartova I, Otyepka M, Kriz Z, Koca J: Activation and inhibition of
cyclin-dependent kinase-2 by phosphorylation; a molecular
dynamics study reveals the functional importance of the gly-
cine-rich loop.  Protein Sci 2004, 13(6):1449-1457.

40. Bossemeyer D: The Glycine-Rich Sequence of Protein-Kinases
- a Multifunctional Element.  Trends in Biochemical Sciences 1994,
19(5):201-205.

41. Madabushi S, Yao H, Marsh M, Kristensen DM, Philippi A, Sowa ME,
Lichtarge O: Structural clusters of evolutionary trace residues
are statistically significant and common in proteins.  J Mol Biol
2002, 316(1):139-154.

42. Lichtarge O, Bourne HR, Cohen FE: An evolutionary trace
method defines binding surfaces common to protein fami-
lies.  J Mol Biol 1996, 257(2):342-358.

43. Mihalek I, Res I, Lichtarge O: Evolutionary and structural feed-
back on selection of sequences for comparative analysis of
proteins.  Proteins 2006, 63(1):87-99.

44. Grant BD, Hemmer W, Tsigelny I, Adams JA, Taylor SS: Kinetic
analyses of mutations in the glycine-rich loop of cAMP-
dependent protein kinase.  Biochemistry 1998, 37(21):7708-7715.

45. Hanks SK, Hunter T: Protein kinases 6. The eukaryotic protein
kinase superfamily: kinase (catalytic) domain structure and
classification.  Faseb J 1995, 9(8):576-596.

46. Hemmer W, McGlone M, Tsigelny I, Taylor SS: Role of the glycine
triad in the ATP-binding site of cAMP-dependent protein
kinase.  J Biol Chem 1997, 272(27):16946-16954.

47. Scheeff ED, Bourne PE: Structural Evolution of the Protein
Kinase-Like Superfamily.  PLoS Comput Biol 2005, 1(5):e49.

48. Watanabe N, Broome M, Hunter T: Regulation of the human
WEE1Hu CDK tyrosine 15-kinase during the cell cycle.  Embo
J 1995, 14(9):1878-1891.

49. Coulonval K, Bockstaele L, Paternot S, Roger PP: Phosphorylations
of cyclin-dependent kinase 2 revisited using two-dimensional
gel electrophoresis.  Journal of Biological Chemistry 2003,
278(52):52052-52060.

50. Rudolph J, Epstein DM, Parker L, Eckstein J: Specificity of natural
and artificial substrates for human Cdc25A.  Analytical Biochem-
istry 2001, 289(1):43-51.

51. Sebastian B, Kakizuka A, Hunter T: Cdc25m2 Activation of Cyc-
lin-Dependent Kinases by Dephosphorylation of Threonine-
14 and Tyrosine-15.  Proceedings of the National Academy of Sciences
of the United States of America 1993, 90(8):3521-3524.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9587660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9587660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15382240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15382240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15382240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10733987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10733987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16292742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16292742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16292742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8069918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8069918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11959850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11959850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11959850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11463386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11463386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11463386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15505811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15505811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15505811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15133164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15133164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15133164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8048162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8048162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11829509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11829509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8609628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8609628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8609628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16397893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16397893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16397893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9601030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9601030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9601030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7768349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7768349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7768349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9202006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9202006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9202006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16244704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16244704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7743995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7743995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14551212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14551212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14551212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11161293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11161293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8475101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8475101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8475101
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussions
	Transitional Dynamic Analysis conducted on the CDK2 activation cycle
	G-loop fluctuation disagreement with Molecular Dynamics simulations
	TDA identifies potential entropy compensation mechanisms in CDK2
	Have protein architectures and functional residues evolved to take advantage of fluctuation changes?
	PIVET: Identifying important contact changes with long distance effects on fluctuation

	Conclusion
	Methods
	Gaussian Network Model
	Transitional Dynamic Analysis
	Positional Impact Vertex for Entropy Transfer

	Authors' contributions
	Acknowledgements
	References

