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Abstract
Background: Predicting intrinsically disordered proteins is important in structural biology because they are
thought to carry out various cellular functions even though they have no stable three-dimensional structure. We
know the structures of far more ordered proteins than disordered proteins. The structural distribution of
proteins in nature can therefore be inferred to differ from that of proteins whose structures have been
determined experimentally. We know many more protein sequences than we do protein structures, and many
of the known sequences can be expected to be those of disordered proteins. Thus it would be efficient to use
the information of structure-unknown proteins in order to avoid training data sparseness. We propose a novel
method for predicting which proteins are mostly disordered by using spectral graph transducer and training with
a huge amount of structure-unknown sequences as well as structure-known sequences.

Results: When the proposed method was evaluated on data that included 82 disordered proteins and 526
ordered proteins, its sensitivity was 0.723 and its specificity was 0.977. It resulted in a Matthews correlation
coefficient 0.202 points higher than that obtained using FoldIndex, 0.221 points higher than that obtained using
the method based on plotting hydrophobicity against the number of contacts and 0.07 points higher than that
obtained using support vector machines (SVMs). To examine robustness against training data sparseness, we
investigated the correlation between two results obtained when the method was trained on different datasets
and tested on the same dataset. The correlation coefficient for the proposed method is 0.14 higher than that for
the method using SVMs. When the proposed SGT-based method was compared with four per-residue predictors
(VL3, GlobPlot, DISOPRED2 and IUPred (long)), its sensitivity was 0.834 for disordered proteins, which is 0.052–
0.523 higher than that of the per-residue predictors, and its specificity was 0.991 for ordered proteins, which is
0.036–0.153 higher than that of the per-residue predictors. The proposed method was also evaluated on data that
included 417 partially disordered proteins. It predicted the frequency of disordered proteins to be 1.95% for the
proteins with 5%–10% disordered sequences, 1.46% for the proteins with 10%–20% disordered sequences and
16.57% for proteins with 20%–40% disordered sequences.

Conclusion: The proposed method, which utilizes the information of structure-unknown data, predicts
disordered proteins more accurately than other methods and is less affected by training data sparseness.
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Background
Various kingdoms of life appear to have proteins or pro-
tein segments that lack a folded structure [1-3]. These pro-
teins and segments are thought to be intrinsically
disordered structures providing essential biological func-
tions [4-8], so predicting such disorder should help us
understand protein functions. Disorder have been found
in proteins involved in regulatory and signaling events
[4,9-11] and may provide conformational flexibility that
allows proteins to interact with several structurally differ-
ent targets [5,12,13].

Many studies have shown that the primary structure of
disordered regions is distinct from that of structured
regions [14], and this has encouraged the development of
many prediction methods based on the amino acid
sequence. PONDR [15], GlobPlot [16], DISOPRED
[17,18], VL3 [19], DISEMBL [20], IUPred [21], and
RONN [22] predict the probability of any given residue
being in a disordered region by using information about
the amino acid sequences near that residue. A different
approach predicts disorder by binary classification of
amino acid sequences into mostly disordered sequences
and mostly ordered sequences [23-25]. The former
approach is based on the view that features of the local
sequence are a more important than features of the whole
structure.

Two methods have been used for binary classification.
Uversky et al. suggested that a mostly disordered protein
sequence could be discriminated from an ordered one by
plotting the average hydrophobicity of the residues in the
sequence against the net charge of the sequence [23,24],
and that method has been implemented as the web-based
FoldIndex application [26]. Garbuzynskiy et al., on the
other hand, classified proteins as ordered or disordered by
estimating the number of contacts of the whole protein
[25]. Both methods classify a target protein by using a lin-
ear discriminant function.

Linear discriminant analysis, like other classification
methods, infers a discriminant function that minimizes
the misclassification of training data. The parameter opti-
mization of the linear equation is therefore strongly influ-
enced by the distribution of training data. In the
prediction of protein disorder, the analysis depends on
the protein sequences that are already known to be folded
or unfolded. The training will be successful if the amount
of training data is large enough to approximate the distri-
bution of all protein sequences. If the quantity of training
data is too small, however, the classification boundary
overfits to a local cluster of protein structures.

It is hard to find disordered proteins not only because pro-
tein structures are often determined by X-ray diffraction

analysis and information about proteins that could not be
crystallized for X-ray analysis is seldom reported but also
because not every failure to crystallize is due to disorder.
Previous studies have estimated the proportion of disor-
dered proteins in various genomes. PONDR estimated
that 60% of eukaryotic proteins and 28% of bacterial pro-
teins include disordered regions more than 40 residues
long [1,27]. DISOPRED2, on the other hand, estimated
that 33.0% of eukaryotic proteins and 4.2% of bacterial
proteins include disordered regions longer than 30 resi-
dues and estimated that no more than 0.5% of the
sequences in the Protein Data Bank (PDB) include disor-
der regions longer than 30 residues [2]. Despite the appre-
ciable frequency of disordered proteins, the sequences of
few mostly disordered proteins are publicly available.
Although the current version (release 3.3) of DisProt [28],
which is a public database providing information about
disordered proteins, provides the sequences of 458 pro-
teins, only 82 of those proteins are more than 70% disor-
dered.

We therefore think that protein databases might be biased
against disordered proteins. If there are a lot of unknown
disordered proteins, the structural distribution of proteins
in nature will differ from that of proteins whose structure
has been determined experimentally. Since training classi-
fiers on data biased in this respect neglects of the actual
distribution of natural proteins, the discriminative
boundary should be adjusted to compensate the sparse-
ness of the training data. Semi-supervised learning has
been gaining increasing attention for dealing with prob-
lems due to data sparseness. Conventional supervised-
learning methods, including support vector machines
(SVMs) and neural networks, use only labeled data when
optimizing the parameters of the discriminant function.
In binary classification, the labeled data is a set of samples
each of which is known to be positive or negative. When
semi-supervised learning builds a model to improve pre-
dictions, it takes into account not only the labeled data
but also the unlabeled data by adapting to the distribution
of unlabeled data.

A huge amount of known-sequence data is available. Uni-
Prot (UniProt50 release 48.9), for example, which is a
widely used database of protein sequences, contains
974,638 nonredundant proteins [29], many of which can
be expected to include a lot of disorder. We therefore,
think it efficient to utilize the information of structure-
unknown proteins by using semi-supervised learning to
avoid training data sparseness. And prediction that con-
siders a robust model will provide a new indicator for pro-
tein disorder.

In this study we developed a novel method for predicting
disordered proteins by using Joachims' spectral graph
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transducer (SGT) [30], which is a binary classification
algorithm based on semi-supervised learning. It con-
structs a k-nearest neighbor (kNN) graph with both
labeled and unlabeled examples as vertices, and the edge
weight between two vertices represents their similarity. If
the graph is separated into two subgraphs, both labeled
and unlabeled vertices are classified into two categories.
The SGT takes into account both the prediction accuracy
of labeled training data and the distribution of unlabeled
data, because it cuts the kNN graph so as to minimize
both the misclassification of labeled vertices and the sum
of edges weights across the cut. We apply the SGT to the
disorder prediction problem with structure-known
sequences as labeled data and structure-unknown
sequences, including query sequences, as unlabeled data.
The proposed method can therefore be used for training
both structure-known sequences and a huge amount of
structure-unknown sequences, and it creates a model that
incorporates a larger protein structural space. We exam-
ined how data with no structural information improves
the prediction of disordered proteins and we compared
the accuracy of the proposed SGT-based method with the
accuracy of an SVMs-based method and the accuracies of
two other previous methods. We compared this SGT-
based binary-classification method with per-residue
methods by comparing their predictions for both mostly
disordered proteins and mostly ordered proteins. We also
estimated the false positive rate when the proposed
method was used for partially disordered proteins.

Results and Discussion
Effect of structure-unknown proteins on disorder 
prediction
Since the SGT constructs a model on both labeled data
and unlabeled data, the accuracy of its predictions is influ-
enced structure-unknown sequences as well as structure-
known sequences. Here we examine how structure-
unknown sequences affect prediction accuracy.

Does structure-unknown data increase prediction accuracy?
We tested different quantities of unlabeled samples in
order to find out whether structure-unknown sequences
have a positive or negative effect.

The SGT classifies unlabeled data as either a disordered
protein or an ordered protein, so query sequences are also
treated as unlabeled data. We tried to increase prediction
accuracy by using as unlabeled data not only query
sequences but also large numbers of structure-unknown
protein sequences.

To investigate the effect of structure-unknown sequences,
we prepared different quantities of unlabeled samples
that were added to query sequences. Each set of unlabeled
samples (structure-unknown sequences) was chosen ran-

domly from the Swiss-Prot database. We prepared 10 dif-
ferent datasets for each experiment in order to avoid
sampling bias, and the results we obtained are shown in
Figure 1. Note that the x-axis in Figure 1 does not include
the number of query sequences, and the total number of
unlabeled samples in these experiments was the sum of
the number of query sequences and the number of pro-
teins selected from the Swiss-Prot database.

As shown in Figure 1, the maximum, minimum and aver-
age Matthews correlation coefficient (MCC) for the 10
datasets were highest in the experiment with 30,000 struc-
ture-unknown samples selected from the Swiss-Prot data-
base. The computational cost of building and
decomposing a kNN graph increases with the number of
examples, so smaller numbers of examples are more prac-
tical with respect to computation time. Since the average
MCC is almost the same for 30,000, 50,000 and 70,000
examples, 30,000 is the most practical number of exam-
ples as well as the one yielding the highest average MCC.

The recent research reported that regions of predicted dis-
order were found to be conserved within a large number
of protein families and domains [31]. The proposed
method considers information about conserved regions
through similarities among sequences. The results shown
in Figure 1 indicate that the proposed method effetely uti-
lized information about conservation of protein disorder.

Curated data or uncurated data?
To investigate whether classification accuracy is affected
by the quality of unlabeled samples, we used unlabeled
samples from three different databases: Swiss-Prot,
UniProt50 and TrEMBL. Each set of 30,000 or 70,000
unlabeled samples was chosen randomly, and we used 10
datasets from each database in order to avoid sampling
bias. The results are listed in Table 1. Swiss-Prot outper-
formed UniProt and TrEMBL, which indicates the quality
of unlabeled data is an important factor for prediction
accuracy.

Swiss-Prot is a reliable database, which is carefully organ-
ized by human curators. TrEMBL is a computer-annotated
supplement to Swiss-Prot, which contains amino acid
translations of all the EMBL nucleotide sequence entries,
including sequences automatically predicted by gene-
finding programs. UniProt consists of Swiss-Prot and
TrEMBL. This means that TrEMBL and UniProt might
include a lot of artificial translation of pseudogenes,
which are not translated into proteins in vivo. Such data-
bases containing noise sequences are inferred to have a
background distribution distinct from that of native pro-
tein sequences, and this distinction would have a negative
effect on prediction.
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Which similarity measurement is best?
SGT divides a kNN graph into two subgraphs for binary
classification. Since the edge weight of the graph repre-
sents the similarity of two vertices, a similarity measure-
ment for two protein sequences has to be defined. We
based predictions on three measurements (amino acid
composition, composition of physicochemical properties
and BLAST score) and examined which is best. The results
obtained using 30,000 structure-unknown sequences are
listed in Table 2. The amino acid composition yielded the
best results (most discriminative predictions), and the
BLAST score yielded the worst results (least discriminative
predictions). Compositionally based similarity measure-
ments were thus better for predicting dissimilar proteins
than was motif or sequence similarity measurement.

Comparison with previous methods
We compared the proposed method with two previous
methods: FoldIndex [23] and plotting hydrophobicity

against the number of contacts (hydrophobicity-contact-
number plot) [25]. FoldIndex output was obtained from
the web server provided by the Israel Structural Proteom-
ics Center, and we implemented a method for hydropho-
bicity-contactnumber plot because no web server or tool
was available. We optimized its parameters on the same
data we used for training our SGT-based method. For the
proposed method, amino acid composition similarity
measurement and 30,000 structure-unknown samples
were used. The results are listed in Table 3. The proposed
method yielded a MCC 0.202 points greater than that
obtained using FoldIndex and yielded a MCC 0.221
points greater than that obtained using the method calcu-
lating the number of hydrophobic residues in contact. We
also show Receiver Operating Characteristic (ROC) curves
in Figure 2.

The proposed method has two advantages over previous
methods. The first advantage is that it can construct a non-

Average (square), maximum (triangle) and minimum (X) values of Matthews correlation coefficient (MCC) for 10 different datasets in each of the seven experiments with different quantities of unlabeled dataFigure 1
Average (square), maximum (triangle) and minimum (X) values of Matthews correlation coefficient (MCC) for 10 different 
datasets in each of the seven experiments with different quantities of unlabeled data.
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linear classification boundary taking account of the back-
ground distribution of a large amount of protein
sequences, which enables the classifier to avoid training
data sparseness. The second advantage is that it uses more
information than the previous methods do. FoldIndex
and hydrophobicity-contactnumber plot postulate that a
few physicochemical properties of target proteins are the
main factor of disorder. Although this strategy provides a
simple and clear indicator, it overlooks many disordered
proteins because other complex factors are involved in
protein disorder. Classification over a larger feature space
should facilitate more accurate prediction. Simple indica-
tors cannot express some features of disorder. Plotting
average hydrophobicity against net charge or the number
of residues in contact, for example, does not always reflect
the sequence complexity, which is an important factor in
the discrimination of disordered proteins [32]. If an
amino acid that is used repeatedly has average hydropho-
bicity, net charge and contact number values, such infor-
mation will remain hidden. Although the composition of
the entire sequence cannot be used to distinguish the local
sequence complexity, it reflects long-range complexities.
We conjecture that the hydropobicity-vs-(net charge) and
hydropobicity-vs-(contact number) feature spaces should
be considered subsets of the amino-acid-composition fea-
ture space. The two advantages of the proposed method
enable it to identify more disordered proteins. For the
same false positive rate (5%), SGT found 23 disordered
proteins that FoldIndex or plotting hydrophobicity
against contact number did not find and found nine pro-
teins that neither previous method found. And neither
FoldIndex nor plotting hydrophobicity against contact

number found four disordered proteins that SGT did not
find (Figure 3).

Comparison with support vector machines
Many forms of biological data are classified using support
vector machines, neural networks, or other types of tradi-
tional machine learning. These algorithms are supervised
learning procedures where the classifier is trained on
labeled data. Spectral Graph Transducer, which is associ-
ated with semi-supervised learning, differs from other
forms of supervised learning in that it uses unlabeled data.
We also tested SVMs with the same features we use in SGT
in order to investigate whether semi-supervised learning
with unlabeled sequences is effective for predicting disor-
der. We compared SGT with SVMs, which is known to be
a powerful classifier and has been widely applied to bio-
logical data analyses, using amino acid compositions as
the feature vector. The SVMs package libSVM was used;
Performance of major three kernels (linear, polynomial,
RBF) was compared, and RBF kernel, which gave the best
result, was used. All parameters were tuned by grid-search.
For SGT, 30,000 structure-unknown samples were used.
These results are also shown in Table 3. SGT gave a MCC
0.07 points better than the SVMs did.

Supervised learning methods, including SVMs, are espe-
cially sensitive to the training data distribution when the
given data set is a small one. Therefore, if biased data are
provided, the predictive tendency will differ even if pre-
dictions are made using the same data. We compared the
predictive tendencies with different training data as fol-
lows: (1) evaluation data were divided into three groups

Table 2: Average sensitivity (SEN), specificity (SPC), two-state accuracy (Q2) and Matthews correlation coefficient (MCC) for 
predictions using different similarity measurements: amino acid composition (AA comp), physicochemical property composition (PP 
comp) and BLAST score.

SEN SPC Q2 MCC

AA Comp 0.684 0.978 0.938 0.718
PP Comp 0.569 0.982 0.926 0.650
BLAST Score 0.663 0.920 0.885 0.546

Table 1: Average sensitivity (SEN), specificity (SPC), two-state accuracy (Q2) and Matthews correlation coefficient (MCC) for 10 
different data sets in each experiment with different databases.

SEN SPC Q2 MCC

30000 unlabeled sequences
Swiss-Prot 0.684 0.978 0.938 0.718
Uniprot 0.581 0.976 0.922 0.636
TrEMBLE 0.567 0.980 0.925 0.643

70000 unlabeled sequences
Swiss-Prot 0.701 0.973 0.936 0.715
Uniprot 0.570 0.979 0.923 0.638
TrEMBLE 0.504 0.978 0.914 0.585
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(Data-A, Data-B and Data-C); (2) each datum was pre-
dicted using a classifier trained on different data; and (3)
the correlation coefficient between the two results was cal-
culated. (e.g., a classifier trained on Data-A classifies all
sequences from Data-C, another classifier trained on
Data-B also classifies all sequences of Data-C. and then
the coefficient of the correlation between two results is
calculated). The average correlation coefficient for SGT
was 0.14 higher than that for the SVMs (Table 4). An SGT-
based method, which uses a huge number of unlabeled
samples, makes prediction robust with regard to training
data sparseness. This result indicates that SGT prediction
is less affected by training data bias and provides accurate
predictions even with a poor data set. Experimentally
determined protein structures can potentially bias the
data set. Previous research has shown that discriminating
disorder from order is similar to finding the classification
boundary between crystal structures and solution struc-
tures [14]. This is an unavoidable problem as long as a
limited dataset is used, but distribution of structure-
unknown data modified the training data bias.

Comparison with per-residue predictors
There are many studies in which the probability of any
given residue being in a disordered region was predicted.
Although the methods used in those studies are not
directly comparable to our method, comparing the pro-
posed method to per-residue predictors gives helpful
information about the accuracy of the proposed method.

We select four successful per-residue predictors for com-
parison: VL3 [19], GlobPlot [16], DISOPRED2 [18] and
IUPred (long) [21]. The VL3, GlobPlot and IUPred (long)
results were obtained from web servers, and the
DISOPRED2 results were obtained from a stand-alone
program [33]. Detailed results are shown in Figure 4,
which shows the results of two types of evaluation. In the
graphs on the left side, showing results for mostly disor-
dered proteins (at least 70% of their residues are disor-
dered), the sensitivities of each per-residue predictor are
plotted against the SGT scores. In the graphs on the right
side, showing results for mostly ordered proteins (at least
95% of their residues are ordered), the false positive rates
of each per-residue predictor are plotted against the SGT
scores. The SGT gives each protein a score that shows how

likely the protein is to be disordered. It assigns positive
score when it predicts a query protein to be disordered.
For example, if a point is plotted in the lower right portion
of one of the graphs on the left, the proposed method can
correctly classify the target sequence while the corre-
sponding per-residue predictor cannot find a lot of disor-
dered residues.

Table 5 also compares per-residue sensitivity on mostly
disordered proteins, sensitivity and specificity on mostly
ordered proteins of the proposed method to those of per-
residue predictors. When we evaluated SGT prediction, we
regarded all residues of the target protein to be predicted
to be disordered if the SGT assigned positive score to the
protein. And we also regarded all residues of the target
protein to be predicted to be ordered if the SGT assigned
a negative score to the protein. (I.e., the sensitivity of the
proposed method becomes 0.7 if the SGT score is positive
and the query sequence includes 70 disordered residues
and 30 ordered residues).

DISOPRED2 and IUPred have low false positive rates on
mostly ordered proteins. DISOPRED2 successfully pre-
dicts short disordered regions in mostly ordered proteins
(proteins with an average disorder length of 2.47 residues
per sequence), but does not detect 35.5% of the disor-
dered regions in mostly disordered proteins (proteins
with an average disorder length of 228.54 residues per
sequence). VL3, on the other hand, successfully finds
78.2% of the disordered regions in mostly disordered pro-
teins but produces a lot of false positives on mostly
ordered proteins.

These per-residue predictors try to find exact position of
disorder by classifying a fixed window length to be disor-
dered or ordered. Because their prediction thus concen-
trates on the local trend of disorder, they miss the global
trend of disorder. And because a shorter window size
includes less information, the local trend of disorder is
more difficult to discriminate than the global trend of dis-
order. When a classification scheme such as neural net-
works or SVMs is used to determine a classification
boundary between similar examples, there is inevitably a
trade-off between getting a large number of false positives
and getting a large number of true positives. This trade-off

Table 3: Sensitivity (SEN), specificity (SPC), two-state accuracy (Q2) and Matthews correlation coefficient (MCC) for the proposed 
method (SGT), FoldIndex, the method plotting hydrophobicity against the number of contacts (HY-CN) and an SVMs-based method 
(SVMs).

SEN SPC Q2 MCC

SGT 0.723 0.977 0.943 0.744
FoldIndex 0.663 0.918 0.884 0.542
HY-CN 0.663 0.909 0.876 0.523
SVMs 0.614 0.979 0.930 0.673
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is strongly influenced by ratio of positive/negative train-
ing examples.

Predicting disorder by classifying proteins as mostly disor-
dered or mostly ordered is a rough approximation but has
the advantage of detecting long disordered regions with a
low false positive rate by neglecting short disordered
regions. The proposed method predicts 83.4% of the dis-
ordered regions in mostly disordered proteins, and its
false positive rate on mostly ordered proteins is only
0.9%. We therefore think insight is obtained by predict
both disordered regions and disordered proteins, since a
region-based-prediction provides information local

trends of disorder while a protein-based-prediction gives
information about large-area trends of disorder.

Evaluation on partially disordered proteins
Here we describe the results of prediction on partially dis-
ordered proteins. Not all proteins are mostly disordered
or mostly ordered and many are partially disordered. Eval-
uating our method on partially disordered proteins gave
us practical information we could use for estimating the
false positive rates that would occur when it is used for
large-scale genome analysis. As shown in Table 6, the pro-
posed method is insensitive for the partially (5–20%) dis-
ordered proteins, although the method can predict that

ROC curves comparing our SGT-based method and previous methodsFigure 2
ROC curves comparing our SGT-based method and previous methods.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

S
e
n
s
it
iv

it
y

SGT

FoldIndex

HY-CN
Page 7 of 15
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:78 http://www.biomedcentral.com/1471-2105/8/78
16.67% of the moderately (20–40%) disordered proteins
are disordered.

Prediction of disordered proteins in large databases
To provide illustrative examples of novel predictions
made by our SGT-based method, we made predictions on
several databases.

Ward et al., using DISOPRED2, estimated 18.9% of
eukaryotic genomes and 5.7% of bacterial genomes to be
disordered and found long (> 30 residues) disordered seg-
ments in 2.0% of archaean proteins, 4.2% of bacterial
proteins and 33.0% of eukaryotic proteins [2]. Bogatyreva
et al., evaluating the expected number of contacts, esti-
mated that 12%, 3% and 2% of the proteins in eukaryotic,
bacterial and archaean proteomes are totally disordered
and that long (> 41 residues) disordered segments occur
in 16% of archaean proteins, 20% of bacterial proteins
and 43% of eukaryotic proteins [34]. The proposed
method predicts that an average of 4.14% of archaean
proteins, 7.0% of bacterial proteins and 28.5% of eukary-
otic proteins are mostly disordered. The frequencies esti-
mated for 5 archaean, 14 bacterial and 5 eukaryotic
genomes, in addition to the overall totals for each

domain, are listed in Table 7. In line with the results of
previous genome-wide analysis, eukaryotic genomes are
predicted to code for much more disorder than prokaryo-
tic genomes do. This is consistent with much experimen-
tal evidence that has shown that dynamic flexibility of the
protein structure is more often related to eukaryotic pro-
tein function than to bacterial and archaean protein func-
tion [12].

The proposed method also predicts that 15.46% of all
sequences in the Swiss-Prot database are disordered. To
investigate functional annotations of those sequences that
were predicted to be disordered, we calculated the nor-
malized ratio of annotated GO molecular function terms:
R(T) = Rd(T)/Rs(T), where Rd(T) is the ratio of the proteins
annotated by GO term T to all the proteins predicted to be
disordered and Rs(T) is the ratio of the proteins annotated
by GO term T to all the sequences in the Swiss-Prot data-
base. The top 10 of the GO molecular function terms that
describe more than 50 protein annotations, the 10 with
the highest normalized ratios Rd(T) are listed in Figure 5.
The proposed method was biased to find transcriptional-
factor-related, RNA-binding-related and DNA-binding-
related proteins to be disordered. Binding to nucleic acids
requires interaction between the nucleic acid phosphate
backbone and charged amino acids, which have a propen-
sity for disorder (disorder propensities of amino acids and
physiochemical properties are shown in Figures 6 and 7).
Therefore it is not necessarily appropriate to suggest that
all RNA-binding and DNA-binding proteins need
dynamic flexibility, though previous papers have dis-
cussed the relation between disorder and proteins binding
RNA and DNA [2,10,31,35]. The global analysis over large
databases by the proposed method is an on-going study,
and in the future we will use the proposed method to find
new disordered proteins and will promote its use in fur-
ther functional analysis of disordered proteins in collabo-
ration with experimental laboratories.

Conclusion
In this study we proposed a semi-supervised learning
approach for predicting disordered proteins. Disordered
proteins are getting more and more attention because
many of them are found to be functionally important.
Few proteins however, are known to be disordered
because information about a protein that could not be
crystallized for X-ray analysis is seldom reported, even if
the protein might be disordered. We therefore expect the

Comparing true positives among the SGT-based method, FoldIndex and the method plotting hydrophobicity against the number of contacts (HY-CN)Figure 3
Comparing true positives among the SGT-based method, 
FoldIndex and the method plotting hydrophobicity against 
the number of contacts (HY-CN).
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Table 4: Correlation coefficients for the proposed method (SGT) and an SVMs-based method (SVMs) trained on different datasets.

Data-A Data-B Data-C Average

SGT 0.92 0.85 0.94 0.90
SVMs 0.83 0.83 0.63 0.76
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distribution of disorder among proteins whose structure
has been determined experimentally to differ from that of
disorder among all natural proteins. Since the predictions
made by previous methods are based on structure-known
data, they are strongly affected by the bias for information
about readily crystallized proteins. To avoid training data
sparseness and to structure the hypothesis space based on
the entire protein distribution, we have proposed a pre-
diction method that uses Joachims' spectral graph trans-
ducer and is trained on both structure-known sequences
and structure-unknown sequences.

This method yielded MCCs 0.202 points higher than the
MCC yielded by the method plotting hydrophobicity vs.
net charge (FoldIndex) and 0.221 points higher than the
MCC yielded by the method plotting hydrophobicity
against the number of contacts. When the false positive
rate was 5%, we found 23 disordered proteins that were
not found using those previous methods.

The proposed method predicts disorder by classifying pro-
teins as either mostly disordered or mostly ordered. While
such binary classification cannot detect partially disor-
dered regions that per-residue predictors can find, it has
the advantage of detecting long disordered regions by
neglecting short disordered regions. When the proposed
SGT-based method was compared with four per-residue
predictors-VL3, GlobPlot, DISOPRED2, IUPred (long)-its
sensitivity for disordered proteins was 0.834, which is
0.052–0.523 higher than that of the per-residue predictors
and its specificity for ordered proteins was 0.991, which is
0.036–0.153 higher than that of the per-residue predic-
tors. 

The main contribution of this paper is that it provides a
method in which structure-unknown protein sequences
are used to increase the accuracy with which disordered
proteins can be predicted. We compared the results
obtained using the proposed method with the results
obtained using a SVMs-based method that used the same
features that the proposed method used (the composition
of 20 amino acids). The proposed method resulted in a
MCC 0.07 points higher than the MCC obtained using the
SVMs-based method. When it and the method using SVMs
were trained on two different datasets and both methods
were tested on a third dataset, it provided an average cor-
relation coefficient that was 0.14 higher than that pro-
vided by the method using SVMs. The SGT-based
prediction was less affected by training data sparseness
and provided more accurate predictions when the data set
was a poor one. These results provide convincing evidence
for a positive effect of structure-unknown protein
sequences, and our SGT-based method is therefore able to
serve as a new indicator of disordered protein that consid-
ers the overall protein distribution in nature.

Methods
Materials
Disordered proteins
We downloaded the current version of DisProt (version
3.3) and extracted proteins having more than 70% disor-
der. Then we clustered those sequences by sequence simi-
larity of 30% using BASTclust, and selected representative
sequences. We thereby obtained 82 sequences.

Ordered proteins
The data was prepared according to the following proto-
col. Complex proteins were excluded because their folded
regions are possible to be unfolded on a single state.
Because X-ray crystallographic analysis induces artifactu-
ally missing residues, high-quality data and well-refined
data were selected in steps (2) and (3). BLASTclust was
used for task (6).

1. Extract single-chain proteins from Protein Data Bank.

2. Extract data that has a resolution better than 2 Å and an
observed R-factor less than 0.2.

3. Extract data determined by a newer version than
Refmac5, SHELXL97 or CNS.

4. Extract proteins that are more than 95% ordered.

5. Exclude proteins that show disorder in the central area
(between the 10th residue from the N-terminal end and
the 10th residue from the C-terminal end).

6. Choose a representative sequence with 30% similarity
to avoid redundancy.

We thereby obtained 526 sequences.

Unlabeled proteins
We used Uniprot50 (downloaded on 12 Jan 2006:
974,638 sequences), Swiss-Prot (release 48.9: 206,586
sequences), and TrEMBL (downloaded on 2 Feb 2006:
2,586,884 sequences). Short sequences tend to have a
biased amino acid composition, which adversely affects
prediction. We therefore excluded sequences shorter than
30 residues when it is used for semi-supervised training of
SGT.

Partially disordered proteins
the data were prepared according to the following proto-
col. Complex proteins were excluded because their folded
regions are possible to be unfolded on a single state.
Because X-ray crystallographic analysis induces artifactu-
ally missing residues, high-quality data and well-refined
data were selected in steps (2) and (3).
Page 9 of 15
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1. Extract single-chain proteins from Protein Data Bank.

2. Extract data that has a resolution better than 2 Å and an
observed R-factor less than 0.2.

3. Extract data determined by a newer version than
Refmac5, SHELXL97 or CNS.

4. Extract proteins that include more than 5% disorder.

Relations between the SGT score and the sensitivities and false positive rates of four per-residue predictorsFigure 4
Relations between the SGT score and the sensitivities and false positive rates of four per-residue predictors.
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We thereby obtained 417 sequences.

Protein sequences of 24 genomes
We used proteins sequences for 5 archaean, 14 bacterial
and 5 eukaryotic genomes that were downloaded on 18
August 2006 from the NCBI ftp server.

Spectral Graph Transducer
The spectral graph transducer (SGT) is a powerful binary
classification algorithm that was developed by Joachims
[30]. It is based on semi-supervised learning, which for
training makes use of not only labeled data (for which the
answer is known) but also unlabeled data (for which the
answer is unknown). This type of learning method often
improves the prediction accuracy obtained when only a
small amount of labeled data is available.

A goal of the classifier is to assign a label (either +1 or -1)
to unlabeled examples. The SGT takes into account the
information of unlabeled data by using a graph composed
of both labeled data and unlabeled data. Given a set of
labeled examples L = l0,...,lm and unlabeled examples U =
u0,...,un, the SGT constructs a k-nearest-neighbor graph G
with X = {U, L} as vertices. The graph G has n + m vertices,
and edge weights between the vertices represent the simi-
larity of the neighboring examples. The SGT assigns a
label (either +1 or -1) to U by dividing G into two sub-
graphs G+ and G- (∀ui ∈ G+ are assigned +1, ∀ui ∈ G- are
assigned -1) That is, G+ and G - define a cut in the graph.
The SGT chooses the cut so that it provides a small train-

ing error (i.e., an li that is labeled +1 should belong to G+),
has a low cut cost (i.e., it minimizes the sum of the edge
weights across the cut) and makes the ratio of positive
examples to negative examples in U the same as it is in L.
This strategy is implemented by minimizing:

where

and yi is the prediction score of xi. If yi > 0, +1 is assigned
to xi. The term γi is the penalty if xi ∈ L is misclassified.
Therefore γi is positive for xi ∈ L+, negative for xi ∈ L- and 0
for xi ∈ U. The c is a parameter that trades off training error
against cut cost, and C is a diagonal cost matrix that allows
different misclassification costs for each example.

The spectral graph transducer outperforms other semi-
supervised learning methods in many benchmark datasets
[30]. We used the SGT package SGTlight in our experi-
ments. Since classification accuracy is little affected by
changing the two parameters c (trade-off of wrongly clas-
sifying training data) and d (number of eigenvectors)
[30], we used c = 10,000 and d = 100. For the number of
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Table 5: Per-residue sensitivity (SEN) on mostly disordered proteins (average disorder length is 228.54) and sensitivity (SEN) and 
specificity (SPC) on mostly ordered proteins (average disorder length = 2.47) for the proposed method (SGT) and four per-residue 
predictors.

Mostly DISORDERED proteins
Ave DR length = 228.54

Mostly ORDERED proteins
Ave DR length = 2.47

SEN SEN SPC

SGT 0.834 0.009 0.991
VL3 0.782 0.562 0.880
IUPred (long) 0.666 0.262 0.955
Disopred2 0.645 0.780 0.954
GlobPlot 0.311 0.324 0.838

Specificity for mostly disordered proteins cannot be calculated because sequences selected from DisProt have no information for ordered regions. 
The 71 predictions by VL3 for mostly ordered sequences were excluded because the VL3 server does not return results for sequences that include 
ambiguous characters such as 'Z'.

Table 6: Frequency of partially disordered proteins predicted to be mostly disordered by the proposed method.

Disorder frequency f Number of proteins predicted to 
be disordered

Total number of proteins frequency of proteins predicted to 
be disordered (%)

5% ≤ f < 10% 5 256 1.95
10% ≤ f < 20% 2 137 1.46
20% ≤ f < 50% 4 24 16.67
Page 11 of 15
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Table 7: Estimated frequencies of disordered protein in 24 representative genomes.

Kingdom Species Number of total sequences Disordered protein frequency (%)

Archaea Halobacterium sp. NRC-1 2605 4.57
Archaea Pyrococcus horikoshii 1535 2.41
Archaea Thermoplasma volcanium 1526 3.87
Archaea Sulfolobus solfataricus 2977 3.76
Archaea Nanoarchaeum equitans 536 9.89
Bacteria Escherichia coli K-12 4302 4.21
Bacteria Acidobacteria bacterium Ellin345 4777 4.92
Bacteria Staphylococcus aureus RF122 2515 5.81
Bacteria Mycobacterium tuberculosis 

H37Rv
3991 4.03

Bacteria Fusobacterium nucleatum 2067 5.22
Bacteria Rhodopirellula baltica 7325 14.06
Bacteria Chlamydophila pneumoniae AR39 1110 9.91
Bacteria Treponema pallidum T. pallidum 1031 6.89
Bacteria Synechocystis sp. PCC6803 3454 5.07
Bacteria Porphyromonas gingivalis 1909 7.70
Bacteria Chlorobium tepidum C. tepidum 2255 7.54
Bacteria Dehalococcoides ethenogenes 1580 6.39
Bacteria Deinococcus radiodurans 3181 3.99
Bacteria Thermotoga maritima 1846 7.04
Eukaryota Arabidopsis thaliana 25545 22.51
Eukaryota Caenorhabditis elegans 22844 21.33
Eukaryota Drosophila melanogaster 19376 30.21
Eukaryota Homo sapiens 40877 36.85
Eukaryota Saccharomyces cerevisiae 5869 18.73

Archaea 9179 4.14
Bacteria 41343 7.00
Eukaryota 114511 28.50

The 10 GO molecular function terms with the highest normalized ratios RFigure 5
The 10 GO molecular function terms with the highest normalized ratios R.
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the one giving the best results (k = 100).

Similarity of two sequences
Because SGT is a kNN-based algorithm, the similarity of
two sequences must be defined. We used three types of
similarity measurement:

1. Amino acid composition
The amino acid composition is a basic property of pro-
teins. Figure 6 shows the disorder propensities of 20
amino acids. A vector with 20 elements for the amino acid
composition was used to calculate cosign.

2. Composition of physicochemical properties
Previous work has shown that composition alone is suffi-
cient to recognize disorder accurately. Even a reduced
alphabet of amino acids is useful for accurate prediction
[36]. Figure 7 shows propensity for disorder of 10 physic-
ochemical properties. We used a vector having 10 ele-
ments for physicochemical properties to calculate cosign.

The binary definition of the physicochemical features is
according to Zvelebil et al. [37].

3. Sequence similarity
Both of the two similarity measurements described above
are based on compositional biases of amino acids. We
also proposed a measurement based on sequence similar-
ity or local motif. Top k raw score of BLAST search are used
as similarity score between query sequence and database
sequences for constructing kNN graph. The database of
the BLAST search consists of training sequences.

Evaluation
We used five-fold cross validation for our experimental
evaluation as follows.

1. We separate evaluation data (608 sequences) into five
data sets and selected one (e.g., 121 or 122 sequences) for
test data. The rest of the data (486 or 487 sequences) was
used as training data.

Disorder propensities of 20 amino acidsFigure 6
Disorder propensities of 20 amino acids. Each propensity was calculated as Di/Oi, where Di is the frequency of amino acid 
Ai in disordered proteins and Oi is the frequency of amino acid Ai in ordered proteins.
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2. Labels of test data are hidden.

3. Construct k-NN graph using training data, test data and
proteins which are selected from Swiss-Prot.

4. Separate the k-NN graph into two (disordered or
ordered) for prediction. Each sequence of unlabeld data
(test data and proteins which are selected from Swiss-
Prot) was classified as disordered or ordered.

5. We evaluate the precision of test data.

Steps 1–5 were repeated five times with different training
data and test data.

Sensitivity (tp/(tp + fn)), specificity (tn/(tn + fp)), two-state
accuracy ((tp + tn)/(tp + tn + fp + fn)), false positive rate
(fp/(tn + fp)) and the Matthews correlation coefficient
(MCC) were used for the evaluation. Because sensitivity

and specificity are trade-off criteria, we needed a balanc-
ing criterion for the MCC. This criterion was calculated as

where tp is the number of true positives, tn the number of
true negatives, fp the number of false positives and fn the
number of false negatives.

Availability
Project Name: POODLE-W

Project Home Page: http://mbs.cbrc.jp/poodle/poodle-
w.html

Operating Systems: POODLE-W is a web application that
can be accessed from any OS.
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Disorder propensities of 10 physicochemical propertiesFigure 7
Disorder propensities of 10 physicochemical properties. Each propensity was calculated as Di/Oi, where Di is the fre-
quency of amino acids with the physicochemical feature Pi in disordered proteins and Oi is the frequency of amino acids with 
physicochemical feature Pi in ordered proteins. (HYP: hydrophobic, HYF: hydrophilic, CHG: charged, POS: positively charged, 
NEG: negatively charged, ARO: aromatic, ALI: aliphatic, TIN: tiny, SML: small, POL: polar)
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Programming languages: C++, Perl(for CGI program-
ming).

Restrictions to use by non-academics: none.
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