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Abstract
Background: High-throughput peptide and protein identification technologies have benefited
tremendously from strategies based on tandem mass spectrometry (MS/MS) in combination with
database searching algorithms. A major problem with existing methods lies within the significant
number of false positive and false negative annotations. So far, standard algorithms for protein
identification do not use the information gained from separation processes usually involved in
peptide analysis, such as retention time information, which are readily available from
chromatographic separation of the sample. Identification can thus be improved by comparing
measured retention times to predicted retention times. Current prediction models are derived
from a set of measured test analytes but they usually require large amounts of training data.

Results: We introduce a new kernel function which can be applied in combination with support
vector machines to a wide range of computational proteomics problems. We show the
performance of this new approach by applying it to the prediction of peptide adsorption/elution
behavior in strong anion-exchange solid-phase extraction (SAX-SPE) and ion-pair reversed-phase
high-performance liquid chromatography (IP-RP-HPLC). Furthermore, the predicted retention
times are used to improve spectrum identifications by a p-value-based filtering approach. The
approach was tested on a number of different datasets and shows excellent performance while
requiring only very small training sets (about 40 peptides instead of thousands). Using the retention
time predictor in our retention time filter improves the fraction of correctly identified peptide mass
spectra significantly.

Conclusion: The proposed kernel function is well-suited for the prediction of chromatographic
separation in computational proteomics and requires only a limited amount of training data. The
performance of this new method is demonstrated by applying it to peptide retention time
prediction in IP-RP-HPLC and prediction of peptide sample fractionation in SAX-SPE. Finally, we
incorporate the predicted chromatographic behavior in a p-value based filter to improve peptide
identifications based on liquid chromatography-tandem mass spectrometry.
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Background
Experimental techniques for determining the composi-
tion of highly complex proteomes have been improving
rapidly over the past decade. The application of tandem
mass spectrometry-based identification routines has
resulted in the generation of enormous amounts of data,
requiring efficient computational methods for their eval-
uation. There are numerous database search algorithms
for protein identification such as Mascot [1], Sequest [2],
OMSSA [3] and X!Tandem [4], as well as de-novo meth-
ods like Lutefisk [5] and PepNovo [6]. Furthermore, there
are a few methods like InsPecT [7] which use sequence
tags for pruning the possible search space using more
computationally expensive and more accurate scoring
functions afterwards. Database search algorithms gener-
ally construct theoretical spectra for a set of possible pep-
tides and try to match these theoretical spectra to the
measured ones to find the candidate(s) which match(es)
best. In order to distinguish between true and random
hits, it is necessary to define a scoring threshold, which
eliminates all peptide identifications with scores below
the scoring threshold. This threshold value is chosen quite
conservatively to get very few false positives. Conse-
quently, there is a significant number of correct identifica-
tions below the threshold that are not taken into account,
although these spectra often correspond to interesting
(e.g. low abundance) proteins. One of the goals of this
work was to increase the number of reliable identifica-
tions by filtering out false positives in this 'twilight zone',
below the typical threshold. There are various studies
addressing this issue [8-10] by calculating the probability
that an identification is a false positive.

Standard identification algorithms are based on MS/MS
data and do not use the information inherent to the sepa-
ration processes typically used prior to mass spectrometric
investigation. Since this additional experimental informa-
tion can be compared to predicted properties of the pep-
tide hits suggested by MS/MS identification, false positive
identifications can be identified. In SAX-SPE, it is impor-
tant to know whether a peptide binds to the column or
flows through. This information can also be incorporated
into the identification process to filter out false positive
identifications. Oh et al. [11] elaborated several chemical
features such as molecular mass, charge, length and a so-
called sequence index of the peptides. These features were
subsequently used in an artificial neural network
approach to predict whether a peptide binds to the SAX
column or not. The sequence index is a feature reflecting
the correlation of pI values of consecutive residues. Stritt-
mater et al. [12] included the experimental retention time
from an ion-pair reversed-phase liquid chromatographic
separation process into a peptide scoring function. They
used a retention time predictor based on an artificial neu-
ral network [13] but a number of other retention time pre-

dictors exist [14,15]. If the deviation between observed
and predicted retention time is large, then the score of the
scoring function becomes small. Since they only consid-
ered the top scoring identifications (rank = 1), they missed
correct identifications of spectra where a false positive
identification had a larger score than the correct one. We
also address these cases in our work, demonstrating that
filtering out identifications with a large deviation between
observed and predicted retention time significantly
improves the classification rate of identifications with
small maximal scores. Only recently, Klammer et al. [16]
used support vector machines (SVMs) [17] to predict pep-
tide retention times. Nevertheless, they used standard ker-
nel functions and stated that they needed at least 200
identified spectra with high scores to train the learning
machine.

When applying of machine learning techniques to the pre-
diction of chromatographic retention, a concise and
meaningful encoding of the peptide properties is crucial.
The features used for this encoding must capture the
essential properties of the interaction of the peptide with
the stationary and the mobile phases. These properties are
mostly determined by the overall amino acid composi-
tion, by the sequence of the N-and C-terminal ends, and
by the sequence in general. One of the most widely
applied machine learning techniques are SVMs. SVMs use
a kernel function which is used to encode distances
between individual data points (in our case, the peptides).
There are numerous kernel functions described in the lit-
erature which can be applied to sequence data. Some of
them are totally position-independent, like the spectrum
kernel [18] which basically just compares the frequencies
of patterns of a certain length. Other kernels like the local-
ity-improved kernel [19] or the weighted-degree kernel
[20] account for patterns at a certain position. Since pat-
terns could occur shifted by a particular amount of char-
acters, the oligo kernel [21] and the weighted-degree
kernel with shifts [22] also account for these signals in a
range controlled by an additional parameter. All of these
kernels (except the spectrum kernel) were introduced for
sequences of the same length. However, the length of pep-
tides typically encountered in computational proteomics
experiments varies significantly, ranging roughly from 4–
40 amino acids. Because it can be assumed that the local-
alignment kernel [23], which can also handle sequences
of different lengths, does not suit this kind of problem
perfectly, we elaborated a new kernel function, which can
be applied to sequences of different lengths. Conse-
quently, this new kernel function is applicable to a wide
range of computational proteomics experiments.

In 2006 Petritis et al. [14] evaluated different features like
peptide length, sequence, hydrophobicity, hydrophobic
moment and predicted structural arrangements like helix,
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sheet or coil for the prediction of peptide retention times
in reversed-phase liquid chromatography-MS. They used
an artificial neural network and showed that the sequence
information, together with sequence length and hydro-
phobic moment yield the best prediction results. In their
study, they used only the border residues of the peptide
sequences; their evaluation showed that a border length
of 25 worked best for their dataset. Since they used one
input node for every position of the borders of the pep-
tide, they needed a very large training set, which means
that they trained their learning machine on 344,611 pep-
tide sequences.

Since one cannot routinely measure such an amount of
training sequences before starting the actual measure-
ments, it is reasonable to apply a sort of gaussian smooth-
ing effect to the sequence positions. This means that in
our representation, not every amino acid at every position
is considered but rather regions (consecutive sequence
positions) where the amino acid occurs. The distance of
the amino acids of two sequences is scored with a gaussian
function. The size of this region modeled by our kernel
function can be controlled by the kernel parameter σ of
the kernel function and is learned by cross validation. By
this and because we use support vector machines in com-
bination with our kernel function, the number of neces-
sary training sequences can be decreased dramatically. By
just using the amino acid sequence, we do not rely on fea-
tures which are important for certain separation processes.
This means that we learn the features (i.e. composition
(using a large sigma in the kernel function), sequence
length, hydrophobic regions ...) which are important for
the prediction process within the data because they are
reflected in the amino acid sequence. This is why our ker-
nel function can be used for retention time prediction in
IP-RP-HPLC as well as for fractionation prediction in SAX-
SPE.

When applied to the same dataset as Oh et al. [11] used,
our kernel function in conjunction with support vector
classification predicts 87% of the peptides correctly. This
is better than for all reported methods. Furthermore, our
retention time prediction model is based on a new kernel
function in conjunction with support vector regression
[24], which allows us to predict peptide retention times
very accurately, requiring only a very small amount of
training data. This method has a better performance on a
comparative test set than the artificial neural network
method used by Strittmater et al. [12], even with a much
smaller training set. Additionally, our method outper-
forms the methods introduced by Klammer et al. [16]. In
the first part of the paper, we demonstrate that our new
kernel function, in combination with support vector clas-
sification, achieves better results in SAX-SPE fractionation
prediction than any published method. Next, we show

that our kernel function also performs very well in peptide
retention time prediction in IP-RP-HPLC with very few
training data required. This allows us to train our predic-
tor on a dataset acquired in one run to predict retention
times for two further runs, and to filter the data by devia-
tion in observed and predicted retention time. This leads
to a huge improvement in the classification rate of the
identifications of spectra for which only identifications
with small scores can be found, and also improves the
classification rate of high scoring identifications. The
"Methods" section briefly gives an introduction to sup-
port vector classification and support vector regression.
Then our new kernel function is introduced and we
explain our p-value based filtering approach. Finally, there
is an explanation of the datasets used in this study.

Results and Discussion
In this section, we present the results for two different
application areas of our new kernel function. The first one
is peptide sample fractionation prediction in SAX-SPE,
and the second one is peptide retention time prediction in
IP-RP-HPLC experiments. For peptide sample fractiona-
tion prediction, we demonstrate that our method per-
forms better than the established method. In retention
time prediction, we show that we perform very well with
just a fractional amount of training data required. This
allows us to train our predictor with a dataset measured in
one run to predict retention times of the next runs very
accurately. The peptide identifications are improved after-
wards by filtering out all peptides which have a large devi-
ation between observed and predicted retention time.

Performance of Peptide Sample Fractionation Prediction
To be able to compare our results with existing methods,
we used the same dataset and the same setup as Oh et al.
[11]. This means that we randomly partitioned our data
into a training set and a test set, having 120 peptides for
training and 30 peptides for testing. The performance was
measured by classification success rate (SR), which is the
number of successful predictions divided by the number
of predictions. The whole procedure was repeated 100
times to minimize random effects. The training was con-
ducted by a five-fold cross-validation (CV) and the model
was trained using the best parameters from the CV and the
whole training set.

To compare our new kernel function with established ker-
nels, we used the best four feature combinations of Oh et
al. [11] and trained an SVM with the polynomial and the
RBF kernel for each feature combination. Feature number
one is molecular weight, the second is sequence index, the
third is length and the fourth feature is the charge of the
peptide. We used the same evaluation setting as described
above and in the five-fold CV the SVM parameter C ∈ {2-

4·2i|i ∈ {0, 2,..., 14}}. For the σ parameter of the RBF ker-
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nel, σ ∈ {2-15·2i|i ∈ {0, 1,..., 24}} and for the degree d of
the polynomial kernel, d ∈ {1. 2, 3}. The results are
shown in Table 1. It seems as if the fourth feature (i.e. the
charge of the peptide) is the most important factor but
molecular weight also seems to improve the prediction
performance.

An independent approach which just uses the sequence
information of the peptides was performed using the
local-alignment kernel by Vert et al. [23]. Using the same
setup as described above, we used the BLOSUM62 matrix
[25] and the kernel function parameters were the follow-
ing: β ∈ {0.1, 0.2, 0.5, 0.8, 1}, d ∈ {1, 3, 5, 7, 9, 11, 13}
and e ∈ {1, 3, 5, 7, 9, 11, 13}. Nevertheless, the perform-
ance of these kernel approaches led to inferior results than
the published method by Oh et al. [11]. Therefore more
appropriate kernel functions are needed, like our new
paired oligo-border kernel (POBK), which is explained in the
"Methods" section. The kernel function has a kernel
parameter b which is the border length of the peptide. A
small b means that only few border residues of the pep-
tides contribute to the kernel function, and a border
length equal to the sequence length would mean that all
residues contribute to the kernel function value. To deter-
mine the best border length of the POBK, we performed
the evaluation for all b ∈ {1,..., 30}. The evaluation of
border length b depicted in Fig. 1 shows that for a b greater
than 19, the SR does not change significantly, with a slight
improvement for b = 22. This is why in the following, only
the POBK for b = 22 is considered.

A comparison of the SR for different methods can be
found in Fig. 2. The first two bars represent the SR per-
formance of the best SVMs using standard kernels of Table
1. The third bar demonstrates the performance of an SVM
with the local-alignment kernel. The fourth bar shows the
performance of the best predictor in Oh et al., which is
0.84. The last bar represents the SR of the POBK, which is
introduced in this paper, for peptide sample fractionation
and retention time prediction. The SR of this method is
0.87, which is significantly better than all other
approaches.

Correctly Predicted Peptides in Peptide Sample 
Fractionation Prediction
In Oh et al. [11] the prediction process with 100 random
partitionings was done for the best four predictors, and for
every peptide, the whole predictions were stored. These
authors then classified a peptide by the majority label
which had been assigned to the peptide. By this method,
they were able to assign 127 of the 150 peptides correctly,
which corresponds to an SR of 0.8467.

Performance comparison for peptide sample fractionation predictionFigure 2
Performance comparison for peptide sample frac-
tionation prediction. Comparison of classification success 
rates for different methods predicting peptide adsorption on 
the dataset of Oh et al. [11].
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Table 1: Peptide sample fractionation prediction using standard 
SVMs. This table shows the classification success rates of the 
different feature combinations for SVMs with the polynomial and 
the RBF kernel on the dataset of Oh et al. [11]. The features are 
(1) molecular weight, (2) sequence index, (3) length and (4) 
charge of the peptide calculated as in [11].

Feature combination Polynomial kernel RBF kernel

1, 2, 3, 4 0.78 0.80
1, 2, 3 0.66 0.63
1, 2, 4 0.78 0.80
2, 3, 4 0.75 0.75

Border length evaluation of the POBKFigure 1
Border length evaluation of the POBK. This figure 
shows the evaluation of SR using different border lengths b 
for the POBK on the dataset of Oh et al. [11].
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To be able to compare this procedure with our method,
we made the assumption, that for a particular peptide, the
SVM would make a correct assignment more often. Fur-
thermore, we assumed that if we also stored the predic-
tions for each peptide and each run, we could also get a
majority predictor which yields good performance. The
evaluation of this procedure shows that we are able to pre-
dict 134 peptides correctly in this setting, which is an SR
of 0.8933. Fig. 3 shows a histogram of the SRs for the dif-
ferent peptides for the method by Oh et al. [11] and the
SVM with the POBK.

Evaluation of Model Performance for Peptide Retention 
Time Prediction
For peptide retention time prediction, we had several
goals. The first one was to elaborate a retention time pre-
dictor showing equivalent performance as established
methods but requiring just a fraction of the training set
size.

To demonstrate that our retention time predictor fullfills
the desired constraints, we performed a two-deep CV on
the Petritis dataset [14] described in the "Methods" sec-
tion. This means that we partitioned the data randomly
into ten partitions and performed a CV with the data from
nine of the ten partitions to find the best parameters.
Later, we trained our model with the best hyperparame-
ters and the data of the nine partitions to evaluate the per-
formance of the predictor on the omitted tenth partition.
This was done for every possible combination of the ten
partitions and the whole procedure was repeated ten
times to minimize random effects.

A plot of the observed normalized retention time against
the predicted normalized retention time can be seen in
Fig. 4 for one of the ten two-deep CV runs. Since the stand-
ard deviation over the ten runs was 0.0007, this plot is
quite representative for the model performance. Petritis et
al. [14] showed that their method performs better than
those of Meek [26], Mant et al. [27], Krokhin et al. [28]
and Kaliszan et al. [29], using this dataset for validation.
Thus, in Table 2, we only compare the performance of our
method with the work of Petritis et al. [14]. This compar-
ison is somewhat biased since we only had a fraction of
the original validation set for training, which means that
our training set size was 300 times smaller than that of the
other methods. Nevertheless, our method performs better
than the model [13] which is used by Strittmater et al. [12]
in their filtering approach. The only model with a better
performance is the artificial neural network with 1052
input nodes and 24 hidden nodes [14]. It is obvious that
a model like this needs a very large amount training data.
Petritis et al. [14] trained their model with more than
344,000 training peptides. Therefore, this type of model is
not suitable for retention time prediction for measure-
ments under different conditions or with different
machines because it is very time consuming to acquire
identification and retention time data for more than
344,000 training peptides before starting the actual meas-
urements. To demonstrate that our method is robust

Example figure for peptide retention time predictionFigure 4
Example figure for peptide retention time prediction. 
This plot shows the observed normalized retention time 
against the predicted normalized retention time for one of 
ten two-deep CV runs on the Petritis test set [14]. Since 
every peptide occurs exactly once in the test set, this plot 
shows predictions for all of the peptides in the Petritis data-
set.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observed normalized retention time

Pr
ed

ic
te

d 
no

rm
al

iz
ed

 re
te

nt
io

n 
tim

e

R² = 0.88

Histogram of classification success rateFigure 3
Histogram of classification success rate. This figure 
shows a histogram of the SR of particular peptides using the 
majority classifier on the dataset of Oh et al. [11]. This is 
compared to the ensemble prediction of Oh et al.
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enough for training on verified data of one single run, we
constructed a non-redundant dataset out of datasets vds1
(available as Additional file 1) and vds2 (available as
Additional file 2). A detailed description of these datasets
can be found in the "Methods" section. For different train-
ing sizes s ∈ {10, 20,..., 170}, we randomly selected s pep-
tides for training and 40 peptides for testing. Fig. 5
indicates that for the POBK, 40 verified peptides are
enough to train a predictor which has a squared correla-
tion coefficient between observed and predicted normal-

ized retention time greater than 0.9 on the test set. This
number is much smaller than the number of verified pep-
tides we get for one run since vds1 has 144 peptides, vds2
has 133 peptides and vds3 (available as Additional file 3)
has 116. This evaluation shows that with our predictor, it
is possible to measure one calibration run with a well
defined and easily accessible peptide mixture prepared
from real biological samples to train a predictor, which
can then be used to predict retention times for the pep-
tides very accurately. Furthermore, Fig. 5 shows a compar-
ison of the POBK to the methods introduced by Klammer
et al. [16] and Petritis et al. [13,14] as described in the
"Methods" section. Our method needs significantly less
training data for a good prediction and has also superior
performance if all training sequences of our dataset are
used. One possible explanation for the low performance
of the models from Petritis et al. is that their models need
a larger amount of training data. This is supported by the
fact that they used about 7000 [13] and about 345,000
[14] training peptides in their studies. To compare our
method with the work by Krokhin [30], we used our veri-
fied datasets. This means that we e.g. trained our model
on vds1 and predicted the retention times for peptides of
the union of vds2 and vds3, which were not present in
vds1. This means that if a peptide occured in vds2 and in
vds3, we only kept the peptide identification with the big-
gest score. For the POBK, we performed a five-fold CV
with SVM parameters C ∈ {2i|i ∈ {-9, -8,..., 0}}, v ∈
{0.4·1.2i|i ∈ {0, 1, 2}} and σ ∈ {0.2·1.221055i|i ∈ {0,
1,..., 21}} to determine the best parameters.

Afterwards we trained our model with the whole training
set and the best parameters and measured the squared cor-
relation between observed and predicted retention time
on the test set. This procedure was repeated ten times to
minimize random effects. Since there exists a web-server
for the method by Krokhin [30], we could also compare
the observed retention times with the predicted ones on
our test sets with this method. To calculate the hydropho-
bicity parameters a and b of this method, we used our two

Learning curve for peptide retention time predictionFigure 5
Learning curve for peptide retention time prediction. 
This plot demonstrates the squared correlation coefficient 
depending on the number of training samples for the union of 
vds1 and vds2. For every training sample size, we randomly 
selected the training peptides, and 40 test peptides and 
repeated this evaluation 100 times. The plot shows the mean 
squared correlation coefficients of these 100 runs for every 
training sample size as well as the standard deviation for the 
POBK and the methods introduced by Klammer et al. [16] 
using the RBF kernel as well as the models by Petritis et al. 
[13, 14]. The vertical line corresponds to the minimal 
number of distinct peptides in one of our verified datasets 
which was acquired in one run.
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Table 2: Comparison of different retention time predictors. This table shows the squared correlation coefficient between observed 
and predicted normalized retention time of retention time prediction methods of Petritis et al. [13, 14] on the Petritis test set [14]. 
These values are compared to our method, the POBK, on the Petritis test set [14]. The second column gives the number of training 
sequences used. For the last two rows, subsets of the data were chosen randomly so that 100 respectively 200 training peptides were 
selected.

Method Number of training sequences Squared correlation coefficient

Petritis et al. 2003 [13] 344,611 0.870
Petritis et al. 2006 [14] 344,611 0.967

This work 1040 0.880
200 0.854
100 0.805
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standard peptides introduced in the "Methods" section.
Furthermore, we used the 300 Å column since the other
coloumns lead to inferior results. As can be seen in Table
3, the model by Krokhin performs quite well even though
it had been elaborated on another type of sorbent. Never-
theless the POBK achieves a significantly higher squared
correlation coefficient. It should be noted that the web-
server by Krokhin is restricted to three different coloumns.
The advantage of our method is that there is not any
restriction to a certain type of experimental setup. One
only needs a small amount of training peptides and can
train a model which can immediately be used for reten-
tion time prediction. It should be mentioned that the
POBK has a higher squared correlation between observed
and predicted retention time on our datasets than on the
testset by Petritis et al. This could be due to the fact that
Petritis et al. performed shotgun proteomics peptide iden-
tification [14]. It is commonly accepted that shotgun pro-
teomics peptide identification has a significant false
positive rate.

Improving Peptide Identifications by Using Retention Time 
Prediction
The second goal for retention time prediction was to elab-
orate a retention time filter which could be used for
improving peptide identifications. In this setting, we
trained our learning machine on one of the vds (i.e. vds1)
and predicted the retention times for the remaining ds
(i.e. ds2 and ds3). The peptides of the training and test
sets were made disjoint by removing all identifications of
the test set which belonged to spectra having an identifi-
cation which was also present in the training set. On every
training set, we performed a five-fold CV with SVM
parameters C ∈ {2i|i ∈ {-9, -8,..., 0}}, v ∈ {0.4·1.2i|i ∈
{0, 1, 2}} and σ ∈ {0.2·1.221055i|i ∈ {0, 1,..., 21}}.
Since the results of the POBK for all three datasets in Table
3 show nearly the same very good squared correlation
coefficient of about 0.95 between observed and predicted
normalized retention times, we restricted ourselves in the
following to training our learning machine on vds3 and
evaluated the filtering capability of our filtering approach
on ds1 and ds2.

The performance evaluation of our filter model was done
by a two-step approach. In the first step, we measured the
number of true positives and the number of false positives

for the identifications returned by the Mascot [1] search
engine. This was conducted for different significance val-
ues. Mascot provides a significance threshold score for the
peptide identification at a given significance level. This
significance level was 0.05 in all our studies. To be able to
compare the identification performance for different lev-
els of certainty we chose different fractions of the signifi-
cance threshold score. This means for example, that for a
fraction of 0.5, all identifications have to have a score
which is equal to or greater than half of the significance
threshold score. The evaluation was accomplished for var-
ying threshold fractions t ∈ {0.01, 0.02,..., 1}. In this set-
ting, we could evaluate the classification rate (CR). This is
the number of true identifications divided by the number
of spectra having at least one identification with a score
higher than t times the significance threshold score. If
there was more than one identification with the maximal
score for one spectrum, the spectrum was excluded from
the evaluation. In the second step, we filtered the data by
our retention time model which was learnt on the training
set and conducted the same evaluation as in the first step.
After this we compared the classification performance of
these two evaluations.

Fig. 6a demonstrates the good CR for identifications with
high Mascot scores since a threshold fraction equal to one
means that all identifications have a score equal or larger
than the significance threshold score given by the Mascot
search engine. Nevertheless, even for these identifications,
filtering with the retention time filter improves the CR
from 89–90%. An even greater improvement can be
achieved for identifications with smaller scores. If all iden-
tifications are constrained to have a score equal or larger
than 60% of the significance threshold score, the CR
improves from 55–77% by using our filter. A CR of 0.77
is still quite good and, as can be seen in Table 4, the
number of true positives increases from 350 to 557. This
means that many more spectra can be identified with an
acceptable number of false positives by applying our
retention time filtering approach. Fig. 6b shows that our
model is valuable for removing false identifications since
many false positives are outside the trapezoid and are
removed by our filter for a threshold fraction of 0.95. Fig-
ure 6c shows this even more drastically for a threshold
fraction of 0.6. The whole evaluation shows that our
retention time prediction can be used to improve the level

Table 3: Evaluation of prediction performance for retention time prediction using the POBK. This table shows the performances of the 
POBK using our verified datasets (introduced in the "Methods" section). The other columns contain the squared correlation coefficient 
between the observed normalized retention times and the predicted ones for the POBK and the method by Krokhin [30].

Training set Test set POBK Krokhin [30]

vds1 (vds2 ∪ vds3)\vds1 0.9570 0.9101
vds2 (vds1 ∪ vds3)\vds2 0.9564 0.9212
vds3 (vds1 ∪ vds2)\vds3 0.9521 0.9229
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of certainty for high-scoring identifications and also to
allow smaller thresholds to find new identifications with
an acceptable number of false positives.

Conclusion
In this paper, we introduced a new kernel function which
was successfully applied to two problems in computa-
tional proteomics, namely peptide sample fractionation
by SAX-SPE and high resolution peptide separation by IP-
RP-HPLC. Furthermore, we demonstrated that the pre-
dicted retention times can be used to build a p-value based

model which is capable of filtering out false identifica-
tions very accurately.

Our method performs better than all previously reported
peptide sample fractionation prediction methods and for
retention time prediction, our method is (to our knowl-
edge) the only learning method which can be trained with
a small training size of 40 peptides but still achieving a
high correlation between observed and predicted reten-
tion times. This small required training set allows us to
imagine the following application which would be very

Table 4: Evaluation of filter performance. This table presents the classification rates of the identified spectra for varying fractions of 
the significance threshold with and without retention time filtering. The model was trained using the vds3 dataset and the 
performance was measured on ds1 and ds2. In this context, tp stands for the number of true positives and fp for the number of false 
positives. The CR is tp divided by the sum of tp and fp.

Fraction of 
threshold

tp fp CR tp with filter fp with filter CR with filter

0.0 683 2572 0.2098 699 626 0.5275
0.1 682 2460 0.2171 692 602 0.5348
0.2 678 2260 0.2308 683 555 0.5517
0.3 669 1909 0.2595 668 483 0.5804
0.4 654 1410 0.3169 646 380 0.6296
0.5 624 868 0.4182 609 261 0.7000
0.6 575 474 0.5481 557 166 0.7704
0.7 516 235 0.6871 500 103 0.8292
0.8 468 125 0.7892 452 66 0.8726
0.9 420 72 0.8537 404 49 0.8918
1.0 366 46 0.8883 350 38 0.9021

Visualization of filter performanceFigure 6
Visualization of filter performance. This plot shows the improvement in classification rate one can get by using our reten-
tion time filter for a) varying fractions of the significance threshold value, b) all predictions of spectra having a score equal or 
greater than 95% of the significance threshold value, c) all predictions of spectra having a score equal or greater than 60% of 
the significance threshold value. The model was trained using the vds3 dataset and the performance was measured on ds1 and 
ds2. If there was more than one spectrum with the same identification we plotted the mean values of the observed NRTs 
against the predicted NRT.
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helpful for proteomic experiments. One could identify a
well defined protein mixture before starting the experi-
ments and use the verified peptides for training the predic-
tor. Next the predictor can be used to predict retention
times for all identifications of the following runs. This pre-
dicted retention time can then be applied to improve the
certainty of the predictions. It can also be used to identify
a much larger number of spectra with an acceptable
number of false positives. This is achieved by lowering the
significance threshold and filtering the identifications by
our p-value-based retention time filter. Since all our meth-
ods are integrated into the OpenMS [31] library, which is
open source, every researcher is able to use the presented
methods free of charge. Also, we offer the prediction mod-
els as tools which are part of the OpenMS proteomics
pipeline (TOPP) [32]. These tools can be easily combined
with other tools from TOPP, allowing wide-range research
applications in computational proteomics.

Methods
Algorithmical Methods
In this work, we introduce a new kernel function which
can be used to predict peptide properties using support
vector classification and v-support vector regression (v-
SVR) [24]. We apply this kernel function to predict frac-
tionation of peptides in SAX-SPE as well as peptide reten-
tion times in IP-RP-HPLC. To show the superior
performance of the new kernel function, we provide com-
parisons to established kernel functions and the latest
approaches of other working groups [11,14,16].

Support Vector Machines

In binary classification, the task is to find a function f: 

→ ,  = {-1, 1} from n labelled training samples (xi,

yi) ∈ {(xi, yi)|xi ∈ , yi ∈ , i = 1,..., n}, such that unla-

belled data samples x ∈  from the same data source can
be classified by this function. The idea is to learn some-
thing about the distribution of the training samples so
that unseen test examples that belong to the same under-
lying distribution can be predicted very accurately by the
function. In support vector classification [17], the task is
to find a discriminating hyperplane in a certain space.
Therefore, one normally maximizes

subject to:

The C is chosen beforehand and the optimal weights αi are
searched. With the αis the discriminant function is:

To be able to learn non-linear discriminant functions it is
possible to apply a mapping function to the input varia-

bles Φ:  →  as stated in [24]. Since computing the

inner product �Φ(xi), Φ(xj)� of the mapped feature vectors

in feature space can be very time-expensive, a kernel func-

tion k can be used instead k: 2 → : k(xi, xj) = �Φ(xi),

Φ(xj)�, which implicitly computes the results of the inner

product in feature space. The corresponding kernel matrix
has to be positive semi-definite. Consequently, the classi-
fication function is learnt by maximizing

and the discriminant is

and the xi: αi > 0 are called support vectors.

Support Vector Regression

In regression, the task is to find a function f:  → , 

⊆ � from n labelled training samples (xi, yi) ∈ {(xi, yi)|xi ∈

, yi ∈ , i = 1,..., n} such that unlabelled data samples

x ∈  from the same data source can be assigned a label

y ∈  by this function. The idea is, as in the binary case,
to learn something about the distribution of the training
samples so that unseen test examples which belong to the
same underlying distribution can be predicted very accu-
rately by the function. In v-SVR [24], the regression func-
tion is learnt by maximizing

subject to:
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In this term, the v bounds the amount of training errors
and support vectors of the function. To be able to learn
non-linear discrimination functions, it is again possible to

apply a mapping function to the input variables Φ:  →
 and a kernel function which corresponds to the inner

product of the mapped feature vectors. Consequently, the
regression function is learnt by maximizing

Kernel Function
The oligo kernel introduced by Meinicke et al. in [21] is a
kernel function which can be used to find signals in
sequences for which the degree of positional uncertainty
can be controlled by the factor σ of the kernel function.
The standard oligo kernel was introduced for sequences of
fixed length. Since there are many problems like peptide
retention time prediction in which the length of the
sequences varies significantly, this kernel function cannot
be applied to them directly.

Petritis et al. [14] predicted peptide retention times very
accurately by encoding the border residues directly. As
stated in [33], the oligo kernel can be used as a motif ker-
nel. This motivated us to construct a kernel which only
considers the border residues of a peptide for a fixed bor-
der length b. Consequently, the kernel function is called
oligo-border kernel (OBK). Here, a motif is a certain k-mer
at a position inside the b residue border at each side where

b ∈ {1,..., 30}. This means that every k-mer at the leftmost
b residues contributes to its oligo function as well as every
k-mer at the rightmost b ones. For the peptide sequence s

∈ n, the left border L is defined as L = {1, 2,..., min(n,

b)} and R = {max(0, n - b + 1),..., n}. The set  = {p1,

p2,...} contains the positions where the k-mer ω ∈ k

occurs inside the left border and  ={p1, p2,...} the k-mer

positions for the right border. This means that  ∩ L =

 and  ∩ R = . In [21] the feature space represen-

tation of a sequence is a vector containing all of its oligo
functions. These oligo functions are the sums of gaussians
for every particular k-mer. This means that

Consequently, the oligo-border function is:

where M ∈ {L, R}. This leads directly to the feature map:

Let U = L ∪ R and let  be the set  of sequence si. Let

ind(p, q) = [[(p ∈ Li ∧ q ∈ Lj)|(p ∈ Ri ∧ q ∈ Rj)]]

for p ∈ Ui and q ∈ Uj in which [[condition]] is the indicator
function. This function equals one if condition is true and
zero otherwise. Similar to [21], the kernel function is then

A further variant of the OBK is to consider similarities
between opposite borders. This means that there is only
one oligo function for a certain oligo and the occurrence
positions of signals in the right border are numbered from
one to min(n, b) from right to left. In this way, a high sim-
ilarity between the right border of a peptide and the left
border of another peptide can also be detected. Through-
out the paper, this kernel is called the paired oligo-border
kernel (POBK) and the kernel function is:

( )

,

( )

α α

α

α α ν

i i

i

l

i

i i

i

l

C
l

C

− =

∈ ⎡
⎣⎢

⎤
⎦⎥

+ ≤ ⋅

∗

=

∗

∗

=

∑

∑

0

0

1

1




W y k x xi i i

i

l

i i j j i j

i j

l

( ) ( ) ( )( ) ( , )( )

,

α α α α α α α∗ ∗

=

∗ ∗

=

= − − − −∑ ∑
1 1

1
2


SL
ω


SR
ω

SL
ω

SL
ω SR

ω SR
ω

μ
σ

ω

ω

( ) exp( ( ) )t t p
p S

= − −
∈
∑ 1

2 2
2

μ
σ

ω

ω

M

p S

t t p
M

( ) exp( ( ) )= − −
∈
∑ 1

2 2
2

Φ( ) [ ( ),..., ( ), ( ),..., ( )]s t t t tL L R R T
k k

= μ μ μ μω ω ω ω1 1 

SUi
ω SU

ω

k s s p q e

p q

OBK i j

q Sp S U jUik

( , ) ( , )

( )

= ⋅

−
−

∈∈∈
∑∑∑πσ σ

ωωω

ind

2

4 2



Page 10 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:468 http://www.biomedcentral.com/1471-2105/8/468
This kernel function can be computed as efficiently as the
oligo kernel by appropriate position encoding. The kernel
matrix is positive definite which follows directly from
[33]. Since preliminary experiments showed that the
POBK works better than the OBK, we used only the POBK
in this study. Furthermore, the preliminary experiments
showed that the best performance of the k-mer length is
one which is quite reasonable, since the peptides are very
short compared to the number of different amino acids.
This is also supported by the study [34] on protein
sequences, in which histograms of monomer distances
performed better than distance histograms of longer k-
mers. A combination of different lengths as in [33] also
led to inferior results, which could be due to the normali-
zation of the single kernel functions. Consequently, in
this study, we only used k-mer length one.

P-value Calculation and Filtering
As stated earlier, the retention time prediction is used in
this work to improve the certainty of peptide identifica-
tions found by search engines like Mascot and to filter out
false identifications. This is done by fitting a linear model
to the prediction data in the training set. The model
reflects the fact that retention times of late eluting pep-
tides show a higher deviation than early ones. The poorer
performance in retention time prediction for longer pep-
tides was also observed in [14] supporting this fact. For
our predictions, we therefore match an area to the predic-
tion data of the training set which contains ≥95% of the
points and is the wider the bigger the corresponding
retention time is. An application of the model can be
found in Fig. 6b and Fig. 6c. We call the smallest distance
in the model γ0 at normalized retention time (NRT) equal
to zero, and γmax is the biggest gamma at NRT = 1. We can
consequently calculate a corresponding gamma for every
normalized retention time tnor by γ = γ0 + tnor ·(γmax -γ0).

Since we assume gaussian error distribution gamma corre-
sponds to 2·standard deviation of the normal distribution
such that a p-value can be calculated for every retention
time prediction by calculating the probability that a cor-
rect identification has a bigger deviation between
observed and predicted normalized retention time. The
null hypothesis is that the identification is correct. For fil-
tering identifications, we use these p-values in the follow-
ing way.

Since we do not want to filter out correct identifications,
the probability of filtering out a correct identification can
be controlled by a significance level. In the experiments,
we set the significance level to 0.05. This means that the
probability that a correct identification has a deviation
between observed and predicted retention time equal or
greater than the allowed deviation is 0.05. Consequently,
the probability of filtering out correct identifications is
0.05. Concerning the p-values mentioned above, this
means that p has to be bigger than 0.05. Basically, for sig-
nificance level 0.05, this means that every identification
outside the fitted model is filtered out and the identifica-
tions inside are kept.

Computational Resources
All methods elaborated in this work were integrated by us
into OpenMS, a software platform for shotgun proteomics
[31] which has a wrapper for the libsvm [35]. This library
was used for the support vector learning. Furthermore, we
integrated the prediction models into TOPP [32]. Some
additional evaluations for peptide sample fractionation
prediction were performed using shogun [36].

Experimental Methods and Additional Data Sets
For peptide sample fractionation prediction, we used the
data from Oh et al. [11] to show the superior performance
of our method. For peptide retention time prediction, we
used different datasets. The first one is a validation dataset
which was used by Petritis et al. in 2006 [14] to predict
peptide retention times using artificial neural networks. In
their experiment, they measured more than 345,000 pep-
tides, and chose 1303 high confident identifications for
testing and the remaining peptides for training. Since they
only published the 1303 test peptides, we could only use
this small number of peptides. The dataset was used in our
study to be able to show the performance of our methods
compared to other well established methods for peptide
retention time prediction. Further datasets for retention
time prediction were measured in our labs to show that
training on the data of one run suffices to predict reten-
tion times on the next runs very accurately and to improve
spectrum identifications significantly.
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Experimental Setup
The datasets for training and evaluation of the retention
time predictor had to fulfill two basic requirements. First,
the identity of the studied peptides had to be known with
high certainty in order to avoid incorrect sequence anno-
tations for the training dataset, and second, retention
times had to be measured with high reproducibility. Alto-
gether, we measured 19 different proteins, which were
purchased from Sigma (St. Louis, MO) or Fluka (Buchs,
Switzerland). To avoid excessive overlapping of peptides
in the chromatographic separations, the proteins were
divided into three artificial protein mixtures and subse-
quently digested using trypsin (Promega, Madison, WI)
using published protocols [37]. The protein mixtures con-
tained the following proteins in concentrations between
0.4 – 3.2 pmol/μl:

Mixture 1: β-casein (bovine milk), conalbumin (chicken
egg white), myelin basic protein (bovine), hemoglobin
(human), leptin (human), creatine phosphokinase (rab-
bit muscle), α1-acid-glycoprotein (human plasma), albu-
min (bovine serum).

Mixture 2: cytochrome C (bovine heart), β-lactoglobulin
A (bovine), carbonic anhydrase (bovine erythrocytes),
catalase (bovine liver), myoglobin (horse heart), lys-
ozyme (chicken egg white), ribonuclease A (bovine pan-
creas), transferrin (bovine), α-lactalbumin (bovine),
albumin (bovine serum).

Mixture 3: thyroglobulin (bovine thyroid) and albumin
(bovine serum).

Adding albumin to each protein mixture was performed
because in each run, there had to be an identical set of
peptides to normalize the retention times. The resulting
peptide mixtures were then separated using capillary IP-
RP-HPLC and subsequently identified by electrospray
ionization mass spectrometry (ESI-MS) as described in
detail in [37,38]. The separations were carried out in a
capillary/nano HPLC system (Model Ultimate 3000,
Dionex Benelux, Amsterdam, The Netherlands) using a 50
× 0.2 mm monolithic poly-(styrene/divinylbenzene) col-
umn (Dionex Benelux) and a gradient of 0–40% ace-
tonitrile in 0.05% (v/v) aqueous trifluoroacetic acid in 60
min at 55°C. The injection volume was 1 μl, and each
digest was analyzed in triplicate at a flow rate of 2 μl/min.
On-line ESI-MS detection was carried out with a quadru-
pole ion-trap mass spectrometer (Model esquire HCT,
Bruker Daltonics, Bremen, Germany).

Identification of Spectra
Peptides were identified on the basis of their tandem mass
spectra (maximum allowed mass deviations: precursor
ions: ± 1.3 Da, fragment ions: ± 0.3 Da) using Mascot [1]

(version 2.1.03). The database was the Mass Spectrometry
Database, MSDB (version 2005-02-27) restricted to chor-
data (vertebrates and relatives). We allowed one missed
cleavage as well as charges 1+, 2+ and 3+. The mass values
were monoisotopic. The significance level of the signifi-
cance threshold score for the peptide hits was 0.05. Since
the amino acid sequences of the 19 proteins of our mix-
tures are known, we could verify the identifications by
sequence comparison with the protein sequences. To
avoid random verifications, we restricted the peptide
length to be equal or greater than six. The whole process
led to two datasets for each protein mixture – one which
only contained the verified peptides and the other one
with all Mascot identifications. In this paper, we call the
datasets containing the verified peptide sequences vds and
the datasets with all Mascot identifications ds. The vdss are
used to train the predictors and the dss are used to access
the classification performance of the identification proc-
ess.

Normalization of Retention Times
We chose two standard peptides which were identified in
all of the runs. One of these peptides, which had the
amino acid sequence TCVADESHAGCEK, eluted very
early and the other one, which had the amino acid
sequence MPCTEDYLSLILNR, eluted very late. We scaled
the retention times linearly so that the early eluting pep-
tide got an NRT of 0.1 and the late eluting peptide an NRT
of 0.9. All peptides with an NRT below zero or above 1
were removed. The lists of identified peptides of vds1, vds2
and vds3, together with their respective retention times,
are available as Additional files 1, 2 and 3 in the supple-
mentary material.

Reimplementation of Existing Methods for Comparison 
Purposes
For retention time prediction we compared our method
with several methods. Therefore we had to reimplement
the methods by Klammer et al. [16] as well as the methods
by Petritis et al. [14]. For the methods by Klammer et al.,
we implemented the same encoding as described in the
literature and used the RBF kernel of the libsvm [35]. The
cross validation was performed with the same parameter
ranges as described in the paper (C ∈ {10 -3, 10-2,..., 107}
and σ ∈ {10-6, 10-7, 10-8}). For comparison with the mod-
els by Petritis et al. we reimplemented the models as
described in the literature using Matlab R2007a (The
MathWorks, Inc., United States) and the neural networks
toolbox version 5.0.2 (The MathWorks, Inc.). This means
that for the first model of Petritis et al. [13] we had a feed-
forward neural network with 20 input nodes, two hidden
nodes and one output node. The frequencies of the amino
acids of the peptides served as input. For the second
model of Petritis et al. [14] we had 1052 input nodes, 24
hidden nodes and one output node. The amino acids at
Page 12 of 14
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the 25 leftmost and the 25 rightmost residues served as
input as well as the length and the hydrophobic moment
of the peptide as described in [14]. Both models were
trained using a backpropagation algorithm.
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