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Abstract
Background: Support Vector Machines (SVMs) provide a powerful method for classification
(supervised learning). Use of SVMs for clustering (unsupervised learning) is now being considered
in a number of different ways.

Results: An SVM-based clustering algorithm is introduced that clusters data with no a priori
knowledge of input classes. The algorithm initializes by first running a binary SVM classifier against
a data set with each vector in the set randomly labelled, this is repeated until an initial convergence
occurs. Once this initialization step is complete, the SVM confidence parameters for classification
on each of the training instances can be accessed. The lowest confidence data (e.g., the worst of
the mislabelled data) then has its' labels switched to the other class label. The SVM is then re-run
on the data set (with partly re-labelled data) and is guaranteed to converge in this situation since it
converged previously, and now it has fewer data points to carry with mislabelling penalties. This
approach appears to limit exposure to the local minima traps that can occur with other approaches.
Thus, the algorithm then improves on its weakly convergent result by SVM re-training after each
re-labeling on the worst of the misclassified vectors – i.e., those feature vectors with confidence
factor values beyond some threshold. The repetition of the above process improves the accuracy,
here a measure of separability, until there are no misclassifications. Variations on this type of
clustering approach are shown.

Conclusion: Non-parametric SVM-based clustering methods may allow for much improved
performance over parametric approaches, particularly if they can be designed to inherit the
strengths of their supervised SVM counterparts.

Introduction
Support Vector Machine
Support Vector Machines (SVMs) provide a very efficient
mechanism to construct a separating hyperplane (see Fig.

1), surrounded by the thickest margin, using a set of train-
ing data. Prediction is made according to some measure of
the distance between the test data and the hyperplane.
Cover's theorem states that complex pattern-classification
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problems can be transformed into a new feature space
where the patterns are more likely to be linearly separable,
provided that the transformation itself is nonlinear and
that the feature space is in a high enough dimension [1].
The SVM method achieves such a transformation by
choosing a qualified kernel.

The SVM is briefly reviewed here using the notation of [2],
more discussion is available there on implementation
issues. Feature vectors are denoted by xik, where index i
labels the M feature vectors (1 ≤ i ≤ M) and index k labels
the N feature vector components (1 ≤ i ≤ N). For the
binary SVM, labeling of training data is done using label
variable yi = ± 1 (with sign according to whether the train-
ing instance was from the positive or negative class). For
hyperplane separability, elements of the training set must
satisfy the following conditions: wβxiβ-b ≥ +1 for i such
that yi = +1, and wβxiβ-b ≤ -1 for yi = -1, for some values of
the coefficients w1,..., wN, and b (using the convention of
implied sum on repeated Greek indices). This can be writ-
ten more concisely as: yi(wβxiβ-b) -1 ≥ 0. Data points that
satisfy the equality in the above are known as "support
vectors" (or "active constraints").

Once training is complete, discrimination is based solely
on position relative to the discriminating hyperplane:
wβxiβ - b = 0. The boundary hyperplanes on the two classes
of data are separated by a distance 2/w, known as the
"margin," where w2 = wβwβ. By increasing the margin
between the separated data as much as possible the SVM's
optimal separating hyperplane is obtained. In the usual
SVM formulation, the goal to maximize w-1 is restated as
the goal to minimize w2. The Lagrangian variational for-

mulation then selects an optimum defined at a saddle
point of L(w, b; α) = (wβwβ)/2 - αγ yγ (wβxγβ-b) - α, where
α = ∑γαγ, αγ ≥ 0 (1 ≤ γ ≤ M). The saddle point is obtained
by minimizing with respect to {w1,..., wN, b} and maxi-
mizing with respect to {α1,..., αM}. Further details are left
to [2]. A Wolfe transformation is performed on the
Lagrangian [2], and it is found that the training data (sup-
port vectors in particular, KKT class (ii) above) enter into
the Lagrangian solely via the inner product xiβxjβ. Like-
wise, the discriminator fi, and KKT relations, are also
dependent on the data solely via the xiβxjβ inner product.
Generalization of the SVM formulation to data-depend-
ent inner products other than xiβxjβ are possible and are
usually formulated in terms of the family of symmetric
positive definite functions (reproducing kernels) satisfy-
ing Mercer's conditions [3,4].

SVM-internal clustering
Clustering, the problem of grouping objects based on their
known similarities is studied in various publications
[2,5,7]. SVM-Internal Clustering [2,7] (our terminology,
usually referred to as a one-class SVM) uses internal
aspects of Support Vector Machine formulation to find the
smallest enclosing sphere. Let {xi} be a data set of N
points in Rd (Input Space.) Similar to the nonlinear SVM
formulation, using a non-linear transformation φ, we
transform x to a high-dimensional space – Kernel space –
and look for the smallest enclosing sphere of radius R.
Hence we have:

||φ(xj) - a ||2 ≤ R2 for all j = 1,..., N

where a is the center of the sphere. Soft constraints are
incorporated by adding slack variables ζj:

We formulate the Lagrangian as:

where C is the cost for outliers and therefore C∑jζj is the
penalty term. Taking the derivative of L w.r.t. R, a and ζ
and setting them to zero we have:
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Support Vector Machine uses Structural Risk Minimization to compare various separation models and to eventually choose the model with the largest margin of separationFigure 1
Support Vector Machine uses Structural Risk Minimization to 
compare various separation models and to eventually choose 
the model with the largest margin of separation.
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Substituting the above equations back into the Lagrang-
ian, we have the following dual formalism:

By KKT relations we have:

ζjμj = 0 and βj(R2 + ζj - ||φ(xj) - a ||2) = 0.

In the feature space, βj = C only if ζj > 0; hence it lies outside
of the sphere i.e. R2 < ||φ(xj) - a ||2. This point becomes a
bounded support vector or BSV. Similarly if ζj = 0, and 0
<βj < C, then it lies on the surface of the sphere i.e. R2 =
||φ(xj) - a ||2. This point becomes a support vector or SV. If
ζj = 0, and βj = 0, then R2 > ||φ(xj) - a ||2 and hence this
point is enclosed with-in the sphere.

SVM-external clustering
Although the internal approach to SVM clustering is only
weakly biased towards the shape of the clusters in feature
space (the bias is for spherical clusters in the kernel space),
it still lacks robustness. In the case of most real-world
problems and strongly overlapping clusters, the SVM-
Internal Clustering algorithm above can only delineate
the relatively small cluster cores. Additionally, the imple-
mentation of the formulation is tightly coupled with the
initial choice of kernel; hence the static nature of the for-
mulation and implementation does not accommodate
numerous kernel tests. To remedy this excessive geometric
constraint, an external-SVM clustering algorithm is intro-
duced in [2] that clusters data vectors with no a priori
knowledge of each vector's class.

The algorithm works by first running a Binary SVM against
a data set, with each vector in the set randomly labeled,
until the SVM converges. In order to obtain convergence,
an acceptable number of KKT violators must be found.
This is done through running the SVM on the randomly
labeled data with different numbers of allowed violators
until the number of violators allowed is near the lower
bound of violators needed for the SVM to converge on the
particular data set. Choice of an appropriate kernel and an
acceptable sigma value also will affect convergence. After
the initial convergence is achieved, the (sensitivity + spe-
cificity) will be low, likely near 1. The algorithm now
improves this result by iteratively re-labeling only the
worst misclassified vectors, which have confidence factor
values beyond some threshold, followed by rerunning the
SVM on the newly relabeled data set. This continues until
no more progress can be made. Progress is determined by
an increasing value of (sensitivity+specificity), hopefully
nearly reaching 2. This method provides a way to cluster
data sets without prior knowledge of the data's clustering
characteristics, or the number of clusters. In practice, the

initialization step, that arrives at the first SVM conver-
gence, typically takes longer than all subsequent partial re-
labeling and SVM rerunning steps.

The SVM-External clustering approach is not biased
towards the shape of the clusters, and unlike the internal
approach the formulation is not fixed to a single kernel
class. Nevertheless, there are robustness and consistency
issues that arise in SVM-External clustering approache. To
rectify this issue, an external approach to SVM clustering
is prescribed herein, that takes into account the robustness
required in realistic applications.

Supervised cluster evaluation
Externally derived class labels require external categoriza-
tion that assume "correct" labels for each category. Unlike
classification, clustering algorithms do not have access to
the same level of fundamental truth. Thus, the perform-
ance of unsupervised algorithms, such as clustering, can't
be measured with the same certitude as for the classifica-
tion problems. In this paper the result of the clustering is
measured using the externally derived class labels for the
patterns. Subsequently, we can use some of the classifica-
tion-oriented measures to evaluate our results. These
measures evaluate the extent to which a cluster contains
patterns of a single class (see [4]).

The measures of prediction accuracy used here, Sensitiv-
ity, SN, and Specificity, SP, etc. are defined as follows:

SN = The fraction of positive patterns predicted correctly 
by the model = TP/(TP + FN)

SP = The fraction of predicted patterns that turns out to be 
positive = TP/(TP + FP)

nSN = The fraction of negative patterns predicted correctly 
by the model = TN/(TN + FP)

nSP = The fraction of predicted patterns that turns out to 
be negative = TN/(TN + FN)

The two measures used in this paper are Entropy and
Purity, and are based on the pair {SP, nSP}, see Discus-
sion for further details.

Cluster entropy and purity
Let pij be the probability that an object in cluster i belongs
to class j. Then entropy for the cluster i, ei, can be written
as:

W K C K x xi j ijij i ij i j= − ≤ ≤ = − −∑1 0 2
2 2β β β σ
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where J is the number of classes. Similarly, the purity for
the cluster i, pi, can be expressed as,

Note that the probability that an object in cluster i belongs
to class j can be written as the number of objects of class j
in cluster i, nij, divided by the total number of objects in
cluster i, ni, (i.e., pij = nij/ni) Using this notation the overall
validity of a cluster i using the measure fi (for either
entropy or purity) is the weighted sum of that measure
over all clusters. Hence,

where, K is number of clusters and N is the total number
of patterns. For our 2-class clustering problem:

p1 = max(SP, 1 - SP), p2 = max(nSP, 1 - nSP)

and:

purity = max((TP + TN)/(TP + FP + TN + FN); 1-(TP + TN)/
(TP + FP + TN + FN))

Although similar, entropy is a more comprehensive meas-
ure than purity. Rather than considering either the fre-
quency of patterns that are within a class or the frequency
of patterns that are outside of a class, entropy, takes into
account the entire distribution.

Unsupervised cluster evaluation
Unsupervised evaluation techniques do not depend on
external class information. These measures are often opti-
mization functions in many clustering algorithms. Sum-
of-Squared-Error (SSE) measures the compactness of a
single cluster and other measures evaluate the isolation of
a cluster from other clusters.

Sum-of-Squared-Error. SSE, in input space, can be written
as:

where for any similarity function s(x, x')

Due the arising mathematical complexity, it is often con-
venient to use Euclidean distance as the measure of simi-
larity. Hence,

s(x, x') = ||x - x'||2

Let φ: X → F and k(x, y) = {φ (x), φ (y)}, then Je can be
rewritten (this time feature space) as:

for

Note that SSE, like any other unsupervised criterion, may
not reveal the true underlying clusters, since the Euclidean
distance simplification favors spherically shaped clusters.
However, this geometry is imposed after the data was
mapped to the feature space.

Results
Re-labeler
The geometry of the hyperplane depends on the kernel
and the kernel parameters (see Figure 2). In Fig. 3, the
decision hyperplane is linear in the feature space, while in
Fig. 4 the decision hyperplane is circular in the feature
space. The clustering kernel used in Fig. 3 was the linear
kernel. The clustering kernel used in Fig. 4 was the poly-
nomial kernel (the linear kernel failed in this case).

In the following experiments clustering is performed on a
data set consisting of 8GC and 9GC DNA hairpin data
(part of data sets used in [2]). The set consists of 400 ele-
ments. Half of the elements belong to each class.
Although convergence is always achieved, convergence to
a global optimum is not guaranteed. Figures 5a and 5b
demonstrate the boost in Purity and Entropy (with the
RBF kernel) as a function of Number of Iterations, while
Fig 5c demonstrates this boost as decrement in SSE as a
function of Number of Iterations. Note that the stopping
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The choice of kernel along with a genuine set of kernel parameters is important as the above table summarizes some of the most popular kernels used for classification and clus-teringFigure 2
The choice of kernel along with a genuine set of kernel 
parameters is important as the above table summarizes some 
of the most popular kernels used for classification and clus-
tering.
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criteria for the algorithm is based on the unsupervised
measure of SSE. Comparison to fuzzy c-means and kernel
k-means is shown on the same dataset (the solid blue and
black lines in Fig. 5a and 5b). The greatly improved per-
formance of the SVM-External approach over conven-
tional clustering methods, consistent with results found
in prior work [2], strongly motivates further develop-
ments along these lines. This completes the Re-labeler as
an unsupervised method for clustering, further specifics
on the Method are left to that section.

Perturbation, random relabeling and hybrid methods
It is found that the result of the Re-labeler algorithm can
be significantly improved by randomly perturbing a weak
clustering solution and repeating the SVM-external label-
swapping iterations as depicted in Fig. 6. To explore this
further, a hybrid SVM-external approach to the above
problem is introduced to replace the initial random labe-
ling step with k-means clustering or some other fast clus-
tering algorithm. The initial SVM-external clustering must
then be slightly and randomly perturbed to properly ini-

The results of SVM-Relabeler algorithm using the linear kernelFigure 3
The results of SVM-Relabeler algorithm using the linear kernel.
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tialize the re-labeling step; otherwise the SVM clustering
tends to return to the original k-means clustering solu-
tion. A complication is the unknown amount of perturba-
tion of the k-means solution that is needed to initialize
the SVM-clustering well – it is generally found that a weak
clustering method does best for the initialization (or one
weakened by a sufficient amount of perturbation). The
results are shown in Figure 7. Note how the hybrid
method can improve over k-means and SVM-clustering
alone.

SV-dropper
As explained in the Discussion section, identifying the
hard-to-cluster data leads to the best overall performance.
These weakly clustering data points have the greatest
chance of being identified as noise, and therefore dropped
out of the dataset. Results from running SV-dropper on
the data are shown in Figure 8. The methods in the above
results can be used together: the Hybrid Re-labeler can be
run to get a solution, then backed off, using the SV drop-
per method, to establish highly accurate cluster "cores".
These cores can then be used to seed the SVM-ABC algo-
rithm, an area of ongoing work that is described in the
Discussion section.

Discussion
Comparison to conventional clustering approaches
The proposed SVM-External approach to clustering
appears to inherit the strengths of SVM classification – an
amazing prospect. It is a non-parametric approach due to
its manipulation of label assignment at the individual
data instance level – thus there is not a clearly stated
objective function (this is a strength). Solutions are global
since they correspond to the final, global, solution of the
SVM classification process. SVM-External solutions scale

with the size of the dataset according to how an SVM-clas-
sifier would scale, multiplied by the number of iterations
of the SVM (approximately 10, as a rough rule). Thus,
clustering scales quadratically with the size of the data,
but can be processed in chunks by the SVM according the
SVMs nice distributable training properties. For clustering
on multiple classes, the process would proceed along the
lines of a multiclass discrimination solution with a binary
SVM classifier – by iterative binary decomposition until
sub-clusters can't be split (the stopping criterion for the
decomposition). Comparison to established clustering
methods are shown in Fig. 5 (see Results) and are more
extensively explored in [4], where the overall strengths of
the SVM-External clustering approach are clearly evident.

Sum-of-Squares as a cluster evaluation
The fitness of the cluster identified by the SVM-external
algorithm is modeled using the cohesion of the clusters.
In other words, the fitness of a cluster can be tracked using
the compactness of that cluster as the algorithm
progresses. It is necessary to note that the notion of com-
pactness as a way to evaluate clusters favours spherical
clusters over clusters spread over a linear region. However,
this limitation does not normally affect our methodology,
since this limitation is imposed over the kernel space, and
not the input feature space.

Stopping criteria and convergence for Re-labeler 
algorithm
As depicted in Algorithm 1 below, Re-labeler consists of
two main parts: doSVM() and doRelabel() functions. Since
doRelabel() [Alg. 2] consists of sequential relabeling of a
finite set of labels with a finite alphabet ({-1,+1}) the con-
vergence of this function is always guaranteed. However,
the convergence of doSVM() depends on the underlying

The results of SVM-Relabeler algorithm using a third degree polynomial kernelFigure 4
The results of SVM-Relabeler algorithm using a third degree polynomial kernel.
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(a) and (b) show the boost in Purity and Entropy as a function of Number of Iterations after the completion the completion of the Re-labeler algorithmFigure 5
(a) and (b) show the boost in Purity and Entropy as a function of Number of Iterations after the completion the completion of 
the Re-labeler algorithm. (c) demonstrates SSE as an unsupervised evaluation mechanism that mimics purity and entropy as the 
measure of true clusters. The blue and black lines are the result of running fuzzy c-mean and kernel k-mean on the same data-
set.

(c)

(a) (b)
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SVM algorithm used. The particular SVM implementation
used in Re-labeler Algorithm is Sequential Minimal Opti-
mization, introduced by John C. Platt [8].

The basic stopping condition for the Re-labeler Algorithm
is when there are no relabelings left to be performed. In
terms of SSE, the unsupervised clustering measure, the
algorithm halts when SSE remains unchanged. However,
a decrease in SSE does not necessarily mean significant
improvement to the quality of the clustering. Therefore,
hypothesis testing and thresholding may prove useful
depending on the application and the nature and geome-
try of the clustering data.

SVM-ABC
New subtleties of classification-separation are possible
with support vector machines via their direct handling
and direct identification of data instances. Individual data
points, in some instances, can be associated with "support

vectors" at the boundaries between regions. By operating
on labels of support vectors and focusing on training on
certain subsets, the SVM-ABC algorithm offers the pros-
pect to delineate highly complex geometries and graph-
connectivity:

Split the clustering data into sets A, B and C

▪ A: Strong negatives

▪ C: Strong positives

▪ B: Weak negatives and weak positives

▪ Train an SVM on Data from A (labeled negative) and B
(labeled positive)

▪ The support vectors: SV_AB

The result of Re-labeler Algorithm with PerturbationFigure 6
The result of Re-labeler Algorithm with Perturbation. The top plots demonstrate the various Purity and Entropy scores for 
each perturbed run. The spikes are drops followed by recovery in the validity of the clusters as a result of random perturba-
tion. The bottom plot is a similar demonstration, by tracking the unsupervised quality of the clusters. Note that after 4 runs of 
perturbation best solution is recovered.
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▪ Similarly train a new SVM on Data from C (labeled pos-
itive) and B (labeled negative)

▪ The support vectors: SV_CB

▪ Our objective is that the SV_AB and SV_CB sets have
their labels flipped to be set A and C

▪ Regrow set A and C into the weak 'B' region.

▪ If an element of SV_AB is also in SV_BC, then the inter-
section of these sets are the elements that should be
flipped to class B (if not already listed as class B).

▪ Stop at the first occurrence of any of these events

• Set B becomes empty

• Set B does not change

Scoring binary classification conventions
In this paper we adopt the following conventions:

SN = TP/(TP + FN)

SP = TP/(TP + FP)

nSN = TN/(TN + FP)

nSP = TN/(TN + FN)

Bioinformatics researchers, in gene prediction for exam-
ple [5], take as primary pair: {SN, SP}; ROC people, or
people using a Confusion Matrix diagram, take as primary
pair {SN, nSN}; Purity/Entropy researchers use {SP,
nSP}; no one uses the pair {nSN, nSP} since it is a trivial
label flip from being {SN, SP}. Label flipping leaves the
sensitivity {SN, nSN} pair the same, similarly for the spe-
cificity pair {SP, nSP}. In other work we use the conven-
tions that are commonly employed in gene prediction,
and other instances where the signal identification is
biased towards identification of positives. Specifically,
they have two sets they focus on, the actual positives
(genes) and the predicted positives (gene predictions). For
gene prediction there is either a gene, or there is no-gene
(i.e., junk, or background noise). In situations where your
objective is to make the sets of actual positives (AP) and
predicted positives (PP) maximally overlap, SP = specifi-
city and SN = sensitivity are natural parameters and can be

(a) and (b) represent the SSE and Purity evaluation of hybrid Re-labeler with Perturbation on the same datasetFigure 7
(a) and (b) represent the SSE and Purity evaluation of hybrid Re-labeler with Perturbation on the same dataset. Data is initially 
clustered using k-means to initialize the Re-labeler algorithm. The first segment of the plot (right before the spike at 16) is the 
result of Re-labeler after 10% perturbation, while the second segment is the result after 30% perturbation. Purity Number of 
Iterations.

(b)(a)
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nicely described with a prediction accuracy Venn diagram
(similar to a confusion matrix). For the problem here, we
are adopting the purity/entropy measures to be in-line
with other efforts in the clustering research community, so
work with the pair {SP, nSP}.

Rayleigh's criterion
Rayleigh's criterion, also known as the Rayleigh Limit, is
used for the resolution of two light sources. In the case of
two laser beam sources falling upon a single slit, the reso-
lution limit is defined by the single-slit interference pat-
tern where one source's maximum falls on the first
minimum of the diffraction pattern of the second source.
This definition is used for resolving distant stars as single-
tons or identification of binary star systems, etc. In the
case of laser optics, the resolution of two sources can be
pushed beyond the Rayleigh limit due to tracking the sta-
tistics of the individual photons that arrive. The relevance
of all of this is that resolving two sources is equivalent to
saying that a binary clustering solution exists, i.e., that the
data is separable to some degree. If the clustering algo-
rithm tracks the data instances individually, as it does
with our SVM-external approach, we have a scenario anal-
ogous to the resolution in laser optics beyond the
Rayleigh limit.

Conclusion
A novel SVM-based clustering algorithm is explored that
clusters data with no a priori knowledge of input classes.
The resolution limit (i.e., clustering limit) of light sources,
the classical Rayleigh Limit (see Discussion above), was
eventually circumvented in laser-optics by probing the
instance-based quantum-statistical description of quanta
of light. With an SVM we have a non-parametric, instance-

based, tracking as well. We hope to build upon the novel
and powerful SVM clustering approach described here to
eventually show clustering resolution beyond the "Para-
metric Limit", a limit that is otherwise imposed by the typ-
ical, parameterized, clustering methods, where the data
isn't directly tracked but contributes to a parameterized
model. Along these lines, it is hoped that further develop-
ment of the SVM_ABC Algorithm described in the Discus-
sion can offer recovery of subtle graph-like connectedness
between cluster elements, a weakness of manifold-like
separability approaches such as parametric-based cluster-
ing methods.

Methods
SVM-relabeler

The SVM classification formulation is used as the founda-
tion for clustering a set of feature vectors with no a priori
knowledge of the feature vector's classification. The non-
separable SVM solution guarantees convergence at the
cost of allowing misclassification. The extent of slack is
controlled through the regularization constant, C, to

penalize the slack variable, ξ. If the random mapping ((x1,

y1),..., (xm, ym)) ∈ Xm × y is not linearly separable when

ran through a binary SVM, the misclassified features are
more likely to belong to the other cluster. Moreover, by
relabeling those heavily misclassified features and by
repeating this process we arrive at an optimal separation
between the two clusters. The basics of this procedure is

presented in Algorithm 1, where  is the new cluster

assignment for x and θ contains ω, α, y'.

Algorithm 1: SVM-Relabeler
Require: m, x

1.  ← Randomly chosen from {-1,+1}

2. repeat

3. θ ← doSVM(x, )

4.  ← doRelabel(x, θ)

5. until  remains constant

The doSVM() procedure can be any standard and com-
plete implementation of an SVM classifier with support
for nonlinear discriminator function. The idea is that
doSVM() has to converge regardless of the geometry of the
data, in order to provide the doRelabel() procedure with
the hyperplane and other standard SVM outputs. After this
procedure, doRelabel() reassigns some (or all) of the mis-

ŷ

ŷ

ŷ

ŷ

ŷ

Purity vs Percentage Dropped after 55 iterationsFigure 8
Purity vs Percentage Dropped after 55 iterations. At about 
78% drop the data set becomes too small and the statistics 
begin to have much greater variance.
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classified features to the other cluster. If D(xi, θ) is the dis-
tance between xi feature and the trained SVM hyperplane,
then heavily misclassified feature, xj ∈ J could be selected
by comparing D(xj, θ) to D(xj', θ) for all j' ∈ J. Algorithm
2 clarifies the basic implementation of this procedure.

Algorithm 2: doRelabel() Procedure
Require: Input vector: x

Cluster labeling: 

SVM model: θ

Confidence Factor: αIdentify misclassified features:

x'+ ← K misclassified features with  = +1

x'- ← L misclassified features with  = -1

1. for all ith component of x'+ do

2. if i/K ∑K
j = 1 D(x'+j, θ) <αD(x'+j, θ) then

3. i
+ ← -1

4. end if

5. end for

6. for all ith component of x'- do

7. if 1/L ∑L
j = 1 D(x'-j, θ) <αD(x'-j, θ) then

8. i
- ← +1

9. end if

10. end for

SV-dropper
In most applications of clustering, the dataset is com-
posed of leverage and influential points. Leverage points are
subsets of the dataset that are highly deviated from the rest
of the cluster, and removing them does not significantly
change the result of the clustering. In contrast, influential
points are those in the highly deviated subset whose inclu-
sion or removal significantly changes the decision of the
clustering algorithm. Effective, identification of these spe-
cial points is of interest to improve accuracy and correct-
ness of the clustering algorithm. A systematic way to
manage these deviants is given by the SV-Dropper algo-
rithm.

As depicted in Algorithm 3, SVM is initially trained on the
clustered data; the weakest of the cluster data – those clos-
est to the hyperplane, i.e., the support vectors – are
dropped thereafter. This processed is repeated until the
desired ratio of accuracy and number of data dropped is
achieved.

Algorithm 3: SV-Dropper Algorithm
Require: Input vector: x

Cluster labeling: 

1. let:

x+ ← K features with y = +1

x- ← L fatures with  = -1

2. repeat

3. θ ← doSVM(x, y)

4. for all features, xj,

5. drop feature, xj, if |D(xj, θ)| < 1 end for

6. until desired ratio of SSE and number of data dropped
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