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Abstract

Background: Protein-protein interactions are critical for cellular functions. Recently developed
computational approaches for predicting protein-protein interactions utilize co-evolutionary
information of the interacting partners, e.g., correlations between distance matrices, where each
matrix stores the pairwise distances between a protein and its orthologs from a group of reference
genomes.

Results: We proposed a novel, simple method to account for some of the intra-matrix
correlations in improving the prediction accuracy. Specifically, the phylogenetic species tree of the
reference genomes is used as a guide tree for hierarchical clustering of the orthologous proteins.
The distances between these clusters, derived from the original pairwise distance matrix using the
Neighbor Joining algorithm, form intermediate distance matrices, which are then transformed and
concatenated into a super phylogenetic vector. A support vector machine is trained and tested on
pairs of proteins, represented as super phylogenetic vectors, whose interactions are known. The
performance, measured as ROC score in cross validation experiments, shows significant
improvement of our method (ROC score 0.8446) over that of using Pearson correlations (0.6587).

Conclusion: We have shown that the phylogenetic tree can be used as a guide to extract intra-
matrix correlations in the distance matrices of orthologous proteins, where these correlations are
represented as intermediate distance matrices of the ancestral orthologous proteins. Both the
unsupervised and supervised learning paradigms benefit from the explicit inclusion of these
intermediate distance matrices, and particularly so in the latter case, which offers a better balance
between sensitivity and specificity in the prediction of protein-protein interactions.

Background

Protein-protein interactions play a key role in cellular
functions, and thus, to complement the experimental
approaches [1,2], many computational methods have
recently been developed in systems biology for predicting
whether two proteins interact, based on what is already
known about these proteins. One type of data used for
prediction is the phylogenetic profile of a protein - a

string of ones and zeros encoding respectively the pres-
ence and absence of the protein in a group of genomes,
conserved operons, gene fusions, etc. [3-6]. The rationale
is that interacting proteins tend to co-evolve, and there-
fore should have similar phylogenetic profiles. Recently,
to enhance the prediction accuracy, the focus has been
given to using the similarity of phylogenetic trees to infer
interactions between receptors and ligands [6-8].
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Of particular interest is the so-called mirror tree method
by Pazos and Valencia [6]. The mirror tree method pre-
dicts protein-protein interactions under the assumption
that the interacting proteins show similarity in the molec-
ular phylogenetic protein trees because of the co-evolu-
tion caused by the interaction. However, it is difficult to
directly evaluate the similarity between a pair of molecu-
lar phylogenetic trees. Instead, the mirror tree method
compares a pair of distance matrices by calculating the
Pearson correlation coefficient for the corresponding ele-
ments in the two matrices, and uses the correlation coeffi-
cient as a measure to evaluate the extent of co-
evolutionary behavior between two proteins.

To address the issue of high rate of false positives with the
mirror tree method, recently, Sato et al [9] suggested that
the information about the phylogenetic relationships of
the host genomes be excluded by a projection operation,
and only the residual information in the distance matrices
be used for the calculation of the correlation coefficient
between proteins. As a result, significant improvement in
prediction specificity was achieved, though at a cost of los-
ing some sensitivity. A similar yet more sophisticated
approach is proposed in Pazos et al [10] to correct the dis-
tance matrices based on the phylogenetic tree, which
incorporates information on the overall evolutionary his-
tories of the species (i.e., the canonical "tree of life"). In
addition to adjusting the distance matrices by excluding
the expected background similarity due to the underlying
speciation events, this tree of life mirror tree (tol-mirror-
tree) method can also detect non-canonical evolutionary
events, in particular horizontal gene transfers. While both
Pazos et al's tol-mirrortree method and Sato et al's projec-
tion approach are concerned with - and quite successful
at - removing some background from the inter-matrix
correlation, like the original mirror tree method they do
not directly address the intra-matrix correlations, which
can be informative and critical in revealing co-evolution.
For example, in some recent related studies, the columns
and rows of the distance matrices are reshuffled in an
attempt to discover maximal similarity between two
matrices in order to predict interaction specificity when
paralogs are involved [11-13].

In this work, we propose a novel, simple method to
extract the intra-matrix correlational information with ref-
erence to the species tree of the host genomes and to rep-
resent said information in a way that is conducive to a
supervised learning paradigm. We tested our method on
the same dataset used in [9], which consists of interacting
proteins from E. coli, where these interactions are experi-
mentally verified. The results from a series of leave-one-
out cross validation experiments showed that the predic-
tion accuracy was greatly increased with our data repre-
sentation method.

http://www.biomedcentral.com/1471-2105/8/6

Methods

Dataset

We selected the same data set as used in [9], so that the
performance of the different methods can be compared.
The 13 pairs of interacting proteins are from E. coli, and
the interaction within each pair has been experimentally
verified, as documented in the Database of Interacting
Proteins (DIP) [14], and no interaction outside the pair-
ing is known. So, these 26 proteins make up 26 x 25/2 =
325 distinct pairs but only 13 of them contain truly inter-
acting partners. For each of these 26 proteins, its putative
orthologs from 41 bacterial genomes are selected from
KEGG/KO database [15], and a 41 x 41 distance matrix is
constructed, giving the genetic distance between any pair
of these 41 orthologs. The genetic distances were calcu-
lated using the PROTDIST module in the PHYLIP package
[16] and the score table by Jones, Taylor, and Thornton
[17], from a multiple alignment of these 41 orthologous
proteins, constructed using MAFFT [18] software. The 13
pairs of proteins and the 41 source organisms are listed in
Tables 1 and 2 respectively.

The phylogenetic tree for these 41 reference bacterial
genomes was built from the 16S rRNA sequences using
the neighbor-joining module in PHYLIP package. The 16S
rRNA sequences were downloaded from the KEGG/
GENES database [15] and the Ribosomal Database
Project-II Release 9 [19].

Phylogenetic vectors and correlations

The original mirror tree method is proposed by Pazos and
Valencia [6] to infer protein-protein interaction from cor-
related evolutions. The hypothesis is that two proteins
should have a higher chance to share correlated evolu-
tionary history if they interact with each other than if they
do not. As the evolutionary history for a protein can be
represented as a phylogenetic tree (let's call it a protein
tree to distinguish from the species tree), it makes sense to
compare the two protein trees to reveal any correlation
between their evolutionary history. Instead of comparing
two trees directly, which is a highly nontrivial task in
terms of both algorithmic implementation and biological
interpretation, the mirror tree method uses as a surrogate
the distance matrices that store the genetic distance
between the protein and its orthologs in a group of
genomes. It is from these distance matrices that the pro-
teins trees are typically reconstructed using well known
algorithms such as Neighbor-Joining [20]. For two pro-
teins A and B, the mirror tree method compares their dis-
tance matrices D, and Dy, by examining how the
corresponding elements are correlated. Because the dis-
tance matrices are symmetric, only the elements in the
upper (or lower) triangle of the matrices are needed to cal-
culate the correlation, which is measured as the Pearson
correlation coefficient p as defined below:
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Table I: The 13 pairs of interacting proteins in E. coli
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Interacting pairs

| sucC sucD

2 atpA atpD

3 rpoA rpoB

4 secA secY

5 carA carB

6 ruvA ruvB

7 iscS iscU

8 dnaE dnaN

9 trpA trpB

10 tufB tsf

Il dnaA dnaB

12 grpE dnakK

13 clpX clpP

TS (D (i)~ Ave(D))(Dy (i )~ Ave(Dy) inner product betwe.el.l |vi> anq |u;6>), which is then sub-

pap = — == (1)  tracted from |v;>, giving a residue vector |&> defined as

Var(D, )Var(Dg)

where Ave and Var represent the average and the variance
of the elements in the upper triangle of a distance matrix,
respectively. To apply this method for prediction, the
Pearson correlation coefficient p is calculated for all dis-
tinct pairs of proteins, and these pairs are then ranked in
a non decreasing order of p. With a threshold preset on p,
the pairs with a higher correlation coefficient are pre-
dicted to be interacting pairs.

In two recent works [9,10], the measurement of correla-
tions is refined by excluding the information about the
phylogenetic relationships in order to overcome the prob-
lem of high rate of false positives reportedly present in the
predictions using the mirror tree method. The high rate of
false positives is believed to be caused by a high correla-
tion between non-interacting proteins, which can be
attributed to some common background shared by the
two corresponding distance matrices, because they all are
derived from orthologous proteins in the same set of n
source organisms. That is to say, these protein trees bear
some resemblance to the species tree. Sato et al therefore
propose to exclude the species tree resemblance from the
distance matrices before comparing them. Specifically, a
distance matrix R is computed for the 16S rRNA sequences
of these 41 genomes, from which the species tree can be
reconstructed. For convenience, all the rows in the upper
triangle of this 41 x 41 distance matrix are concatenated,
producing a vector of dimension 820, which we refer to as
|uy 6> Similarly, all the distance matrices for the protein
trees can be transformed into a vector form, of the same
dimension 820, which is termed the phylogenetic vector. Let
|vi> (i=1to 26) be a phylogenetic vector for one of the 26
proteins in the dataset, then the resemblance of |v;> to
|u,4> is measured by the projection < u,4|v; > (i.e., the

follow:
l&> = [vi> - [u60> (<65l vi>)  (2)

Then, the Pearson correlation coefficient (is calculated for
any pair of vectors |&> and |&>:

Pij = Zie=1 10 8204l e > - Ave(| & >)][| 9%( > - Ave(| g >)]}/N[Var(| & >)Var(| g >)], (3)

where | €%< > stands for the k-th component of vector | &>,

Ave and Var represent the average and variance of ele-
ments in a vector. It is shown in [9] that the specificity of
predictions using the subtracted vectors is significantly
improved, though at a cost of losing sensitivity.

In [10], phylogenetic trees (protein trees) are first recon-
structed from the multiple sequence alignments of orthol-
ogous proteins using the neighbor-joining algorithm
implemented in ClustalW. The protein distance matrices
are then derived from these trees by summing the length
of the branches connecting each pair of orthologous pro-
teins, which are represented as tree leaves. New distance
matrices for the proteins are obtained by subtracting from
each value the distance between the corresponding species
in the 16S rRNA distance matrix, termed as R. If we trans-
form the matrices into vectors in the same way as used in
[9], then the element-wise subtraction of 16S rRNA dis-
tance matrix R from a distance matrix P for a protein is
equivalent to subtraction of two corresponding vectors,

Ip'>=p>-|r> (2

where |p> is the phylogenetic vector derived from the
upper triangle of matrix P, and |r> is the vector from the
upper triangle of matrix R. The difference between Eq(2)
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Table 2: The 41 source organisms used to find orthologous
proteins

Escherichia coli K-12 MG1655
Salmonella typhi CT1 8

Samonella enerica

Samonella typhimurium LT2
Yersinia pestis CO92

Yersinia pseudotuberculosis
Shigella flexneri 301 (serotype 2a)
Photorhabdus luminescens
Pasteurella multocida

Mannheimia succiniciproducens
Vibrio cholerae

Vibrio vulnificus YJO16

Vibrio parahaemolyticus
Photobacterium profundum
Pseudomonas aeruginosa
Pseudomonas putida

Pseudomonas syringae pv. Tomato
Acinetobacter sp. ADPI
Shewanella oneidensis

Neisseria meningitides MC58 (serogroup B)
Chromobacterium violaceum
Ralstonia solanacearum

Bordetella pertussis

Bordetella parapertussis
Nitrosomonas europaea
Campylobacter jejuni NCTCI 1168
Rhodopseudomonas palustris
Bacillus subtilis

Bacillus halodurans

Bacillus anthracis Ames

Bacillus cereus ATCC 14579
Bacillus thuringiensis

Bacillus lucheniformis ATCC 14580
Oceanobacillus iheyensis
Staphylococcus aureus N315 (MRSA)
Staphylococcus epidermidis ATCC12228
Corynebacterium efficiens
Streptomyces avermitilis
Propionibacterium acnes
Rhodopirellula baltica (Pirellula sp.)
Anabaena sp. PCC7120 (Nostoc sp. PCC7120)

and Eq(2') can be seen more clearly as depicted geometri-
cally in Figure 1. It is noted that the resulting vector |&>
derived from Eq(2) is guaranteed to be orthogonal to the
phylogenetic tree orientation, whereas the resulting vector
from Eq(2') may still have non-zero projection along the
phylogenetic tree orientation, which can become minimal
when the two vectors are properly rescaled using a
"molecular clock" to about the same length [10]. It is also
worth noting that although having phylogenetic vectors
totally orthogonal to the phylogenetic tree orientation
may be mathematically sound and attractive, it by no
means necessarily leads to better learning and classifica-
tion, as many other factors may affect the similarity
between a pair of phylogenetic vectors, e.g., when there
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are horizontal gene transfers as pointed out and dealt with
in [10].

Super-phylogenetic vectors via TreeSec method

We propose a novel method to utilize the distance matri-
ces and the species tree for predicting protein interactions.
There are two major changes to the mirror tree method.
First, we augment the phylogenetic vectors with extra bits
that encode the topological information of the protein
tree with reference to the species tree. Second, in contrast
to the unsupervised learning scheme of the mirror tree
method, we adopt a supervised learning paradigm, specif-
ically the support vector machines, [20-22] to further tap
into the prior knowledge about interacting and non inter-
acting protein pairs. As all proteins are already represented
as the phylogenetic vectors of the same dimension, it is
convenient to concatenate the two vectors for any pair of
proteins and use the concatenated vector to represent the
pair. All pairs thus represented are then split into to two
subsets — one subset is used for training and the other for
testing.

The key contribution of our method comes with the data
representation, in which we augment the phylogenetic
vector, used in both the original and Sato et al's modified
version of mirror tree, with some organizational informa-
tion about the elements in the distance matrix; such infor-
mation reflects in a somewhat explicit way how the
protein tree is reconstructed from the distance matrix,
with reference to the species tree. In the mirror tree
method, all the elements in the distance matrix are treated
equally, as indicated by the un-weighted summation of
the product [D4(i, j) - Ave(D,)] [Dg(i, j) - Ave(Dg)] over
all (i, j) in calculating the Pearson correlation coefficient
as defined in Eq(1). The very rich intra-matrix correla-
tional information is almost entirely neglected and is con-
densed to just a single number - the average Ave(D,), to
which the deviation [D,(i, j) - Ave(D,)] is measured for
each element (i, j) and correlated with its counterpart
from the other matrix B and then factored into the inter-
matrix correlation p,;. For example, if element D, (i, j) is
above the average in the matrix D, and Dy(i, j) is above
the average in matrix Dy, then the product [D,(i, j) -
Ave(D,)] [Dg(i, j) - Ave(Dy)] is positively contributing to
the correlation p,5, and thus to the similarity. In another
case, if D,(i, j) is above the average in the matrix D, but
Dy(i, j) is below the average in matrix Dy, then the product
[DA(i, j) - Ave(D,)] [Dg(is j) - Ave(Dg)] is negatively con-
tributing to the correlation p,;, and thus to the similarity.
And each element in the distance matrix is treated inde-
pendently and equally. However, to a very large degree, it
is the intra-matrix correlations among the elements that
determine the protein tree, as manifested in the distance
based phylogenetic tree reconstruction algorithms such as
UPGMA and Neighbor-Joining [20]. For example, as
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shown in Figure 2, if (i, j) corresponds to two host
genomes i and j closely positioned in the tree and (i', j') to
a pair of distantly related genomes i' and j', then it makes
sense to weight [D,(i, j) - Ave(D,)] [Dg(i, j) - Ave(Dy)]
and [D,(i', j') - Ave(D,)] [Dg(i') j') - Ave(Dg)] differently
when contributing to the correlation p,in Eq(1). When
measuring matrix similarity, not only may elements in a
matrix contribute differently, but the very fact that a tree
can be reconstructed out a distance matrix imparts a clear
indication of some embedded "intra-matrix" correlations
among matrix elements. Therefore it is reasonable to
hypothesize that the matrix elements need to be
regrouped in a certain way such that the hierarchical rela-
tionships among matrix elements can be unraveled and
flattened to achieve the effect of "weighted" Pearson cor-
relation between two matrices. This is somehow similar to
the ideas in [11-13] where, to predict interaction specifi-
city among paralogous proteins, the rows and columns of
the distance matrices are reshuffled in order to find maxi-
mal similarity measured as inter-matrix correlation. As the
species tree bestows a hierarchy of relationships among
the host genomes, weighting the matrix elements in order
to reflect the intra-matrix correlations can become very
complicated. Here we propose a simple, novel way to
account for the intra-matrix correlations.

Specifically, we use the species tree (reconstructed by
neighbor-joining from a distance matrix of the 16S rRNA
sequences of the 41 host genomes) to generate a hierarchi-
cal clustering of the genomes, which correspondingly
gives a hierarchical clustering of the indices of the protein
distance matrices. Given a tree with the root at the top, a
"section" cut across the tree will give rise to clusters of
leaves, i.e., leaves within the same branch at the section
will belong to the same cluster. The number of clusters is
equal to the number of branches at the section, and is
determined by the tree and the height where the section is
cut - the higher the cut is, the fewer the number of clusters
is. For example, in Figure 3, section1 generates 4 clusters:
@, B, yand 6. Given a protein distance matrix D, for each
section, an intermediate distance matrix between all pairs
of clusters is derived from the original distance matrix as
follows.

D(a f) = Ziccajecd D DI/ICol 1G4l (4)

where |C,| and |C| are the size for the clusters C,and Cg
respectively. That is, the distance between two clusters C,,
and Cgis equal to the average distance between pairs of
orthologous proteins from each cluster. This definition of
distance between two clusters is the same as defined in
UPGMA during the tree reconstruction [20]. The interme-
diate distance matrix gives a "snapshot" of the evolution-
ary history about these orthologous proteins at the time,
marked as the tree height, where the section is cut. The

http://www.biomedcentral.com/1471-2105/8/6

snapshot - rather the intermediate matrix derived from it
- carries the information about how the hypothetical
ancient ancestors at that time are related to one another in
terms of evolutionary distance, from the perspective of the
protein being studied. Since the matrix is symmetric, only
the upper (or lower) triangle is needed, which can be
transformed into a vector form and concatenated to the
original phylogenetic vector in the mirror tree method.
The final representation of a protein is the original phylo-
genetic vector concatenated with all "snapshot" vectors,
which is called super-phylogenetic vector. Figure 3 gives a
schematic illustration of the procedure for generating the
super-phylogenetic vectors. The number of "snapshots" is
a free parameter in our method. One simple way to
remove this parameter is to use the full spectrum of sec-
tions, i.e., having a section made at each branching point
in the tree. The difficulty with this full spectrum approach
is that the number of sections is large, and many of the
neighboring sections are very similar to one another, and
therefore not adding much useful information to the phy-
logenetic vectors; rather it may inflate the dimension of
the resulting super-phylogenetic vectors up to 15,000 or
higher, which is beyond the capacity of the classifier used
in the study. Instead, a value of 6 is used as the number of
snapshots taken in the experiments, which yields a
dimension of 2386 for super-phylogenetic vector pairs
versus the 1640 for the original phylogenetic vector pairs.
One refinement made while generating the super-phylo-
genetic vector is to first adjust the distances, as defined in
neighbor-joining algorithm to remove the molecular
clock constraint assumed by the UPGMA:

d(i,j) =D(i j) - (+15) (5)
and
=2 D(i, k)/([L[-2) (6)

where |L| is the dimension of the matrix D. Another
refinement is to use the same projection procedure intro-
duced in Sato et al's modified mirror tree method Eq(2),
only now that |v;> and |u,4> are substituted with the
super-phylogenetic vectors. It should be noted that since
the background subtraction in tol-mirrortree method and
Sato et al's method also utilizes the phylogenetic tree,
combining the TreeSec procedure and background sub-
traction may introduce some redundancy.

The use of the species tree instead of individual protein
trees for hierarchical clustering has a twofold effect. One
effect is more theoretical; it is to reveal how individual
protein trees (embedded in the distance matrices) would
differ from the underlying species tree of the host
genomes, in the same spirit of subtracting the common
background as in [9,10]. The other effect is more prag-
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Geometric interpretation of subtracting phylogenetic background. Panel A corresponds to Eq(2), where a phylogenetic vector
|[v> is subtracted by the background vector |u,,>, the resulting vector |£> is guaranteed to be orthogonal to |u|,>. Panel B
corresponds to Eq(2'), where a phylogenetic vector |p> is subtracted by the background vector |r>, the resulting vector |p'>
may still have residual components along the orientation of |r>. Panel C shows that the resulting vector |p'> may become as
nearly orthogonal to [r> when the length of the vector |r> is properly rescaled.

matic; it ensures that the super-phylogenetic vectors thus
obtained have the same dimension for all proteins, and
therefore can be readily used as input to the support vec-
tor machine.

SYM

The classifier used here is a support vector machine. As a
powerful statistical learning method, support vector
machines (SVMs), originally proposed by Vapnik [21,22],
have recently been applied with remarkable success in
bioinformatics problems, including remote protein
homology detection, microarray gene expression analysis,
and protein secondary structure prediction [24].

There are a couple of reasons to use SVMs. First, the data
are already in the vector form, particularly suitable as
inputs for SVMs. Second, SVMs have been used to predict
protein-protein interaction in previous works [25,26],
though there the different properties of proteins are used.
We plan to have a comprehensive study of using SVM on
data from different sources, and more importantly, how
to combine them for better prediction. Third, SVMs have
some inherent advantages over other classifiers, includ-
ing: 1. quadratic programming to avoid local minima, 2.

geometric intuition, 3. lower Vapnik-Chervonenkis
dimension leading to better generalization, and 4. amica-
bility with small training samples, which all contribute to
its popularity as a classifier adopted in many applications.

The basic idea of SVMs is simple; it is to find a hyperplane
that separates two classes of objects, as represented as
points in a vector space, with the maximum margin to the
boundary lines. Such a hyperplane ensures good general-
ization and unseen data are then classified according to
their location with respect to the hyperplane. The power
of SVMs comes partly from the data representation, where
an entity, e.g., a pair of proteins, is represented by a set of
attributes. However, how those attributes contribute to
distinguishing a true positive from a true negative may be
quite complex. In other words, the boundary line between
the two classes, if depicted in a vector space, can be highly
nonlinear. The SVMs method will find a nonlinear map-
ping that transform the data from the original space,
called input space, into a higher dimensional space, called
feature space, where the data can be linearly separable.

In general, the mapping can be quite complex and the

dimension can be very (even infinitely) high in order for
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Protein A tree
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i Species tree
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Protein B tree
Figure 2

lllustration of how the elements of the distance matrices correspond to distances between leaves on the phylogenetic trees. In
matrix A, element (i, j) corresponds to a pair of neighboring genomes, whereas element (i', ') to a pair of genomes that are dis-
tantly positioned in the protein A tree, which can be reconstructed from matrix A using the standard methods, such as neigh-
bor-joining algorithm. Likewise, elements (i, j) and (i', ') in matrix B have similar interpretation as corresponding to the
respective pairs of genomes in the protein B tree. When comparing two proteins A and B by calculating the Pearson correla-
tion coefficients between the two corresponding matrices, the elements (i, j) and (i, j') should be weighted according to their
"importance" dictated by the positions in the trees. It is noted that although the two protein trees shown here have different
branch lengths but the same topology, in more complicated cases the tree topologies can also be different. In this study, how-
ever, the indices of the two matrices are mapped to the same tree, the species tree. The justification and effect of using the

species tree is explained in the text.

the mapped data to be linearly separable. The trick of
SVMs is the use of kernel functions, which define how the
dot product between two points in the feature space,
which is the only quantity needed to solve the quadratic
programming problem for finding the maximum margin
hyperplane in the feature space. The use of kernel func-
tions avoids explicit mapping to high dimensional feature
space; high dimensionality often poses difficult problems
for learning such as over-fitting, thus termed the curse of
dimensionality. Polynomial kernel and Gaussian kernel
are the two most commonly used generic kernels - linear
kernel is not really useful in most cases except when the
data are linearly separable. For vectors x and y, Gaussian
RBF is defined as

K(x, y) = exp[- (|x-y[?/Il.  (7)

and the polynomial kernel is defined as

K(x, y) =[1+s(x - y)lY,  (8)

where ¢, s and d are parameters adjustable in the software
package SVMLight [27]. Both kernels are experimented
with the default values for ¢, s and d, and the Gaussian ker-
nel yielded the best results reported in this paper. Because
the polynomial kernel performs significantly worse with
the default setting, we also tested with changing the poly-
nomial degree d from the default value (d = 3). We found
that the performance is quite sensitive to the degree.
Details are given in the next section. Besides using the sep-
aration of training and testing as a mechanism to alert us
to overfitting, another mechanism built into SVMLight for
avoiding overfitting is the use of "soft" margin, i.e., to
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section 1 snapshot

super-phylogenetic vector
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phvlogenetic vector
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Figure 3

Schematic illustration of TreeSec method to derive super phylogenetic vector from a distance matrix for a given protein from
the distance matrix of its orthologous proteins A, B, ..., H. Section | across the tree leads to four clusters of the orthologous
proteins: & = {A, B}, f={C}, 6={D, E, F}, and y= {G, H}. The distances among these clusters are calculated by Egs. (4-6),
resulting in an intermediate matrix. The procedure is repeated for all sections, producing more intermediate matrices. The
upper triangles of the matrices are transformed into vectors and concatenated (denoted by the symbol @) into a super phylo-
genetic vector. In this way, the phylogenetic vector is extended with extra "bits" that encode the topological information of the

protein tree with reference to the species tree.

allow for misclassification for some outlier training data
points, and a cap on the number of iterations to stop the
optimization process during the training even if the preset
error rate is not reached. And we have used SVMLight's
default setting for our experiments.

It is worth noting that, overall our method can be viewed
as a hybrid that employs in tandem both an explicit map-
ping, from phylogenetic vectors to super-phylogenetic
vectors, and the use of a generic kernel.

Results and discussion

We test our TreeSec method in a series of leave-one-out
cross-validation experiments on the data set described
above. To prepare an experiment, one of the 13 interact-
ing pairs is selected and reserved as the positive testing
example, and 48 non interacting pairs that contain one
protein from the positive testing example are reserved as
negative testing examples. The rest 325 - 49 = 276 pairs are
used as training examples, among which there are 12
interacting pairs as positive training examples. By rotating
the positive testing example among the 13 interacting
pairs, we can design 13 such leave-one-out cross valida-
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tion experiments, and the average performance is
reported.

For each experiment, the training examples are taken as
input to train a support vector machine. The implementa-
tion of the support vector machine is adopted from the
SVMLight package [27]. The two commonly used kernel
functions - polynomial, and RBF - are experimented with
the default parameter settings, and the Gaussian RBF ker-
nel function scored the best performance, which is
reported in Table 3. With the SVM trained, the 49 testing
examples are then input to it for prediction. A score with
real value between -1 and +1 is assigned by the SVM to
each testing example. Ideally, a positive score indicates a
predicted positive, whereas a negative score indicates a
predicted negative. This implies a perfect cutoff score at
zero. In practice, the cutoff score may be set at a different
value, other than zero. Indeed, its actual value does not
matter, as long as the predicted positives (i.e., with a score
higher than the cutoff) are true positive, and the predicted
negative (i.e., with a score lower than the cutoff) are true
negative. To evaluate the performance, we use the receiver
optical characteristic (ROC) score, which is the normal-
ized area under a curve that plots the number of true pos-
itives as the number of false positives when a moving
cutoff score scans from +1 to -1 [28]. The ROC score is 1
for a perfect performance, whereas a random predictor,
which will uniformly mix up positives and negatives, is
expected to get a ROC score 0.5. Some ROC curves for our
experiments are shown in Figure 4.

The ROC scores of the mirror tree method and our TreeSec
method, with a few variations, are reported in Table 3.
Since the mirrortree is an unsupervised learning method,
to be fair, we first use TreeSec in an unsupervised learning
manner, and compare the two. In this case, since there is
no training necessary, for each leave-one-out experiment,
only the testing examples are ranked by their Pearson cor-

Table 3: ROC scores

http://www.biomedcentral.com/1471-2105/8/6

relation coefficients as if they were scores output from a
classifier. The mirror tree method using the phylogenetic
vectors prepared via Sato et al's procedure receives a ROC
score 0.6587. A slightly higher ROC score (0.6731) is
obtained when everything is kept the same except for sub-
stituting the phylogenetic vectors with the super-phyloge-
netic vectors prepared via TreeSec method.

The advantage of TreeSec method becomes more obvious
when used in supervised learning. In this case, TreeSec
and MirrorTree are compared for their capability of repre-
senting proteins in a way which is more conducive for
classification. Once proteins are represented as super-phy-
logenetic vectors via TreeSec or as phylogenetic vectors via
MirroiTree, they are fed into the same classifier, in this
case, a SVM. As we see in Table 3, while the performance
of the phylogenetic vectors (MirrorTree) also improves
(ROC score 0.7212 with a degree 2 polynomial kernel),
the super-phylogenetic vectors prepared by TreeSec obtain
a significantly better ROC score (0.8446 with a default set-
ting Gaussian kernel). Because of the significantly worse
performance for polynomial kernel with a default degree
d = 3, we tested with changing the degree to different val-
ues and found that the performance is significantly better
for even values than odd values of d. This phenomenon
may be an indication of the parity of the hyperplane in the
feature space: symmetric with respect to changing the sign
of the coordinates. Overall in Table 3 better performance
has been noted for "TreeSec x 10" when the "snapshots"
are taken at a more spacious interval by multiplying the
tree height with a factor of 10. Because the distances
obtained from the PHYLIP software are typically small
fraction numbers, dividing the distances at the "cutting"
points tend to yield rounding errors, and a re-scaling of
the distances in the tree to bigger values proved to be help-
ful with avoiding such a problem. In Table 4, the effect of
the re-scaling factor of the learning performance is given,

Classification Data Representation ROC
Unsupervised (Pearson CC) MirrorTree 0.6587
TreeSec 0.6731
Gaussian Kernel SVM MirrorTree 0.7067
TreeSec 0.7436
TreeSec x 10 0.8446
TreeSec % 10 (no NJ) 0.7196
TreeSec x 10 (random tree) 0.5368
Polynomial degree 2 3 4 5

Polynomial Kernel SVM MirrorTree 0.7212 0.5353 0.7003 0.5577

TreeSec 0.7196 0.5657 0.7179 0.6074

TreeSec x 10 0.7051 0.6426 0.7468 0.6619

TreeSec % 10 (no NJ) 0.6987 0.5865 0.6907 0.6554

TreeSec x 10 (random tree) 0.4696 0.4583 0.4503 0.5048
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ROC Curves for Predictions using unsupervised learning with Correlation Coefficients and supervised learning with a SVM of

Gaussian kernel.

showing that Gaussian kernel is more affected by the res-
caling than is the polynomial kernel.

The dimension of the super-phylogenetic vectors from
TreeSec is obviously higher than that of the phylogenetic
vectors in MirrorTree, since the former is derived by con-
catenating extra bits of information to the latter. Although
this may raise concerns with a judicious reader about the

Table 4: ROC scores for TreeSec x N

fairness for comparing the two approaches if they have
different sizes of data, it should not be a problem in our
case, because we use the same amount of input data as the
Sato et al's approach - the same distance matrices with the
same size for proteins and the same distance matrix for
species (based on 16S rRNA sequences). The extra bits of
information are not really extra; they are the result of how
we unravel the information embedded in the input data.

N
Kernel 2 4 6 8 10 12 14
Gaussian 0.7564 0.7564 0.7612 0.7628 0.8446 0.8205 0.8013
0.6298 0.6298 0.6298 0.6522 0.7051 0.6779 0.6795

Polynomial (d = 2)
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In a sense, our method is a hybrid of combining the
explicit mapping (to higher dimension) and the use of
kernels, which may explain why our method bodes well
with the learning task. Nonetheless, care should be taken
to not let the increase of dimension go unchecked, as
redundancy may arise and lead to overfitting and bad gen-
eralization. That is part of the reason that only "snap-
shots" of evolutionary history are incorporated.

It is not surprising that the neighbor-joining distance
adjustment is essential; without it as shown in Table 3 the
performance decreases significantly (0.69). To verify that
the better performance indeed arises from incorporating
the intra-matrix correlations, we run the same experi-
ments on the data prepared using a random species tree,
we can see in Table 3 that the ROC scores are consistently
low at around 0.5 for cases when a random tree is used.

To further examine the performance, in Figure 4, ROC
curves are shown for those ROC scores reported in Table
3 for the unsupervised learning based on Pearson correla-
tion coefficient and for the supervised learning with a
Gaussian kernel SVM. Given the Y-axis as the true posi-
tives and X-axis as the false positives, the higher a curve
means more true positives are identified at cost of a given
number of false positives. It is consistent to note that
"TreeSec x 10" corresponds to the top curve overall. Also
remarkable is the steep slope for the two ROC curves cor-
responding to the unsupervised learning (CC:MirrorTree
and CC:TreeSec) at small false positive rates (X < 0.1). This
explains the high specificity for these unsupervised learn-
ing based on correlation coefficient, and is consistent with
what is reported in [9,10]. As moving to the right (i.e.,
when more false positives are made), these two curves
quickly lose the upward momentum (i.e., identify fewer
true positives), an indication of low sensitivity. Therefore,
the supervised learning using the SVMs in these experi-
ments offers a better balance between sensitivity and spe-
cificity.

It is worth noting that, the highly skewed learning prob-
lem is likely a reflection of situations in the real world, i.e.,
there are far more negatives than positives. In our case,
given n proteins that uniquely interact with only one
other member, there are only n/2 positive pairings among
the (n2- n)/2 possible pairings of these n proteins. That is,
the interacting network, with nodes representing the pro-
teins and edges representing the interactions, is quite
sparse, but our method is still applicable when there are
more edges. Because every possible pair of nodes is
assigned a score in our method, predictions can be made
by going down a list of all pairs that are ranked by their
scores in decreasing order. So, regardless the number of
the actual edges in the network (sparse or not), the
method works, and perfectly so as long as the true inter-

http://www.biomedcentral.com/1471-2105/8/6

acting pairs are ranked higher than non interacting pairs
in the prediction. Indeed, this scheme is also widely used
in predicting protein interaction networks in general,
both in an unsupervised paradigm such as the original
mirror tree method, and in a supervised learning para-
digm.

Conclusion

To summarize, in this work we developed a novel, simple
method to explore the intra-matrix correlational informa-
tion embedded in the distance matrices and incorporate
such information into a data representation which is con-
ducive to supervised learning. Three methods recognize
the importance of the phylogenetic tree, both Sato et al's
projection method [9] and Pazos et al's tol-mirrortree [10]
try to "subtract” from the similarity (measured as correla-
tion coefficients) the effect due to speciation rather than
the interaction pressures, whereas our method seeks to
"unravel" the intrinsic structure of the distance matrices
using the species tree as a guide and then "concatenate”
these snapshots of the evolutionary history to the current
view (i.e., the original ortholog distance matrices) of the
proteins. That is, the main difference between subtracting
and adding is that the former is more appropriate for
removing background noise so as to reduce false positive
and the latter is more appropriate for disentangling intra-
matrix correlations so as to aid a supervised learner.

As future work, we will study how the reconciliation
between protein trees and species tree can be more explic-
itly represented and how to associate selection pressure
imposed by the interaction to specific evolutionary
events, e.g., horizontal gene transfers.
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