
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
BIRCH: A user-oriented, locally-customizable, bioinformatics
system
Brian Fristensky*

Address: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, CANADA

Email: Brian Fristensky* - frist@cc.umanitoba.ca

* Corresponding author

Abstract
Background: Molecular biologists need sophisticated analytical tools which often demand
extensive computational resources. While finding, installing, and using these tools can be
challenging, pipelining data from one program to the next is particularly awkward, especially when
using web-based programs. At the same time, system administrators tasked with maintaining these
tools do not always appreciate the needs of research biologists.

Results: BIRCH (Biological Research Computing Hierarchy) is an organizational framework for
delivering bioinformatics resources to a user group, scaling from a single lab to a large institution.
The BIRCH core distribution includes many popular bioinformatics programs, unified within the
GDE (Genetic Data Environment) graphic interface. Of equal importance, BIRCH provides the
system administrator with tools that simplify the job of managing a multiuser bioinformatics system
across different platforms and operating systems. These include tools for integrating locally-
installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet
the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-
existing collections of bioinformatics software.

Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web
pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step
examples, with screen shots and sample files, to illustrate both the important theoretical and
practical considerations behind complex analytical tasks.

Conclusion: BIRCH provides a versatile organizational framework for managing software and
databases, and making these accessible to a user base. Because of its network-centric design,
BIRCH makes it possible for any user to do any task from anywhere.

Background
The diversity of computational tools needed in genomics
presents many challenges [1]. The most sophisticated
algorithms and methods might as well not exist if the pro-
grams implementing them are not accessible to the biolo-
gist. Biologists need to understand the tasks with which

they are faced, find software tools that will help them with
these tasks, and be able to evaluate the validity and signif-
icance of the results.

Many packages provide a large set of programs and func-
tions, and to different degrees, try to promote usability

Published: 9 February 2007

BMC Bioinformatics 2007, 8:54 doi:10.1186/1471-2105-8-54

Received: 11 October 2006
Accepted: 9 February 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/54

© 2007 Fristensky; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17291351
http://www.biomedcentral.com/1471-2105/8/54
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:54 http://www.biomedcentral.com/1471-2105/8/54
through graphic interfaces, hierarchical desktop menus,
and organization of documentation files. To simplify
comparison with BIRCH, a few representative packages
will be cited as examples. Packages such as EMBOSS [2]
and Staden [3] are available for many platforms. There are
numerous other packages specific to Linux. BioRPMS is a
collection of packages that can be installed on an existing
Linux system [4], while NEBC Bio-Linux [5] is a complete
Linux distribution with bioinformatics applications pre-
installed. In some cases, graphic interfaces are available to
tie together sets of applications. Two examples include
JEMBOSS [6], a Java front end for EMBOSS, and the Kap-
tain extensions to EMBOSS [7], which utilize Kaptain, a
system for generating graphic interfaces for commandline
programs using grammar scripts [8]. Similarly, web-based
interfaces to over 200 applications have been generated
using Pise, which creates HTML interfaces from XML defi-

nitions of program parameters [9]. The Taverna work-
bench takes a different approach. Taverna is a Java
application in which complex data workflows can be cre-
ated by linking together icons representing web services
available at both local and remote sites [10].

Bioinformatics packages such as those described above
can be made available to users throughout a lab, depart-
ment, or campus on network-centric Unix/Linux systems.
Network-centric systems allow users to login from any
computer and be presented with the same desktop, pro-
grams, and filesystems [11]. This avoids some of the prob-
lems associated with individual PCs, because users don't
have to be worried about which software is installed on
which PC. While installing programs and databases can
be a major effort, transforming them from a mere collec-
tion into an integrated system is far more difficult [12,13].

Creation of a dataset of plant defense gene sequencesFigure 1
Creation of a dataset of plant defense gene sequences. To find genes related to pea defense protein DRR206, the
DRR206 protein (PEADRRB) was selected in the GDE window (top), and TBLASTN was launched from the Database menu.
The results appear in two windows (middle). The BLAST report appears in a text editor, and the accession numbers appear in
a dGDE window. dGDE is a GDE implementation specialized for working with lists of identifiers. The list of accession numbers
was selected in the dGDE window, and a request sent to the SeqHound data warehouse [27], retrieving the corresponding
NCBI GI numbers. Next, the GI numbers were selected, and sequences were retrieved from SeqHound. The new GDE win-
dow (bottom), contains DNA sequences for all of the BLAST hits.
Page 2 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:54 http://www.biomedcentral.com/1471-2105/8/54
The BIRCH system consists of a core of commonly-used
programs for most typical bioinformatics tasks, set within
a portable framework that allows for seamless integration
of locally-installed programs so that each BIRCH site can
be tailored to the needs of the local user-community. GDE
[14] as updated by Eric Linton [15] provides a powerful
graphic interface unifying both core BIRCH programs and
locally-installed software. The BIRCH documentation sys-
tem provides a merged view of both core and locally-
installed documentation. BIRCH also contains numerous
tools that make it easier for the system administrator to
manage, update and customize the system for the local
user base.

Implementation
I. The user' perspecitve
A seamless view of the software
The BIRCH core distribution comes with a wide range of
commonly-used software packages pre-configured and
ready to run. These include NCBI network BLAST, Cn3D,
and Sequin [16], FASTA [17], PHYLIP [18], TCOFFEE
[19], and Taverna [10]. All programs can be run from the
command line, and most can also be launched from GDE.

GDE can be thought of as a program that runs other pro-
grams. The flexibility of GDE makes it possible to have
GDE interfaces specialized for different types of data. In

Phylogenetic analysis of plant populationsFigure 2
Phylogenetic analysis of plant populations. To evaluate population structure in the weed green foxtail, RAPD marker
data from different foxtail accessions were read into an mGDE window (top), and selected. Parsimony analysis was chosen
from the Phylogeny menu, and the Phylip DOLLOP program generated a set of equally parsimonious trees, which appear in a
tGDE window, and in the text report (middle). All trees were selected, and CONSENSE was run. Output is a single consensus
tree, which appears in a new tGDE window, as well as in the ATV tree editor (bottom). The tGDE window has additional
menu options for running various other tree display programs.
Page 3 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:54 http://www.biomedcentral.com/1471-2105/8/54
the current implementation of BIRCH, there are four GDE
interfaces:

• GDE – sequence data

• dGDE – list data (eg. ACCESSION, GI, TAXID numbers)

• mGDE – molecular marker data (eg. AFLP)

• tGDE – phylogenetic tree data

The functions of these interfaces will be illustrated in two
examples. GDE lends itself to complex tasks in which data
is pipelined from one step to the next. Figure 1 shows a
simple example of how to create a dataset of sequences for
a specific gene family, beginning with a single amino acid
sequence. Figure 2 shows an example of building a phylo-
genetic tree from molecular marker data, using mGDE
and tGDE.

With interfaces such as Jemboss, Kaptain, or Pise, input
and output files for a given program are selected within
the menu that launches the program. A program is
selected from a list, one or more datafiles are chosen,
parameters are set, and the program is launched. Thus, at
each step in the analysis, the user must ensure that an
input file, of the type expected by the program, is availa-
ble. In contrast, data need only be read into GDE at the
first step. Data items (eg. sequences, trees) are displayed in
the GDE window, and can be selected individually, or in
any combination, prior to launching a program. Even
parts of sequences can be selected with the mouse. GDE
automatically converts data into the format required for
each subsequent step. Finally, whereas GDE can send out-
put to a new GDE window for further processing, Jemboss
and Kaptain require that output be saved to a file before it
can be used as input for the next analytical step.

BIRCH uses GDE in several ways to overcome the learning
curve usually associated with trying a new program. First,
all of the "overhead" tasks associated with running a pro-
gram (eg. interconversion of file formats using READSEQ
[20]) are automated in wrapper scripts. As well, wrappers
can prevent errors by checking the validity of the parame-
ters set by the user. Long-running programs that are CPU
intensive are run in the background at lower priority, min-
imizing the impact on system performance. When jobs are
run in the background, the user can logout and review the
results at a later time when the job is complete.

Figure 3 illustrates how a complex pipeline can be imple-
mented in a single menu, using the example of construc-
tion of a DNA sequence distance tree from a multiple
alignment. From the user's point of view the entire pipe-
line appears to be executed as a single step, even though
numerous programs are run. If bootstrap resampling is
chosen, the script will first generate a bootstrapped dataset
using SEQBOOT. Next, DNADIST is called to calculate the
distance matrices, which are used as input for one of the
phylogeny programs shown in the pulldown menu in Fig-
ure 3 (WEIGHBOR, FITCH, KITCH or NEIGHBOR, which
together implement seven distinct methods). If bootstrap-
ping was done, a consensus tree is automatically gener-
ated by CONSENSE. The output report pops up in a text
editor, and trees pop up in a text editor and tree editor, or
are written to files. In this way, the user is presented with
a variety of choices for viewing or further analysis of the
data.

GDE is a programmable interface
By itself, GDE is a small program that can read and write
datafiles, display the data as a set of character strings, and
create menus. All programs that GDE runs are completely
external to GDE, and are not compiled as part of the code.
(In fact, almost the only component remaining from the

Implementation of an analysis pipeline in a single menuFigure 3
Implementation of an analysis pipeline in a single
menu. Parameter settings for all steps in construction of a
DNA distance tree are incorporated into the DNA Distance
methods menu of GDE. All programs in the pipeline are from
the Phylip package [18], with the exception of WEIGHBOR,
which combines elements of maximum likelihood methods
and distance methods [28].
Page 4 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:54 http://www.biomedcentral.com/1471-2105/8/54
original GDE distribution [14] is the GDE interface itself.
Virtually all menus, and most of the external programs,
are new to BIRCH.) When GDE is started, it reads a set of
menu items for each program. Each menu item has a tem-
plate for a Unix command to be executed, along with
parameters that are displayed in menus as buttons, sliders,
choosers, or text. In this regard, the GDE menu syntax is
analogous to the ACD command definition syntax used
for describing program input, output and parameters in
EMBOSS, or the XML program descriptions in Pise. In
most cases, the program called by GDE is a wrapper script,
which might execute a single command, or a complex
series of commands needed to accomplish a task. To run
a program from GDE, the user reads in a datafile (eg.
sequences), selects the data to be analyzed, and then
chooses a program from the menus. Next, the user sets
parameters and clicks on the OK button. Parameter set-
tings are substituted into the Unix command template,
and the command is executed. Programs launched by

GDE do not even need to be running on the same login
host or workstation to which the user is logged in, because
anything that can be run from a script can be run by GDE,
including web services on remote systems. In the core
BIRCH distribution, BLAST searches are run remotely at
NCBI using the NCBI BLASTCL3 client.

Wrapper scripts can also enhance the presentation or con-
tent of the output. For long-running programs, scripts will
add the name of the login host and time and memory
resources utilized, as a guide for scaling up to larger jobs.
Some programs, as written, do not include in the output
potentially important information needed for interpret-
ing the results. In such cases, BIRCH wrapper scripts will
add more detailed information on parameters and input
files used in each run.

Any user can do anything from anywhere
BIRCH is scaleable from a single workstation to a server
cluster. Figure 4 illustrates a typical campuswide system.
By choosing binaries and libraries at login, BIRCH makes
it transparent to the user which platform they are actually
using. Most importantly, a Unix graphic desktop can be
redirected from the server to be displayed anywhere.
BIRCH has been successfully tested on X-terminals, Sun-
Ray terminals, PCs running X11 clients such as XWin32
[21] and CygWin [22], Sun Secure Global Desktop [23]
and various versions of VNC [24]. BIRCH has also been
tested on several graphic desktops, including CDE,
GNOME, Sun Java Desktop and KDE. In our laboratory, it
has been possible to eliminate PCs entirely, and instead
do all work, both common office tasks and specialized
bioinformatics tasks, from low-cost terminals.

II. Local customization of a birch system
No software package does everything, and each lab,
department, or institution has different needs. BIRCH has
numerous mechanisms for adding programs and docu-
mentation that are not part of the BIRCH core, and for
customization to take advantage of the strengths of a local
local Unix/Linux system, and to work around problems
specific each system.

The $BIRCH/local directory
BIRCH is downloaded as a hierarchical directory structure
which is usually installed in the $HOME directory of an
account specifically used for administering BIRCH. This
directory is referred to by the $BIRCH environment varia-
ble. Local customization is made possible through the
$BIRCH/local directory. Analogous to /usr/local in Unix,
$BIRCH/local is a part of the system that does not change
when an updated version of BIRCH is installed. During an
update the birchconfig install wizard automatically
merges programs, documentation, and settings from
$BIRCH/local into the new version of BIRCH. For exam-

Scalability of a BIRCH systemFigure 4
Scalability of a BIRCH system. On a PC, File Services,
Processing and Display would all reside on the PC. Alterna-
tively, a Unix/Linux workstation might remotely-mount file-
systems, but carry out the processing and display steps. For
larger multiuser systems, File Services might be remotely-
mounted onto login servers, where programs actually run.
Windows generated by programs would appear on the local
display, which could be an X-terminal or other thin client, or
a PC running X11 display software. At login, BIRCH deter-
mines the OS/hardware platform of the login host (eg. Linux-
Intel, Solaris-Sparc or Solaris-AMD64) and provides the user
with platform-specific binaries, libraries, paths and environ-
ment variables.
Page 5 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:54 http://www.biomedcentral.com/1471-2105/8/54
ple, to add a program to a BIRCH system on Linux, the
binaries would be added to $BIRCH/local/bin-linux-intel,
and the documentation added to $BIRCH/local/doc. At
the same time, software packages already in place prior to
installing BIRCH can be integrated into BIRCH simply by
creating symbolic links to them from $BIRCH/local.

Automatic updating of GDE interfaces
$BIRCH/local contains directories for adding menus to
each of the four GDE interfaces (dGDE, GDE, mGDE and
tGDE). To add a program, the binary file is copied to
$BIRCH/local, and then a GDE menu file is written, typi-
cally by modifying an existing menu file. A script merges
the new menu into the existing menus. Subsequently,
when BIRCH is updated to a new version, the menu is
automatically added to GDE. For example, the core
BIRCH distribution runs BLAST remotely at NCBI. When
BIRCH was installed at the University of Calgary, sym-
bolic links were made to binaries for the already existing
Paracel® BLAST system [25], and menus for launching

Paracel BLAST were added by copying the NCBI BLAST
menus to $BIRCH/local and modifying them.

Working in a heterogeneous computing platform
BIRCH has unique design considerations for working in a
heterogeneous operating environment consisting of
workstations and hosts with different operating system/
hardware platforms. For example, the Unix system at the
University of Manitoba is configured as shown in Figure
4. Users can log into machines running either Linux, Sola-
ris-Sparc or Solaris-AMD64. At login, BIRCH determines
the OS/hardware platform. Depending on the platform,
BIRCH then chooses binaries and libraries appropriate for
that system. The BIRCH implementation of GDE can also
handle cases in which a program is not available on all
platforms. For example, if a program is only available for
Solaris-Sparc, the user will see that program in the GDE
menus when logged into a Solaris-Sparc host, but not
when logged into a Linux-Intel or Solaris-AMD64 host.

In a heterogeneous system, some hosts may have single
CPUs and others multiple CPUs. At login BIRCH sets
environment variables specifying whether or not threaded
applications can take advantage of multiple CPUs.

Setting the user environment
Unix/Linux systems achieve a high level of flexibility
through use of environment variables, which are used by
the shell (command interpreter) to store information
such as the locations of programs and files. When a user
logs in, BIRCH reads startup scripts that set numerous
environment variables for the duration of the session. For
example, $BIRCH_PLATFORM tells the OS/hardware
platform of the machine to which the user is currently
logged in. Since a wide variety of shells are available in
Unix/Linux, BIRCH has startup scripts appropriate for
most of the major shells (eg. sh, bash, ksn, csh, tcsh). This
simplifies things especially for new users, who in most
cases don't even know which shell they are using.

Some of the startup scripts are found in $BIRCH/local.
Because almost any code could be added to these scripts,
the system administrator has great flexibility in tailoring
BIRCH to the needs of the system and the user base. For
example, the default PDF viewer is set by the statement
'GDE_PDFVIEW=acroread'. On a system that did not have
Adobe Reader, the statement could be changed to a differ-
ent PDF viewer eg. 'GDE_PDFVIEW=ggv'.

First time users run the 'newuser' script to set their
accounts to read the BIRCH startup scripts. Consequently,
BIRCH does not have to be installed in system directories,
but instead, can be administered through a regular user
account in a world-readable directory. Therefore, root per-
missions are not required to install and manage a BIRCH

BIRCH documentationFigure 5
BIRCH documentation. Example of a web page for the
bachrest restriction site search program, generated from the
birchdb database. This entry shows that bachrest can be run
as a conversational program in a text window (interactive),
or run from the DNA/RNA menu in GDE (GDE). Two docu-
mentation files are listed, as well as an ancillary datafile con-
taining a list of restriction enzymes. The Platforms field
indicates that bachrest is available on all platforms supported
by BIRCH.
Page 6 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:54 http://www.biomedcentral.com/1471-2105/8/54
system. Eliminating the need for root access also provides
added security.

A single view of all documentation and datafiles
One of the problems facing users on a system with many
bioinformatics packages is that documentation is often
scattered across many locations on the system. The soft-
ware included with BIRCH is from a wide variety of
authors, and documentation is written in different styles
(eg. Unix manual pages, tutorials, user's guides), and in
many formats (eg. PDF, HTML, text) [13]. To make docu-
mentation easy to find, documentation for the core
BIRCH programs is catalogued in the birchdb database,
and documentation for locally-installed programs is cata-
logued in the lbirchdb database. Both databases are
implemented using ACeDB [26], a small database engine
which includes an easy-to-use graphic interface. When
BIRCH is installed or updated, the contents of both data-
bases are merged, and a hierarchical set of web documen-
tation pages is generated, including programs listed by
category, programs listed by package, and a program
index. For each program a separate web page is generated,
listing the name and short description of the program,
information on how to launch the program, links to doc-
umentation and sample datafiles, a listing of os/hardware
platforms for which the program is available, as well as a
link to the web page describing the package to which the
program belongs. An example is seen in Figure 5.

The user doesn't care whether programs are part of the
BIRCH core, or are locally-installed. One of the goals of
BIRCH is to make the documentation web pages appear as
if they were written specifically for the local BIRCH site.
This is particularly useful because most first-time BIRCH
users will also be using Unix for the first time. Rather than
giving the user a generic set of web pages, the BIRCH doc-
umentation pages have sections earmarked for system
specific information, such as how to log in or which desk-
tops are available. During installation and updating, these
sections of the BIRCH web pages are replaced with local
content. For example, the email address for the BIRCH
administrator at the University of Manitoba is
"psgendb@cc.umanitoba.ca". At another site, the email
address would be changed in all web pages to that of the
local BIRCH administrator eg. "birch@myhost.org".

Many sections of the BIRCH web site can be automatically
replaced with HTML code specific to the local system.
These sections include links to local pages for obtaining
and setting up a Unix account, descriptions of local data-
bases, locally-installed software, as well as institutional
logos, announcements, and links to local web sites. For
example, at the University of Manitoba, both CDE and
Sun Java desktops are available. The BIRCH home page
contains a set of links to documentation for these desk-
tops as shown in Figure 6. During installation and updat-
ing, BIRCH will replace this section with HTML code
found in $BIRCH/local.

Simplifying BIRCH system administration
BIRCH provides for the system administrator an organiza-
tional framework and tools that ensure that programs and
documentation remain easily accessible to users. Because
startup scripts are read from a central location, the user
never needs to perform configuration steps when new
software or databases are installed. By the same token,
installation and updating of a BIRCH site is automated by
birchconfig, the BIRCH install wizard. The BIRCH Admin-
istrator's Guide spans numerous topics, including cus-
tomization of the BIRCH web site, managing systems with
multiple servers or operating platforms, installing and
merging 3rd party applications into BIRCH, and setting
default applications for viewing and displaying data.

BIRCH tries to minimize the skill set needed for being a
BIRCH administrator. Where a computer specialist is not
available, a biologist with basic knowledge of perhaps 20
of the most common Unix commands, some knowledge
of how to write and edit web pages, and some knowledge
of shell scripting should be able to install and update a
BIRCH system for a lab or working group. Minimizing this
skill set has guided the design of BIRCH. Recognizing that
tutorials are as important for the system administrator as
they are for the user, the BIRCH Administrator's Guide

Replaceable web page componentsFigure 6
Replaceable web page components. This section of the
BIRCH home page contains links to documentation for desk-
tops that are installed on the local system. In this example,
the BIRCH distribution comes with links to two desktops
available on the University of Manitoba Unix system: the Java
Desktop and CDE. If BIRCH was installed at a site using the
KDE desktop, this section could be replaced with links to
KDE documentation. In each case, the 'First time setup' link
points to a document which needs to be locally-written at
each site, because of differences from site to site. In most
cases, all that needs to be done is to modify one of the 'First
time setup' documents distributed with BIRCH. The 'User's
Guide' link will typically point to a generic User's Guide for a
given desktop.
Page 7 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:54 http://www.biomedcentral.com/1471-2105/8/54
covers all aspects of local customization and addition of
new programs with step-by-step instructions, illustrated
with screenshots.

Results and Discussion
One of the problems with the decentralized PC model of
computing is that it implicitly makes every user a system
administrator. BIRCH frees biologists from system admin-
istration tasks, allowing them to focus on being users.

It could be argued that the single biggest limiting factor in
bioinformatics is not hardware or software or algorithms,
but the high learning curve needed to work with all but
the simpler tools. By handling the minor technical details,
the learning curve is shortened, allowing the user to con-
centrate on the theoretical considerations of running the
program. For tasks such as phylogenetic analysis, in which
numerous steps are required, analysis pipelines can be
built into a single menu. At the same time, inclusion of
programs in a pipeline does not negate the ability to use
each of them as standalone programs, where finer control
is needed for intermediate steps.

While GDE is not itself an object-oriented application, the
BIRCH implementation of GDE uses some OO strategies,
within the limitations imposed by the diverse ways in
which different programs represent the same types of
data. Most importantly, four GDE interfaces allow data to
have some of the behavior of objects. For example, a phy-
logenetic tree, regardless of how it was generated, will
appear in a tGDE window. The 'methods' of a tree object
would be implemented in the menus that appear in tGDE.
At a lower level of implementation, where there are com-
monalities in data types, a single script or program often
handles input or output for many programs. For example,
a single program parses the IDs for hits from BLAST or
FASTA, and sends output to files, viewers, or even dGDE.
In the latter case, the IDs are in the form of a list, which
could be used as input for databases queries.

BIRCH is flexible enough to accommodate programs writ-
ten any language, and documentation in many different
formats. While it is straightforward to install many soft-
ware packages side by side on any computer system, there
are usually few mechanisms for integrating them into a
single view for the user. In principle, programs and docu-
mentation could be added to a local copy of any bioinfor-
matics package. Depending on the package, it might be
necessary to revise programs and documentation to be
added to adhere to a specific requirements, such as an API,
or documentation format, respectively. These changes
would have to be re-integrated each time the package was
updated. BIRCH follows the opposite strategy. Since inte-
gration of local add-ons is a standard part of a BIRCH
update, updates do not break local changes.

As described above, BIRCH is also unique in supporting a
heterogeneous computing environment with multiple os/
hardware platforms coexisting. To make this possible,
there is only one version of BIRCH, not one for each plat-
form. BIRCH is organized around a core of platform-neu-
tral scripts and Java programs. Platform-specific binaries
and libraries are downloaded separately. While BIRCH
currently supports three platforms (Solaris-Sparc, Solaris-
AMD64, and Linux-Intel) it would be straightforward to
support other platforms. In fact, adapting BIRCH from
Solaris-Sparc to Solaris-AMD64 required less than one
person/week.

Conclusion
BIRCH is designed from the perspective of the biologist,
keeping in mind that ease of use is highly dependent on
ease of system management. For labs or institutions inter-
ested in setting up a central bioinformatics system, BIRCH
is a quick way of getting started. At the same time, the
organization and administration of an existing collection
of programs could be improved by integrating these into
a local copy of BIRCH.

Availability and requirements
Project name: BIRCH

Project home page: http://home.cc.umanitoba.ca/
~psgendb

Operating systems: Solaris, Linux

Other requirements: sh, csh, Python, Java

Restrictions: none

Acknowledgements
This work was funded in part by Genome Prairie and Genome Canada. Sys-
tem support was provided by Academic Computing and Networking, Uni-
versity of Manitoba. Early portions of this work were done on computers
provided by the Sun Academic Excellence Grants program. Thanks to Dr.
Christoph Sensen and the National Research Council Canadian Bioinfor-
matics Resource for providing access to systems for testing downloading
and installation of BIRCH. A special debt of gratitude goes to Dr. Eric Lin-
ton for updating the GDE program so that it would compile on current
computing platforms. Thanks to Sherrie Kelly for a critical reading of the
manuscript.

References
1. Fristensky B: Building a multiuser sequence analysis facility

using freeware. In Bioinformatics Methods and Protocols Edited by:
Misener S, Krawetz S. Humana Press; 1999:131-145.

2. Rice P, Longden I, Bleasby A: EMBOSS: The European Molecular
Biology Open Software Suite. Trends in Genetics 2000,
16:276-277.

3. Staden R, Beal KF, Bonfield JK: The Staden Package, 1998. In
Computer Methods in Molecular Biology, Bioinformatics Methods and Pro-
tocols Volume 132. Edited by: Misener S, Krawetz SA. Humana Press,
Totowa, NJ; 1998:115-130.

4. BioRPMS [http://apt.bea.ki.se/]
Page 8 of 9
(page number not for citation purposes)

http://home.cc.umanitoba.ca/~psgendb
http://home.cc.umanitoba.ca/~psgendb
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://apt.bea.ki.se/

BMC Bioinformatics 2007, 8:54 http://www.biomedcentral.com/1471-2105/8/54
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

5. Field D, Tiwari B, Booth T, Houten S, Swan D, Bertrand N, Thurston
M: Open Software for Biologists: from famine to feast. Nature
Biotechnology 2006, 24:801-803.

6. Carver T, Bleasby A: The design of Jemboss: a graphical user
interface to EMBOSS. Bioinformatics 2003, 19:1837-1843.

7. Kaptain extensions to EMBOSS [http://userpage.fu-berlin.de/
~sgmd/]

8. Kaptain [http://kaptain.sourceforge.net/]
9. Letondal C: A Web interface generator for molecular biology

programs in Unix. Bioinformatics 2001, 17:73-82.
10. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver

T, Glover K, Pocock MR, Wipat A, Li P: Taverna: A tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics 2004, 20(17):3045-3054.

11. Fristensky B: Network computing: Restructuring how scien-
tists use computers and what we get out of them. In Bioinfor-
matics Methods and Protocols Edited by: Misener S, Krawetz S. Humana
Press; 1999:401-412.

12. Fristensky B: Installing bioinformatics software in a server-
based computing environment. In Introduction to Bioinformatics
Edited by: Krawetz S, Womble DD. Humana Press; 2003:285-296.

13. Fristensky B: Management of a server-based bioinformatics
resource. In Introduction to Bioinformatics Edited by: Krawetz S,
Womble DD. Humana Press; 2003:297-306.

14. Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM: The
genetic data environment: an expandable GUI for multiple
sequence analysis. Comput Appl Biosci 1994, 10:671-675.

15. Linton E: MacGDE: Genetic Data Environment for MacOSX.
[http://www.msu.edu/~lintone/macgde/].

16. NCBI applications [ftp://ftp.ncbi.nih.gov]
17. Pearson WR: Flexible sequence similarity searching with the

FASTA3 program package. Methods Mol Biol 2000, 132:185-219.
18. Felsenstein J: PHYLIP – Phylogeny Inference Package (Version

3.2). Cladistics 1989, 5:164-166.
19. Notredame C, Higgins D, Heringa J: T-Coffee: A novel method

for multiple sequence alignments. J Mol Biol 2000, 302:205-217.
20. Gilbert D: Readseq. [http://iubio.bio.indiana.edu/soft/molbio/read

seq/java/].
21. XWin32 [http://www.starnet.com/]
22. CygWin [http://x.cygwin.com/]
23. Sun Secure Global Desktop [http://www.sun.com/software/

products/sgd/]
24. Real VNC [http://www.realvnc.com]
25. Paracel Blast [http://www.paracel.com]
26. Durbin R, Thierry Mieg J: A C. elegans Database. [http://

www.acedb.org].
27. Michalickova K, Bader GD, Dumontier M, Lieu H, Betel D, Isserlin R,

Hogue CW: Seqhound: biological sequence and structure
database as a platform for bioinformatics research. BMC Bio-
informatics 2002, 3:32.

28. Bruno WJ, Socci ND, Halpern AL: Weighted Neighbor Joining: A
Likelihood-Based Approach to Distance-Based Phylogeny
Reconstruction. Mol Biol Evol 2000, 17:189-197.
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16841067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512356
http://userpage.fu-berlin.de/~sgmd/
http://userpage.fu-berlin.de/~sgmd/
http://kaptain.sourceforge.net/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704666
http://www.msu.edu/~lintone/macgde/
ftp://ftp.ncbi.nih.gov
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964570
http://iubio.bio.indiana.edu/soft/molbio/readseq/java/
http://iubio.bio.indiana.edu/soft/molbio/readseq/java/
http://www.starnet.com/
http://x.cygwin.com/
http://www.sun.com/software/products/sgd/
http://www.sun.com/software/products/sgd/
http://www.realvnc.com
http://www.paracel.com
http://www.acedb.org
http://www.acedb.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12401134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12401134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10666718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10666718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10666718
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	I. The user' perspecitve
	A seamless view of the software
	GDE is a programmable interface
	Any user can do anything from anywhere

	II. Local customization of a birch system
	The $BIRCH/local directory
	Automatic updating of GDE interfaces
	Working in a heterogeneous computing platform
	Setting the user environment
	A single view of all documentation and datafiles
	Simplifying BIRCH system administration

	Results and Discussion
	Conclusion
	Availability and requirements
	Acknowledgements
	References

