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Abstract
Background: Mean-based clustering algorithms such as bisecting k-means generally lack
robustness. Although componentwise median is a more robust alternative, it can be a poor center
representative for high dimensional data. We need a new algorithm that is robust and works well
in high dimensional data sets e.g. gene expression data.

Results: Here we propose a new robust divisive clustering algorithm, the bisecting k-spatialMedian,
based on the statistical spatial depth. A new subcluster selection rule, Relative Average Depth, is also
introduced. We demonstrate that the proposed clustering algorithm outperforms the
componentwise-median-based bisecting k-median algorithm for high dimension and low sample size
(HDLSS) data via applications of the algorithms on two real HDLSS gene expression data sets.
When further applied on noisy real data sets, the proposed algorithm compares favorably in terms
of robustness with the componentwise-median-based bisecting k-median algorithm.

Conclusion: Statistical data depths provide an alternative way to find the "center" of multivariate
data sets and are useful and robust for clustering.

Background
In gene expression studies, the number of samples in most
data sets is limited, while the total number of genes
assayed is easily ten or twenty thousand. Such high
dimension and low sample size data arise not only com-
monly in genomics but also frequently emerge in various
other areas of science. In radiology and biomedical imag-
ing, for example, one is typically able to collect far fewer
measurements about an image of interest than the
number of pixels.

These HDLSS data present a substantial challenge to many
methods of classical analysis, including cluster analysis. In
high dimensional data, it is not uncommon for many
attributes to be irrelevant. In fact, the extraneous data can
make identifying clusters very difficult [1]. Robust cluster-
ing methods are needed that are resistant to small pertur-
bations of the data and the inclusion of unrelated
variables [2].
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The bisecting k-means algorithm is a hybrid of hierarchi-
cal clustering and the k-means algorithm. It proceeds top-
down, splitting a cluster into two in each step, after which
it will select one cluster based on a selection rule (com-
monly the cluster with the largest variance) to further
split. In each splitting step, it randomly picks a pair of data
points that are symmetric about the "center" of the data
and assigns all other data points to one cluster or the other
based on distance to the two selected points, thus the
algorithm is similar to the k-means algorithm. The center
is usually the mean. This whole process continues until
each point is a cluster or a predefined number of clusters
is reached.

Similar to other commonly used methods that are based
on mean, e.g. k-means, bisecting k-means is not robust
because the mean is susceptible to outliers and noise [3].
As a common remedy, the bisecting k-median algorithm,
which replaces the mean by the componentwise median,
is less sensitive to outliers. However, the componentwise
median may be a very poor center representative of data,
because it disregards the interdependence information
among the components and is calculated separately on
each component (dimension). For example, the compo-
nentwise median of the points (a, 0, 0), (0, b, 0) and (0,
0, c) for arbitrary reals a, b, c is (0, 0, 0) which even does
not lie on the plane passing through the three points.

A new center representative for multivariate data that is
robust and takes into account the interdependence among
the dimensions is clearly needed.

Of the various multivariate medians, however, those
defined via statistical depth functions are advantageous
because the theory of statistical depth has been quite
nicely established, though it is still relatively young and
still under development. Analogous to linear order in one
dimension, statistical depth functions provide an order-
ing of all points from the center outward in a multivariate
data set. Linear order induces an ordering and ranking for
1-dimensional observations. Median is the "deepest"
point in the data set. In contrast, for dimension d ≥ 2,
there is no natural order. As compensation, it is conven-
ient and natural to orient to a "center", the deepest point,
that is, the multivariate median. This leads to center-out-
ward ordering of points and to a description in terms of
nested contours. Tukey [4] first introduced halfspace
depth. Oja [5] defined Oja depth. Liu [6] proposed sim-
plicial depth. Zuo and Serfling [7] considered projection
depth. Other notions include Zonoid depth [8], general-
ized Tukey depth [9], and spatial depth [10] among oth-
ers. See [7] for a systematic exhibition.

Of the various depth functions, the spatial depth is espe-
cially appealing because of its computational ease and

mathematical tractability, see Vardi [11], Serfling [12],
Chaudhuri [10] and Koltchinskii [13] among others. The
spatial depth (SPD) of a point x w.r.t. a distribution F is
defined as

SPD(x, F) = 1 - || FS(x - X)||, x ∈ �d,

where S(x) = x/||x|| is the spatial sign function (S(0) = 0)
with Euclidean norm ||·||. The sample spatial depth is

where Fn(x) is the empirical distribution function of the
data X1,...,Xn. Points deep inside the data cloud have high
depth values, while the points on the outskirts have lower
depth values.

Figure 1 illustrates the spatial depth. Let ei = S(y -xi) = (y -

xi) = (||y - xi||) where ei represents the unit vector from y to

xi. When y is located deep inside the cloud of x's, summing

up ei will result in a vector close to , since unit vectors

have different directions and they cancel each other out.
The depth of y is approaching 1. See the diagram on the
left in Figure 1. When y is outside the data cloud (as in the
diagram on the right in Figure 1), the sum of ei has a large

norm, thus the depth is approaching 0. The point where
the spatial depth attains its maximum value 1 is called the
spatial median. The spatial median represents the geomet-
ric center of the data, in particular, for a symmetrical dis-
tribution, the spatial median is the symmetric center. The
spatial depth and the spatial median possess many nice
properties. Robustness is one of them.

From the definition of the sample spatial depth, it is not
difficult to see that the depth value of a point x does not
change if any observations are moved to ∞ along the rays
connecting them to the point x. Thus the spatial depth and
the spatial median are highly robust in the presence of
outliers. In fact, the breakdown point of the spatial
median is 1/2, depending on neither the data nor the
dimension and reaching the highest possible value for the
translation equivalent location estimator. Here the
"breakdown point" is the prevailing quantitative measure
of robustness proposed by Donoho and Huber [14].
Roughly speaking, the breakdown point is the minimum
fraction of the "bad" data points that can render the esti-
mator beyond any boundary. It is clear to see that one bad
point of a data set is enough to ruin the sample mean.
Thus, the breakdown point of mean is 1/n → 0, the lowest
possible value. That is, the sample mean vector is not
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robust, hence neither is the clustering method k-means
which is based on nonrobust sample means.

Unlike the componentwise median, the spatial median is
equivariant under orthogonal transformations (e.g. rota-
tions) of the data though it is not equivariant under gen-
eral affine transformation. The spatial median may not be
a reasonable estimate when the scale of different coordi-
nates of the data are widely different. It is, however, very
desirable for preprocessed gene data, where variables are
isometric.

The complexity of the spatial median is O(n2) for sample
size n regardless of the dimension. This independence of
dimension is particularly important for HDLSS data
because high dimension usually causes problems for clas-
sical methods.

In our bisecting k-spatialMedian algorithm, we propose
the use of a robust spatial median to replace the non-
robust mean or the less-robust componentwise median to
determine the center of the data. The bisecting k-spatial-
Median algorithm is shown to be more robust than the
bisecting k-median algorithm in high dimension.

For the selection criterion, we replace the largest variance
criterion, which is sensitive to outliers, and propose a

depth-based notion, relative average depth (RAD), which
characterizes the separatedness of a data set. With its range
in [0, 2], a smaller value of the relative average depth indi-
cates less separatedness and a larger value is an indication
of higher separatedness. Indeed, in conjunction with the
robust spatial median, we can use any existing selection
criterion, including largest variance.

Results and discussion
Simulation study
To demonstrate the difference in performance between
algorithms based on the spatial median and the compo-
nentwise median, we conduct a simulation of four clusters
in �3, see Figure 2. Clusters I and II are comprised of data
points (X, 0, 0) with X generated from the uniform distri-
butions U(1.5, 2) and U(2.5, 3); and clusters III and IV
comprised of data points (0, Y, 0) and (0, 0, Z) with Y
from U(0.5, 1.2) and Z from U(3.5, 4.5), where III and IV
have the same sample size equaling the sum of the sample
sizes of I and II. We observe that the bisecting k-median
completely fails to separate the four clusters, while the
proposed bisecting k-spatialMedian successfully finds the
four clusters. As shown in Figure 2, the four clusters were
perfectly identified by the bisecting k-spatialMedian algo-
rithm. Since the output of the bisecting k-median is the
whole data set, its graph is in one color, without identifi-
cation of clusters.

Illustration of spatial depth functionFigure 1
Illustration of spatial depth function. y1 is located deep inside the cloud of x's, summing up e will result in a vector with the 

norm close to , since unit vectors have different directions and they cancel each other out. The depth of y1 is approaching 1. 
y2 is outside the data cloud, the sum of e has a large norm, thus the depth is approaching 0.
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The phenomenon observed in the above simulated data
seems unrepresentative because the data structure appears
so contrived. But actually this is a quite general structure
for HDLSS data. In fact, Hall et al. [15] show that there is
a tendency for HDLSS data to lie deterministically at the
vertices of a regular simplex and all the randomness in the
data appears as a random rotation of this simplex. Based
on this geometric representation, we have shown that the
angle between any two distinct data points centered at
their common mean is approximately perpendicular, and
all these centered data points will lie on the coordinate
axes. See the Methods section for more details.

The bisecting k-spatialMedian algorithm
Based on the spatial median, we propose the bisecting k-
spatialMedian algorithm. Specifically, the bisecting k-spa-
tialMedian algorithm recursively splits a cluster by ran-

domly choosing one point CL as the center of one
subcluster. Let C be the spatial median of the whole data
set. Then the center CR of the other subcluster is deter-
mined as the symmetric point of CL about C, namely, CR =
C - (CL - C). Every point X in the cluster is assigned to the
subcluster containing CL or CR according to the smaller
Euclidean distance ||X - CL|| or ||X - CR||. This process is
repeated until the convergence criterion is met, namely,
the centers of the subclusters no longer change. After the
cluster is split into two subclusters, a selection rule is
needed to determine which subcluster is to be further
split.

The basic bisecting k-spatialMedian algorithm follows:

INITIALIZE:

Simulation to demonstrate the different performance of spatial median and medianFigure 2
Simulation to demonstrate the different performance of spatial median and median. For the four simulated clus-
ters, the bisecting k-median failed to identify the four clusters, while the proposed bisecting k-spatialMedian successfully sepa-
rated them, as shown by the four colored group.
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K: number of clusters

C: center (spatial median) of the data cluster

CL: center of left subcluster

CR: center of right subcluster

FOR i = 1 to K - 1 do

choose a cluster to split by the selection rule

randomly select a point CL as center of left subcluster

compute CR = C - (CL - C)

for j = 1 to MAXITER do

for each data point Xi

if ||Xi - CL|| ≥ ||Xi - CR||

assign Xi to the right subcluster

else

assign Xi to the left subcluster

end

Let ML be the spatial median of the left subcluster

Let MR be the spatial median of the right subcluster

if ML == CL and MR == CR

break

CL = ML

CR = MR

end

END

Subcluster selection rule
In the bisecting k-spatialMedian algorithm, we need to
decide which cluster is to be further split in each step.
Selecting the one with the largest variance is a very com-
mon approach. Here we propose a new rule based on the
statistical spatial depth.

Suppose that a data set is naturally composed of two clus-

ters J1 and J2. Let  be the sum of spatial depth values

of all data points in J1 with respect to J1. Let  be the

sum of spatial depth values of all data points in J2 with

respect to J2. Note that  or  represents "within-

depth", because it is calculated with respect to the cluster

to which the data points belong. Let  be the sum of

spatial depth values of all data points in J1 with respect to

J2. Similarly, let  be the sum of spatial depth values of

all data points in J2 with respect to J1.  or  repre-

sents ''between-depth", because it is calculated with
respect to the other cluster. See Figure 3 for a graphic dis-
play. The within-depth is larger when a cluster is more
condensed whereas the between-depth is smaller when
two clusters are further away from each other.

Let |J1| and |J2| represent the number of data points in J1
and J2 respectively. The relative average depth is defined as

As shown from Figure 3, if a data set is naturally com-
posed of two clusters and thus should be split into two,
the within-depth should be relatively large and the
between-depth relatively small, therefore the relative aver-
age depth (RAD) which is essentially the averaged differ-
ence between the within-depth and the between-depth
will be relatively large compared to the RAD of a data set
that is more condensed and cannot be split into two clus-
ters obviously. In fact we have shown that a larger value of
RAD indicates less condenseness of a data set. See Section
Methods for technical details. Hence we obtain a new
selection rule: A cluster with the largest value of RAD should
be selected to split.

The following simulation demonstrates the relationship
between the value of RAD and the condenseness of a data
set. As shown in Figure 4a, two clusters were generated
from normal distributions with means μ1 = (0, 0) and μ2
= (4, 4), covariances Σ1 = (1, 0.5; 0.5, 1) and Σ2 = (1, -0.5;
-0.5, 1) for the same sample size 200. Obviously the data
comprises of two clusters and should be split as such. The
relative average depth RAD = 0.7864. If the second cluster
is moved from μ2 = (4, 4) to μ2 = (6, 6), the two clusters
are further away from each other, as shown in Figure 4b.
Compared with the previous situation, this new data
should have higher priority to be selected for further split-
ting. The relative average depth increases to RAD =
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0.8018. Table 1 lists the values of RAD with one cluster
being moved further away from another one with μ1 = (0,
0). We can see that the RAD value increases slowly when
the two clusters are more separated.

Applications
Data sets
We use the proposed bisecting k-spatialMedian algorithm
to analyze two well known data sets. The first is the colon
cancer data (Alon data) [16], which is comprised of
expression levels of 2000 genes describing 62 samples (40
tumor and 22 normal colon tissues, Affymetrix oligonu-
cleotide arrays). The second is a pediatric Acute Lymphob-
lastic Leukemia (ALL) data from St. Jude Children's
Research Hospital (SJCRH) [17], which includes 12,625
gene expression measurements (Affymetrix arrays) per

patient from 246 patients with six different subtypes of
ALL.

In the investigation at SJCRH, 246 cases of pediatric ALL
were analyzed on the U133 A and B chips, involving six
primary subtypes of ALL: BCR-ABL, E2A-PBX1, Hyperdip-
loid > 50, MLL, T-ALL and TEL. The original data has
patient information with two additional subtypes, which
did not fit into one of the above primary diagnostic
groups or were added for the analysis of relapse and sec-
ondary AML. Our study did not include these two sub-
types.

Graph of within- and between-depthFigure 3

Graph of within- and between-depth. The data set is comprised of two clusters J1 and J2.  represents the sum of spa-

tial depth of all data points in J1 with respect to J1.  represents the sum of spatial depth of all data points in J2 with respect 

to J2. Note that Dw represents "within-depth", because it is the depth of data points with respect to the cluster to which they 

belong. Let  be the sum of spatial depth of all data points in J1 with respect to J2. Similarly, let  be the sum of spatial 

depth of all data points in J2 with respect to J1. Db represents "between-depth", because they are depth of data points with 
respect to the other cluster.
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Table 1: The Relative Average Depth. This table illustrates the relationship of RAD and the separatedness of two clusters. Two 
clusters are from normal distribution with mean μ1 = (0, 0)and μ2 = (2, 2). With μ2 changing from (2, 2) to (7, 7), the value of RAD 
increases from 0.6310 to 0.8081 as cluster 2 moves further away from cluster 1.

μ2 (2,2) (3,3) (4,4) (5,5) (6,6) (7,7)

RAD 0.6310 0.7551 0.7864 0.7993 0.8018 0.8081
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Design of the experiment
Since the mean is known to lack robustness, we will focus
on the comparison of the bisecting algorithms based on
componentwise median and spatial median in this paper.

The two data sets were used to compare the performance
of the proposed bisecting k-spatialMedian with the bisect-
ing k-median. Since the class labels of the two data sets are
known, the number K of clusters is also known. The Alon
data set has two classes, so K = 2. For the ALL data from
SJCRH, K = 6. The algorithms are applied on the two data-
sets and terminated when K clusters have been reached.

In order to investigate the performance of the proposed
clustering algorithm for HDLSS data, we test them on the
two data sets for various dimensions, i.e., different
number of genes selected. For the ALL data which has
12265 genes, we test the dimensions  = {100; 200; 500;
1000; 1500; 2000; 3000; 4000; 5000}; for the Alon data
which has 2000 genes we test the dimensions  = {50;
100; 200; 500; 1000; 2000}.

For each , we trim the data with only  "most impor-
tant" genes. We use the SVM-RFE-Annealing algorithm





 

Simulation to illustrate RAD valueFigure 4
Simulation to illustrate RAD value. In Figure a, two clusters are simulated from Normal distribution with mean (0, 0) and 
(4, 4), respectively. The relative average depth of the data RAD = 0.7864. In Figure b, the mean of the second cluster is moved 
to (6, 6). The relative average depth RAD = 0.8018.
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[18] to select the  most important genes. All clustering
algorithms are then applied to the trimmed data.

Validation of the clustering results is usually not easy.
However, in situations where data are already categorized,
as with these data, we can compare the predicted clusters
from our algorithms with the true class labels. To display
the results, we build a confusion matrix in which rows
represent the predicted clusters while columns represent
the true clusters. The number in the cell (i, j) is the
number of observations that are from cluster j but are pre-
dicted to be from cluster i. The rows and columns are
"matched" by a brute force algorithm, and this is optimis-
tic. Two evaluation measures, Entropy and Misclustering
rate, are used. See the Methods section for more details.

Because the bisecting divisive clustering algorithm ran-
domly selects a point as the center of the subcluster CL, it
is non-deterministic and therefore yields stochastic clus-
tering results. To evaluate the stochastic clustering result,
we ran each algorithm 20 times and calculated the average
entropy and misclustering rates as the clustering meas-
ures. These algorithms select the next subcluster to split
based on the criterion of the largest variance. We compare
the performance of our proposed bisecting k-spatialMe-
dian with bisecting k-median based on the same selection
rule, the largest variance, on the two data sets. The per-
formance of bisecting k-spatialMedian with the selection
criterion of the relative average depth is also presented.

To investigate the robustness of our proposed procedure,
we compare the sensitivity of the proposed algorithm to
noise with the bisecting k-median algorithm. We add
noise to the Alon data and then apply the three algorithms
(bisecting k-median, bisecting k-spatialMedian with larg-
est variance splitting rule, bisecting k-spatialMedian with
RAD splitting rule) on it to investigate their performance.

We generated a percentage of random noise and added to
the Alon data by changing the expression value of a point
to either the maximum or minimum value of all data
points. In this way, some data points are changed to have
extreme values and more likely to become outliers. Exper-
iments show that our proposed algorithms based on spa-
tial median perform better than the bisecting k-median
algorithm in this noisy environment.

The result on the Alon data
Figure 5 reports the entropy and the misclustering rates of
the algorithms on the trimmed Alon data. These algo-
rithms are the bisecting k-median (median), the bisecting
k-spatialMedian (spatialMedian), the bisecting k-spatial-
Median based on the selection criterion of the relative
average depth (SM-RAD). The first two algorithms use the
largest variance as selection rule.

From Figure 5a and 5b, we can see that both of the algo-
rithms using spatial median have lower entropy and mis-
clustering rates than the one using componentwise
median in most of the cases. When we use more than 400
genes in clustering, the algorithms using spatial median
are better than the one using componentwise median,
which demonstrates that spatial median is more robust in
higher dimensional data. Also the performance of the
algorithm using median is decreasing dramatically with
dimensions increasing from 200 to 1000, while the per-
formance of the algorithms using spatial median does not
degrade as much.

Figure 6 shows the entropy values with standard deviation
of the three algorithms. We can see that the three algo-
rithms display similar variation, about 0.2 in most cases.
The very similar results are obtained by using miscluster-
ing rate.

Additional file 1 gives an example of the relationship of
the number of runs and average entropy of the Alon data.
In additional file 1, the entropy values get more stable
with the number of runs increasing, which justifies the
need of running the clustering algorithms multiple times.
The average misclustering rate and the number of runs
have the similar relationship.

The result on the SJCRH data
Similarly, Figure 7 reports the entropy and misclustering
rates of the algorithms on the trimmed SJCRH data. We
can see that in most of the cases after 500 genes are used,
both of the algorithms using spatial median are better
than the bisecting k-median. The largest difference
between bisecting k-spatialMedian and median is more
than 10%. The results are consistent with the results on
the Alon data.

Similarly, Figure 8 shows the entropy values with standard
deviation of the three algorithms. We can see that the
three algorithms display similar variation, less than 0.1 in
most cases, although the algorithm using median achieves
the lowest standard deviation. Standard deviation appears
to be more consistent with median than with spatialMe-
dian on the SJCRH data. The very similar results are
obtained by using misclustering rate.

Additional file 2 gives an example of the relationship of
the number of runs and average entropy of the SJCRH
data. In additional file 2, the entropy values get more sta-
ble with the number of runs increasing. The average mis-
clustering rate and the number of runs have the similar
relationship.


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The result on the noisy Alon data
We randomly add noise to the Alon data to see how well
the algorithms based on the componentwise median and
the spatial median perform in a noisy environment.

To this end, we randomly pick 10% of data from the Alon
data, and reset their values to be either the maximum or
minimum value in the data matrix.

We applied the three algorithms to this noisy data and
observed that all the algorithms have been influenced by
the noise. However, the bisecting k-median is more sus-

ceptible to the noise, which can be demonstrated by the
fact that it cannot separate the two clusters at all.

This process is repeated several times and the results are
very consistent. We further increase the amount of noise
from 10% to 20% and get a similar result.

Figure 9 shows that the algorithms based on spatial
median have very similar entropy values and mis-cluster-
ing rates on the noisy Alon data. Since the bisecting k-
median cannot separate the two clusters, its entropy value
or misclustring rate is not available thus not shown in Fig-
ure 9.

Experimental results on the Alon dataFigure 5
Experimental results on the Alon data. Figure a displays comparison of entropy of the clustering algorithms on the 
trimmed Alon data. Both of the bisecting k-spatialMedian algorithms (with the selection criterion relative average depth or the 
largest variance) outperformed the bisecting k-median algorithm. Figure b displays comparison of misclustering rates of the 
clustering algorithms on the trimmed Alon data. Both of the bisecting k-spatialMedian algorithms (with the selection criterion 
relative average depth or the largest variance) outperformed the bisecting k-median algorithm.
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Conclusion
The spatial depth function provides a robust location esti-
mator whereas componentwise median may not work
well in high dimension and low sample size data, which
is illustrated by easily designed simulation. The experi-
mental results on real data sets further verify that the spa-
tial median based bisecting clustering algorithm is more
robust to outliers and noise in high dimensional data,
such as gene expression data, than the bisecting k-median
algorithm.

Methods
Geometric structure of HDLSS data

In their 2005 article, Hall, Marron and Neeman [15] point
out that for d-dimensional i.i.d. random vectors Z1,...,Zm

whose coordinates are i.i.d. with the standard normal

(0, 1), all distinct pairwise Euclidean distances ||Zi -

Zj||d are approximately equal and all pairwise angles

ang(Zi, Zj) are approximately perpendicular for large d.

Without normality assumptions they further demonstrate
that all pairwise distances are still approximately equal
under certain moment assumptions. Specially they give
the following geometric representation. For an infinite
sequence X = (X(1), X(2),...) of random variables, assume

(i) There exists a constant M such that |X(i)|4 <M for all
i = 1, 2,....

(ii) There is a constant σ2 such that



E

1

1

2

d
X dk

k

d
Var( ) , .( )

=
∑ → → ∞σ (1)

Comparison of the entropy values with standard deviation of the three algorithms on the Alon dataFigure 6
Comparison of the entropy values with standard deviation of the three algorithms on the Alon data. The error 
bars show that the three algorithms have similar standard deviation in calculating entropy values.
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(iii) The infinite sequence X is ρ mixing, for detail, see
[15].

Let X(d) = (X(1),...,X(d)) be a coordinate projection of X
into the d-dimensional space �d and let X1(d),...,Xm(d) be

independent and identical copies of X(d). Then for all dis-

tinct pairs Xi ≠ Xj, the distances

 are approxi-

mately equal:

d-1/2||Xi - Xj||d → σ, d → ∞. (2)

Observing their result, we find, with μ = Xi, that

d-1/2||Xi - Xj||d - d-1/2||Xi - μ||d - d-1/2||Xj - μ||d → 0,

as d → ∞. This shows, in view of the Pythagorean theorem,
the following fact.

Fact 1. Under the above assumptions (i)–(iii), the pair-
wise angle between distinct Xi - μi and Xj - μj is approxi-
mately perpendicular:

ang(Xi - μ, Xj - μ) = π/2 + Op(d-1/2). (3)

It is well known that spatial depth function attains its
maximum value at the symmetric center of a distribution
under very mild assumptions and the spatial median is
the maximizer. Thus the spatial median is the center of the
regular simplex when the number of observations at every
vertex is equal.

X X X Xi j d i
k

j
k

k
d− = −⎛

⎝
⎜

⎞
⎠
⎟=∑ ( )( ) ( )

/

1

2 1 2

2

E

Experimental results on the SJCRH dataFigure 7
Experimental results on the SJCRH data. Figure a displays comparison of entropy of the clustering algorithms on the 
trimmed SJCRH data. Both spatial median algorithms are superior to the median algorithm. Figure b displays comparison of 
misclustering rates of the algorithms on the SJCRH data. Both spatial median algorithms are superior to the median algorithm.
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This exhibits that, for HDLSS data, the spatial depth can
find the center and this helps find the right clusters, while
a componentwise median may fail to find the symmetric
center and thus the componentwise-median-based proce-
dures may be unable to find the right clusters. In fact, we
expanded the dimension of our data set from the previous
simulation which has three dimensions as shown in Fig-
ure 2 and found that the componentwise-median-based
bisecting k-median breaks down more easily with increas-
ing dimension while the bisecting k-spatialMedian does
not.

Theoretical verification of subcluster selection rule
Suppose that we have collected observations Xj : j ∈ J =
{1,...,n} which are points in �d. Suppose also that these
observations are from two sources. We want to find a rule
to measure the condenseness of the data, in other words,

how different the two resources are. Statistically we sup-
pose that Xj : j ∈ J = {1,...,n} are independent observations
from a population distribution F. Suppose that Xj : j ∈ J1
and Xj : j ∈ J2 are from population distributions F1 and F2
respectively with J1, J2 being partitions of J. For conven-
ience we refer to these two subclusters of J as J1 and J2
respectively. We want to use the robust depth functions to
measure the condenseness of J, or in other words, the sep-
aratedness of J1 and J2. Let D(x, F) be the population depth
of a point x with respect to F. The sample depth is D(x, J)
≡ D(x, Fn) where Fn is the empirical distribution of F.

One of the desirable properties for most of the depth func-
tions is monotonicity relative to the deepest point, i.e., the
depth-based multivariate median. Specifically, as a point
x ∈ �d moves away from the multivariate median M along

Comparison of the entropy values with standard deviation of the three algorithms on the SJCRH dataFigure 8
Comparison of the entropy values with standard deviation of the three algorithms on the SJCRH data. The 
error bars show that the three algorithms have similar standard deviation in calculating entropy values.
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any fixed ray through M, the depth at x decreases monot-
onically, namely,

D(x, F) ≤ D(M + α(x - M), F), x ∈ �d (4)

holds for all α ∈ [0, 1]. This property can be used to char-
acterize the separatedness of the two clusters. For unambi-
guity let us write Xi for the observations Xi : i ∈ J1 and Yj for
Xj : j ∈ J2.

Suppose that clusters J1 and J2 are separated. Observe that,
by the monotonicity (4), if Xi is from cluster J1 and Yj from

cluster J2 then the depth of Xi should be larger than the
depth of Yj, both with respect to cluster J1. Namely,

D(Xi, J1)  D(Yj, J1), i ∈ J1, j ∈ J2, (5)

where  is the stochastic ordering in the sense that η  ξ, if
and only if  (η ≥ ξ) ≥ 1/2 for two random variables η, ξ.
The inequalities are useful in characterizing the separated-
ness of two clusters J1 and J2.

Experimental results on the noisy Alon dataFigure 9
Experimental results on the noisy Alon data. Figure a displays comparison of entropy of the clustering algorithms on the 
noisy Alon data. The performance of the bisecting k-spatialMedian algorithms (with the selection criterion relative average 
depth or the largest variance) are very similar. The bisecting k-median algorithm cannot separate the two clusters, so its 
entropy value is not available thus not shown in this figure. Figure b displays comparison of misclustering rates of the clustering 
algorithms on the noisy Alon data. The performance of the bisecting k-spatialMedian algorithms (with the selection criterion 
relative average depth or the largest variance) are very similar. The bisecting k-median algorithm cannot separate the two clus-
ters, so its misclustering rate is not available thus not shown in this figure.
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Note that D(Xi, J1) and D(Yj, J1) are called within- and
between-depth by [19] and [2]. The population version of
(5) is

D(X, F1)  D(Y, F1), X ~ F1, Y ~ F2. (6)

The inequality has clear geometric interpretation. With
respect to distribution F1, the depth of random variable X
from distribution F1 is larger than the depth of random
variable Y from distribution F2. Indeed we have the fol-
lowing fact for the spatial depth.

Fact 2. Suppose F2 = F1(· - c) where c ∈ �d is a constant
vector. If F1 has finite support, then for X ~ F1 and Y ~ F2,

Proof. Using || S(x - ξ)||2 = ξ,ηS⊥(x - ξ)S(x - η) where

ξ, η are independent and have a common distribution

and ξ,η is calculated under the joint probability of ξ and

η, one has

(SPD(X, F1) ≥ SPD(Y, F1)) = ( ξ,η[S⊥(X - ξ)S(X - η) - S⊥(X 

- ξ + c)S(X - η + c)] ≤ 0).

It is easy to see S⊥(X - ξ + c)S(X - η + c) → 1 as ||c|| → ∞.
Combining the above yields the desired result and the
proof is complete.

Fact 2 implies that if one cluster is shifted away further
enough then we have the stochastic ordering (6) and
hence (5) for large sample.

However, the inequality is a little too strong. Instead of
(6) holding for all X ~ F1 and Y ~ F2, a less restrictive ine-
quality would be to require (6) to hold on average, i.e.,

Analogously,

Indeed similarly to the proof of Fact 2, we may establish
the above two inequalities which shall be discussed else-
where.

In order to characterize the separatedness of the two clus-
ters we first introduce the following notions.

Depth total, Within- and Between-Depth
Let D|J| be the sum of the sample depths of all observa-
tions on J, i.e., D|J| = ∑j∈JD(Xj, J), and we call it the depth
total on J. We call the depth total on J1 and J2,

the within-depth, and

the between-depth. Figure 3 is a graphic display of these
notations.

Summing up i ∈ J1, j ∈ J2 through (5) yields

Analogously,

These two inequalities can be used to characterize the sep-
aratedness of two clusters J1 and J2. To exploit the inequal-
ities simultaneously we introduce the following.

Relative average depth

is called the relative average depth. If clusters F1 and F2 are
separated, then the two inequalities (7) and (8) should
hold. We believe that the two inequalities can be used to
characterize the separatedness of two clusters of random
variables. Note that if indeed Y is from the same distribu-
tion as F1, namely, F1 = F2, then the equalities in (7) and
(8) hold. In other words, a value of RAD close to zero
indicates the cluster J is actually one cluster. Clearly RAD
is bounded from above by 2. A value of RAD close to 2
indicates that the cluster J is comprised of two clusters J1
and J2. Summarizing our discussion above, we have the
following result.

Selection criterion
A cluster with the largest value of RAD should be selected
to split. If a cluster is less condensed, the RAD value will
be larger. So the cluster with the largest RAD value will be
the least condensed and thus should be selected for split-
ting.
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Evaluation measures

Suppose that Z = (zij) is the m × n confusion matrix, where

zij is the number of data points which are predicted from

cluster Ci but in fact are from the true cluster Cj. For gener-

ality, we use m and n where m and n can be different. But
in our experiments, the number of actual clusters k is

known, therefore m = n = k.  is the number

of data points in the true cluster j and  is the

number of data points in the predicted cluster i. Let N be
the total number of data points.

One common measure of cluster quality is entropy. The
entropy of predicted cluster i is defined as:

where k is the number of clusters.

The value of entropy ranges from 0 to 1. An entropy value
of 0 means the cluster is comprised entirely of one class,
while an entropy value near 1 implies that the cluster con-
tains a uniform mixture of classes. The smaller the entropy
value, the better the clustering performance.

Another measure of clustering we use is misclustering rate.
Based on the confusion matrix, the accuracy j-th cluster is
for zij/mj. Since each true cluster contributes mj to the total

 data points, its contribution has

a weight mj/N. The global accuracy [20] is the weighted

sum,

Then the misclustering rate is .

Since we do not know how to match up the predicted clus-
ters with the true ones, zij on the diagonal of the confusion
matrix may not be the accurately predicted number of
data. We use brute force to search for the best alignment
between the predicted and the true clusters. The time com-
plexity is O(k!) if there are k true clusters and k predicted
clusters. This brute force approach is not a part of the algo-
rithm itself, but is used to aid in a fair evaluation.
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