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Abstract
Background: With the abundant information produced by microarray technology, various
approaches have been proposed to infer transcriptional regulatory networks. However, few
approaches have studied subtle and indirect interaction such as genetic compensation, the
existence of which is widely recognized although its mechanism has yet to be clarified.
Furthermore, when inferring gene networks most models include only observed variables whereas
latent factors, such as proteins and mRNA degradation that are not measured by microarrays, do
participate in networks in reality.

Results: Motivated by inferring transcriptional compensation (TC) interactions in yeast, a stepwise
structural equation modeling algorithm (SSEM) is developed. In addition to observed variables,
SSEM also incorporates hidden variables to capture interactions (or regulations) from latent
factors. Simulated gene networks are used to determine with which of six possible model selection
criteria (MSC) SSEM works best. SSEM with Bayesian information criterion (BIC) results in the
highest true positive rates, the largest percentage of correctly predicted interactions from all
existing interactions, and the highest true negative (non-existing interactions) rates. Next, we apply
SSEM using real microarray data to infer TC interactions among (1) small groups of genes that are
synthetic sick or lethal (SSL) to SGS1, and (2) a group of SSL pairs of 51 yeast genes involved in
DNA synthesis and repair that are of interest. For (1), SSEM with BIC is shown to outperform three
Bayesian network algorithms and a multivariate autoregressive model, checked against the results
of qRT-PCR experiments. The predictions for (2) are shown to coincide with several known
pathways of Sgs1 and its partners that are involved in DNA replication, recombination and repair.
In addition, experimentally testable interactions of Rad27 are predicted.

Conclusion: SSEM is a useful tool for inferring genetic networks, and the results reinforce the
possibility of predicting pathways of protein complexes via genetic interactions.
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Background
While the existence of genetic compensation is widely
accepted, the mechanism is largely unknown but impor-
tant [1,2]. The proposed algorithm (SSEM) was motivated
by inferring transcriptional compensation (TC) networks
of SGS1 (or RAD27) and its synthetic sick or lethal (SSL)
partners [3,4]. However, SSEM can also be applied to infer
other types of networks, such as transcriptional regulatory
networks. Following a gene's loss, the expression level of
its compensatory gene increases (decreases), this phe-
nomenon is called TC (transcriptional diminishment,
abbreviated as TD). Paralogs or redundant genes are
called digenic SSL gene pairs if the combination of two
mutants, neither by itself lethal, causes the organism to
die or malfunction [3,5,6]. SSL effects underlie many
complex human diseases, such as type II diabetes, schizo-
phrenia, Alzheimer's disease, and others [4]. Since genetic
networks derived from model organisms, such as yeast,
are likely to be conserved in humans the prediction of TC
and TD may shed light on pathways that cause complex
human diseases. With the abundant information pro-
duced by microarray technology, various approaches have
been proposed to infer genetic networks or transcriptional
regulatory networks. Most of them may be classified into
three classes, namely, graph models, discrete variable
models and continuous variable models. Due to space
limits, we refer to [7] (in Additional file 1) for a thorough
review of the models.

Graph models (for instance, [8]) depict genetic interac-
tions through directed graphs or digraphs instead of char-
acterizing the interactions quantitatively. Some graph
models simply reveal structural information, others anno-
tate the directions and signs of the regulations among
genes. Because of their simplicity, graph models usually
require much less data than models in the other two cate-
gories. But they are inherently static and may not capture
the dynamics of genetic regulations and the simultaneous
regulation of a given gene by multiple genes. Discrete var-
iable models discretize gene expressions into a few states.
The dynamics of gene expressions may be perceived as
transitions of finite states. Typical discrete variable models
proposed are Boolean networks, probabilistic Boolean
networks and discrete Bayesian networks (for details, see
a classic paper [9]). Continuous variable models charac-
terize the expression of a gene or its change by a linear or
non-linear continuous function of the expression of other
genes. The genetic interactions are frequently modeled by
a first-order or a second-order differential (or difference)
equation. Continuous variable models consist of two
major types: continuous Bayesian networks [10-12] and
deterministic differential systems [13].

Although each class of models has been shown to be
informative for understanding genetic interactions, most

of the models, except some Bayesian networks, have the
estimation bias problem due to model mis-specification.
The model mis-specification arises from the fact that
microarrays measure the mRNA expressions only, while
genetic interactions may be influenced by enzymes or pro-
teins, for instance transcriptional factors. Furthermore,
most genetic networks reconstructed in previous studies
considered only a subset of the whole genome. Conse-
quently, those genes that were left out may be regarded as
latent factors influencing the genes of interest. Thus,
ignoring latent factors in the models may cause bias when
inferring the genetic interactions. Although a Bayesian
network can also incorporate latent factors [11,12], the
amount of data required may prevent it from being used.

To account for the latent factors effect using a reasonable
amount of microarray data, a stepwise structural equation
modeling algorithm (SSEM) is proposed in this article.
SSEM is based on structural equation modeling (SEM)
[14], which unifies factor analysis and path analysis.
Assuming linear relations among the observed and latent
variables, the basic idea of SEM is to minimize the discrep-
ancy between the fitted covariance matrix and the sample
covariance matrix. Zhou et al. [15] used shortest path
analysis to identify transitive genes between two given
genes in the same biological pathway. Xie and Bentler [16]
showed that the latent factors can be identified and their
relations may be estimated reasonably by SEM. Note that
without identifying the latent factors reasonably, the
causal relations among genes can not be estimated cor-
rectly.

In this article, we extend the model in [16] to simultane-
ously infer both latent factor-gene and gene-gene interac-
tions. Both [16] and SSEM extend the methodology of
SEM in the sense that the latent factors are formed from
data and not chosen a priori from domain knowledge as
commonly practiced in the social sciences. SSEM learns
genetic interactions by both exploratory factor analysis
(EFA) and SEM with various model selection criteria
(MSC) in a stepwise fashion. The incorporation of MSC
helps SSEM circumvent the overfitting problem. The per-
formance of SSEM with six different MSC is evaluated
using two sets of simulated networks to determine which
MSC works best. The software SSEM automatically runs
through all of the steps of SSEM, and outputs predicted
gene interactions. Finally, SSEM is applied to infer TC and
TD interactions for (1) small groups of genes that are syn-
thetic sick or lethal (SSL) to SGS1, and (2) SGS1 or RAD27
with their SSL partners from 51 genes involved in yeast
DNA synthesis and repair that are of interest. Both predic-
tions are verified by an extensive quantitative RT-polymer-
ase chain reaction experiment (qRT-PCR); see Additional
file 2 for details.
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Results and discussion
The MSC suitable for predicting genetic networks remains
unknown, while an adequate MSC can prevent the algo-
rithm from overfitting. Thus we have carried out an exten-
sive simulation to evaluate eight criteria used in
commercial SEM software, such as Mplus version 3 [17].
The results of the top six MSC χ2/df, χ2-df, Mean square
error (MSE), Akaike information criterion (AIC), Bayesian
information criterion (BIC), and adjBIC are reported in
Additional file 3. SSEM with BIC outperforms all of the
others. Since the network topology, latent factors (x(t)),
gene-gene interactions (w), and latent factor-gene regula-
tions (Λ) are well defined for the simulated data, exact
quantitative performance can be computed.

Results of SSEM with various MSC using simulated data
Time course data from 6-gene and 10-gene regulatory net-
works with two latent factors are generated. The simula-
tion consists of various sample sizes and noise levels. Let
xi(t), yi(t) and εi(t) denote the expression level of latent
factor i, gene i and noise variable i, respectively. The linear
dynamic factor model (LDFM, see Section 4.1 for general
model setting) to generate the 6-gene network is as fol-
lows:

where x1(t) ~ N(0,0.1), x2(t) ~ N(0,0.1), yi(0) ~ U(0,1),

and εi(t) ~ N (0, ), i = 1,...,6. Note that  is deter-

mined by the variance of yi(t) and a pre-specified noise

level. The noise level is quantified by a contrast-to-noise
ratio (CNR), defined as the ratio of the signal standard
deviation to the noise standard deviation. CNR = 1.3 or
2.0 corresponds to high or medium noise levels, respec-
tively. For the 10-gene network, we refer to Equation (5)
of Simulation.pdf of the Supplementary data.

Note that both the 6- and 10-gene networks are sparse,
which roughly follow the sparse property of cis-regulatory
networks [18]. For each network, time course data are
simulated under various conditions; sample sizes (T
=Tmin,50 or 100) and noise levels, where T is the number

of time points and Tmin = 2n + 1. Without incorporating

any biological knowledge, for a fully connected n-gene
network (namely all interactions are non-vanished), T =
2n+1 is the minimum number of time points required

(denoted as Tmin) for proper estimation of  in (4), and

hence for all parameters in the model. However, the latest
version of SSEM can be iterated from a non-fully con-
nected network, and hence the restriction T = 2n+1 no
longer exists. Table 1 summarizes the performance of
SSEM with AIC and BIC for the 6-gene network under var-
ious settings of (CNR, T). The averages of the true positive
rate (TPR), true negative rate (TNR), and false positive rate
(FPR) for the top 1 (top 5) networks, in terms of MSC
value, in 100 experiments are reported. TPR (also known
as sensitivity) is the percentage of correctly predicted links
from the total existing links (positives) in the simulated
network. Likewise, TNR (specificity) is the percentage of
correctly predicted non-existing links (negatives) out of
the total non-existing links in the simulated network.
Clearly, SSEM with BIC outperforms SSEM with AIC, and
the results from the 10-gene network also confirm this.
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Table 1: Performance of SSEM with BIC and AIC applied to the 6-gene network with various combinations of (CNR, T).

Top 1 model Top 5 models

(CNR, T) MSC TPR (%) TNR (%) FPR (%) TPR (%) TNR (%) FPR (%)

(2.0, 100) BIC 97.3 97.1 2.9 97.0 95.3 4.7
AIC 97.7 85.1 14.9 97.7 84.4 15.6

(2.0, 50) BIC 84.6 87.7 12.3 83.9 86.2 12.9
AIC 88.7 78.9 21.1 88.0 78.0 21.1

(2.0, 13) BIC 80.9 79.1 20.9 71.8 63.5 36.5
AIC 81.8 80.4 19.6 72.1 64.0 36.0

(1.3, 100) BIC 84.9 90.0 10.0 84.5 88.6 11.4
AIC 88.7 78.8 21.2 88.8 78.5 21.5

(1.3, 50) BIC 73.5 83.5 16.5 72.5 82.4 16.0
AIC 78.9 72.7 27.3 78.1 71.8 27.0

(1.3, 13) BIC 77.1 75.4 24.6 68.9 61.0 39.0
AIC 78.0 76.7 23.3 69.5 61.5 38.5
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We further compared SSEM with BIC to VBEM [12] using
the 6- and 10-gene networks in Simulation.pdf. The
results are in Table 2, and SSEM with BIC outperforms
VBEM in terms of TPRs for both networks; details are pro-
vided in Simulation.pdf.

Results on real time course microarray data
In this section, SSEM is first applied to infer TC/TD inter-
actions for small groups of genes SSL to SGS1, for example
CSM3, MUS81, SIS2, SWE1and TOP1 in [3]. Next, SSEM
infers TC/TD interactions from SGS1 or RAD27 SSL gene
pairs, formed from 51 genes involved in yeast DNA syn-
thesis and repair. SGS1 encodes a RecQ DNA helicase, of
which the homologues in human cells include the WRN,
BLM and RECQ4 genes. Mutation of the SGS1 gene results
in premature aging in yeast mother cells as well as genome
instability. Further, these genes and their processes are
highly conserved in eukaryotic cells, and mutations in
these genes may lead to cancer-predisposition syndromes
and symptoms resembling premature aging [4]. On the
other hand, Rad27 encodes a structure-specific (5'-flap)
endonuclease which has a human homolog, FEN1; Rad27
has a distinct role in processing Okazaki fragments during
DNA synthesis in the S phase. Deletion of RAD27 in cells
also causes hypersensitivities to various DNA damaging
agents [19]. Rad27 was shown to be necessary for main-
taining genome stability by restricting DNA recombina-
tion between short repeated sequences and processing
long-patch base excision repair [20-23].

cDNA microarray data from the alpha, cdc15 and cdc28
experiments in [24] were applied to the four algorithms to
infer the gene network of interest. The elu data set was not
included because it was synchronized differently from
alpha, cdc15 and cdc28. The experiment and control
groups were mRNAs extracted from synchronized and
non-synchronized yeast cultures, respectively. The syn-
chronization was conducted by treating yeast cultures
with alpha factor arrest and arrests of a temperature-sensi-
tive mutant cdc15 and mutant cdc28. A full description
and complete data sets are available at [25]. The red (R)
and green (G) fluorescence intensities were measured
from the mRNA abundance in the experiment group and
control group, respectively. There were 18, 24 and 17 time

points in the alpha, cdc15 and cdc28 data sets with no rep-
licates; we first aggregated these three datasets to increase
the number of time points to 59. This aggregation was
applied in [16], and it resulted in some meaningful gene
networks.

Log ratios of the six genes' expression levels were fitted to
SSEM with BIC, VBEM [12], MAPEM [26] and LDS [11]
algorithms. The results were checked against qRT-PCR
results (see Figure 1 in Additional file 4). Excluding latent
factor-gene interactions, the modified true positive rate
(mTPR) of the top model selected by SSEM with BIC
equals 7/12. While the mTPRs of VBEM, MAPEM and LDS
equal 2/12 (at 99% significance level), 6/12 and 0, respec-
tively. Fitting five genes' expression to a multivariate
AR(1) model resulted in 0/12 mTPR; see Additional file 5
for details. This shows how latent factors improve the esti-

mation of gene interactions  and thus mediate proper
extraction of biological knowledge. We also ran SSEM
when the sample size was small (T = 11) for the 6-gene
network, and the mTPR of the top model predicted by
SSEM equaled 7/12. For this application, SSEM took
about 19 minutes on PCs with Pentium IV 3.4 GHz and
2.5 GB RAM.

Next, SSEM was applied to infer TC/TD interactions
among the 51 genes that are SSL to SGS1 or RAD27. Our
collaborator has conducted extensive qRT-PCR experi-
ments (in Additional file 6) to verify that among these
predictions, SSEM successfully uncovered several TC/TD
interactions of SGS1 with genes involved in DNA replica-
tion (e.g., SRS2, PLO32, RNR1, SLX1, MUS81 and TOP1),
DNA repair (e.g., RAD51 and RAD52), checkpoint arrest
(RAD9) and chromosome segregation (CSM3). These
genetic interactions are consistent with the following
experimental results from published literature. Sgs1 and
Srs2 are known redundant pathways in replication
[27,28]; for instance, Srs2 and Sgs1-Top3 suppress crosso-
vers during double strand break repair in yeast. Further,
defects in RAD51 and other homologous recombination
genes suppressed synthetic lethality/sickness of the dou-

Ŵ

Table 2: Performance of SSEM with BIC and VBEM applied to the 6-gene and 10-gene networks with various combinations of (n, CNR, 
T)

SSEM with BIC VBEM

(n,CNR, T) TPR (%) TNR (%) FPR (%) TPR (%) TNR (%) FPR (%)

(6,2.0, 13) 81.8 80.4 19.6 0.0 96.0 4.0
(6,1.3, 13) 78.0 76.7 23.3 0.0 100.0 0.0
(10,2.0, 21) 62.0 67.0 33.0 6.0 94.0 6.0
(10,1.3, 21) 60.0 62.0 38.0 11.0 90.0 10.0
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ble mutant sgs1∆ srs2∆. Slx1-Slx4 was found to be a sec-
ond structure specific endonuclease functionally
redundant with Sgs1-Top3 in [29]. The Sgs1/Top3/Rmi1
and Mus81/Mms4 complexes are involved in both dou-
ble-strand break repair and homologous recombination
[30]. This indicates that Sgs1/Top3/Rmi1 and Mus81/
Mms4 are alternative pathways to resolve recombination
intermediates. [31] identified that Sgs1 participated in a
RAD52-dependent recombination pathway. [32] found
that Rad9 and Sgs1 interacted genetically and possibly
physically. Cells lacking Sgs1 frequently arrest as large-
budded cells with a single nucleus in the mother cell, or
"stuck" between mother and daughter cells, which
resulted in missegregation during mitosis [33,34],
whereas Csm3 is required for DNA replication checkpoint
and accurate chromosome segregation. Similarly, SSEM
was applied to predict the interactions of the fifteen SSL
pairs of RAD27, and among them HPR5, SGS1, MUS81,
ESC2, HST1, HST3 and CSM3 had TC interactions with
RAD27, whereas RAD52, HPR5, SIS2, SOD2, HPC2,
LYS7, RAD9, RAD51 and RAD54 had TD interactions with
RAD27. For the second application, SSEM took about 3 to
4 hours on PCs with Pentium IV 3.0 GHz and 1 GB RAM.

The results involving SGS1 reinforce the possibility of
applying genetic interactions to predict pathways of pro-
tein complexes [35]. The predictions of RAD27 are
intriguing to biologists since biological experiments to
screen all possible interactions have been prohibitive thus
far. Note that SSEM can also be applied to infer TC inter-
actions of 872 SSL gene pairs in [3,4] or other large net-
works with a similar structure, for instance the other six
groups of SSL pairs involving ARC40, ARP2, BBC1, BIM1,
BNI1 and NBP2. The large network of 887 SSL pairs can
be broken down to subgroups that center on SGS1,
RAD27, the above six genes, and other hub genes. Then
each subgroup can be inferred individually, similarly to
the group involving SGS1.

Conclusion
The novelties and merits of SSEM are as follows. First,
SSEM expands the scope of application of most algo-
rithms in the area of gene networks. Specifically, SSEM is
shown to predict several TC/TD interactions of SGS1 accu-
rately, verified by qRT-PCR experiments, and these inter-
actions coincide with existing pathways. Further, SSEM
predicts a few novel TC/TD interactions involving RAD27,
and these predictions can be verified by biological experi-
ments. Importantly, SSEM can be further applied to pre-
dict genetic interactions of other large networks with a
similar structure, while biological experiments to screen
all possible interactions may be prohibitive. Second,
SSEM extends the approach in [16] such that it can infer
both latent factor-gene and gene-gene interactions simul-
taneously. Third, SSEM incorporates an MSC in a stepwise

fashion to circumvent the overfitting problem. Although
SSEM was shown to infer genetic networks using time
course data with no replicates, it can also be applied to
short time course data with replicates by modifying the
terms involved in replicates and the sample size. As tech-
nology advances, we anticipate more data sets with repli-
cates to become available and a greater demand for
algorithms like SSEM to infer gene networks.

Using SSEM with the model in Equation (2) has been
shown to outperform fitting a multivariate autoregressive
model straightforwardly. This demonstrates the impor-
tant role of latent factors and the efficiency of SSEM. Fur-
ther, SSEM outperforms three Bayesian network
algorithms that impose linear models on latent factors,
while SSEM does not assume any structure on latent fac-
tors. However, SSEM shares one drawback with continu-
ous Bayesian networks. Both approaches assume that the
vector of log ratios of gene expression y(t) follows a mul-
tivariate normal distribution. This assumption may limit
its application, although log ratios of gene expression do
follow a normal distribution in most cases.

Although SSEM may serve as an exploratory tool for
genetic interactions, the model in (2) is an approximation
to the true model, and BIC is a large-sample result. Further
improvements for future research include finding a novel
MSC for SSEM when the sample size is small, and devel-
oping a nonlinear model with latent factors or a lag-k and
k > 1 in time to model genetic interactions. The goal of
SSEM is to model small to medium networks with precise
prediction instead of modeling large or genome-wide net-
works with inaccurate prediction. Some results on incor-
porating various types of data, e.g. motif information, and
ChIP-chip data besides microarray data, to predict tran-
scriptional modules have been explored in the literature
[36-38]. However, integrating various types of data for
reliable prediction of complex genetic networks remains a
challenging topic, and we leave this for future research.

Methods
The linear dynamic factor model

We assume that time course microarray data follow an
LDFM, which includes both factor-gene and gene-gene

regulation in the model. Let  denote the expression

of gene i at time t for 1 ≤ i ≤ n, where n is the number of
genes in the network. Further, let yi(t) be the centered

, namely , where  is the mean of

 over time. We incorporate centered variables to

avoid an intercept term in Equation (2) to reduce n
parameters that are not of interest. Specifically, LDFM
assumes that yi(t) is regulated by a linear combination of

�y ti( )

�y ti( ) y t y t yi i i( ) ( )= −� � �yi

�y ti( )
Page 5 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:134 http://www.biomedcentral.com/1471-2105/9/134
latent factors at time t and centered observed variables
(genes) at time (t - 1), and the regulation is invariant
across time as follows.

y(t) = Λx(t) + Wy(t - 1) + ε(t), (2)

where y(t) is the vector of the expression levels of the n
genes at time t, x(t) is the (k × 1) vector of the latent fac-

tors' expression at time t, and ε(t) is the (n × 1) noise vec-

tor that assumes Nn ( , Q), where Q is a diagonal

covariance matrix. Further, Λ is the (n × k) latent interac-

tion matrix, in which λij denotes the influence of latent

factor j on gene i at the same time, and w is the gene-gene
interaction matrix, in which Wij denotes the influence of

gene j at time (t - 1) on gene i's expression at time t. Latent

factors x(t) are assumed to follow Nk ( , Σk), and x(t) and

ε(t) are uncorrelated such that the model is identifiable.
Applying biological knowledge, SSEM can infer suffi-
ciently large networks. For example, when inferring TC
interactions from SSL pairs, interactions (Wij's) are non-

vanished only for SSL pairs. For instance, when predicting
TC interactions of SSL gene pairs involving SGS1, fitting

one equation  is suffi-

cient, where yi's are the twenty-three genes that are SSL to

SGS1 [3,4], and the other Wj's are vanished for gene j that

is not SSL to SGS1. The aforementioned equation can be
inputed into the latest version of SSEM as an initial net-
work, and when no links are specified to be deleted in the
iteration, SSEM will predict gene-gene interactions for the
non-vanished Wj's, and infer the factor-gene interactions

from data. Note that when inferring transcriptional regu-
latory networks, Equation (2) is also able to model the
combination of multiple genes to activate (or repress) a
target gene simultaneously. The major difference between
LDFM and the state space model (SSM), for example the
model in [12], is that the former does not model interac-
tions among latent factors across time.

SEM is adopted since it considers latent factor-gene and
gene-gene interactions simultaneously to reveal gene net-
works using microarray data. An SSEM algorithm is intro-
duced to learn the parameters Λ and W in LDFM. The
main idea is to learn the regulation network iteratively. In
each iteration, for a generated network, we estimate the
parameters by SEM and evaluate its goodness-of-fit. The
top few networks of each iteration are retained for the next
iteration, until the optimal network, in terms of any MSC,
emerges. SSEM is available to users upon request from the
corresponding author.

SSEM consists of three parts. Specifically, in Part 1, EFA is
applied to learn some initial latent structures, which spec-
ify latent factor-gene interaction. In Part 2, networks con-
sist of any given initial latent structure and (randomly
generated) partially connected gene-gene interactions are
considered. SEM is applied to estimate x(t), Λ and w of
any network considered, and a specified MSC evaluates
the goodness-of-fit of the network. In Part 3, plausible
networks are generated by systematically and iteratively
eliminating insignificant links (interactions) based on the
associated t-statistics resulting from SEM. These three
parts are described in detail in the learning networks sec-
tion.

Learning the initial latent structures
Incorporating a correct latent structure is crucial for recon-
structing genetic networks. First, EFA is employed to learn
potential latent structures to start the iterative process.
EFA is a common practice to ascertain the latent factors
that influence the observed variables. Fundamentally, fac-
tor analysis assumes that there are some latent factors,
fewer in number than genes, that are responsible for the
co-variation among the observed gene expressions. EFA
may be expressed as

where ,  and  are all estimated without taking

gene-gene interaction into account. Specifically,  is

(m × 1) the common factors at time t,  is the n × m latent

interaction matrix, in which  denotes the influence of

latent factor j on the expression of gene i at time t esti-
mated without explicitly taking account of gene-gene

interaction, and  is (m × 1) the unique factors at time

t that can not be explained by the common factors .

Comparing Equations (2) and (3), the latent structure

embedded in  would deviate from the true one

except when the factor  accounts for the effect of

gene-gene interaction, that is, equal to wy(t - 1). This

shows that fitting a structural equation model with the
latent factors estimated solely by EFA to the gene expres-
sions [16] may not result in the correct latent structure.
Therefore, given k latent factors suggested by EFA, we con-
sider three possible numbers of latent factors (k-1, k or
k+1), along with the associated latent structure in Part 1 of
SSEM. The common factors are extracted by a principal
component analysis with promax oblique rotation, which
rotates factors in order to fit a hypothesized structure of
latent factors.

K
0

K
0

SGS t F W y ti
k

i i i i i1 11 1
23( ) ( )= + −= =Σ Σl

y x u( ) ( ) ( ),t t t= +� � �LL (3)

�x( )t �LL �u( )t

�x( )t

�LL
�lij

�u( )t

�x( )t

� �LLx( )t

�u( )t
Page 6 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:134 http://www.biomedcentral.com/1471-2105/9/134
Determining the number of common factors that best
explain the observed variables is one of the practical issues
in EFA. Various guidelines have been proposed, for
instance, eigenvalue ≥ 1 [39] and the scree test [40]. Dif-
ferent guidelines may lead to different choices. Based on
the "weaker lower bound" suggested by [40], SSEM
searches through k - 1, k, and k + 1 common factors and
the associated latent structures, where k is the number of
common factors with eigenvalues ≥ 1 resulting from EFA.
Then, for each given k, the latent structure is obtained by
eliminating the links with factor loading less than a con-
stant, which can be specified by users and the default
value is 0.2.

Network (model) selection criterion
In the iterations of SSEM, latent factor x(t), and the
parameters Λ and w of a given network are estimated, and
the goodness-of-fit of the network is computed by SEM.
SEM is a statistical method to test the hypothesis for the
existence of both latent factor-gene and gene-gene interac-
tions. The principal idea of SEM is to minimize the differ-
ence between the covariance matrices of the predicted
variables and the observed variables. Let Cov(a, b) be the
covariance matrix of two random vectors a and b. The
LDFM is lag-1 in time, so we consider the joined vector of
y(t)T and y(t - 1)T.

Let S denote the sample covariance matrix, which is
defined as

where St,t = Cov(y(t), y(t)), St-1,t = Cov(y(t - 1), y(t)), St,t-1

= Cov(y(t), y(t-1)), and St-1,t-1 = Cov(y(t - 1), y(t - 1)). Let

(t) be the column vector of the predicted expressions for

the n genes at time t. Plugging in (t - 1) and (t) for y(t

- 1) and y(t), respectively into the elements of S, we obtain

the estimated covariance matrix .

In SSEM, the parameters are estimated by the maximum
likelihood method with the fitting function

where  denotes the estimated covariance matrix, S the
sample covariance matrix, |A| and tr(A) the determinant
and the trace of matrix A, respectively, and n the number
of genes. When the sample size (T) is small, ridge estima-

tion is applied to avoid the singularity of S and . In the
application section, small ridge constants are applied such

that the condition number of S and  are not larger than
102.

Among the six MSC's studied, the χ2 statistic is based on
the idea of minimizing the discrepancy between the esti-
mated and the sample covariance matrices, and it is
defined as (T - 1) times the minimized value of FML in

Equation (4), where T is the sample size. When the fitting

function is FML, the χ2 statistic is equivalent to the general-

ized likelihood ratio [41]. Assuming multivariate normal-

ity, the χ2 statistic has an asymptotic (large sample) χ2

distribution with (p* - q) degrees of freedom, where p* =

(3n2 + n)/2 since only  and the lower triangle matrix

of  form equations to estimate parameters. Further, q

is the number of parameters that equal to n2 + kn in the
LDFM in (2). The condition n > k is required to have
degrees of freedom p* - q> 0. However, this condition is

satisfied in general since k = [n/c], where c ≥ 3. A large sam-

ple size can inflate a small difference between S and ,

and thus can inflate the χ2 statistic. Numerous indices
were proposed to remedy the bias, among them four have

been assessed in our pilot studies, namely, χ2/df, χ2 - df
[42], TLI [43] and CFI [44], where df denotes degree of
freedom. The former two were found to be more effective
than the latter two for network (model) selection.

MSE between the observed and the predicted gene expres-

sions is defined as , where T

is the number of time points in the gene expression data.
AIC [45] and BIC [46] are two widely used information
criteria for model selection, which take model complexity
into account. AIC is a measure based on the Kullback-Lei-
bler distance between the fitted and the true model, and

AIC = -2log L( ) + 2qj, where log L( ) is the log-likeli-

hood with estimates , and qj is the number of parame-

ters in model j. To solve the inconsistency problem of AIC,
Schwarz [44] proposed BIC based on maximization of the

posterior choice probability. BIC = -2log L( ) + qj log T,

where T is the number of time points. To reduce the pen-
alty imposed in BIC, Sclove [47] suggested sample-size
adjusted BIC (adjBIC) by replacing T with T*, where T* =
(T + 2)/24.
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Learning networks through iterated SEM

A genetic network inferred from LDFM can be built by
latent factor-gene and gene-gene interactions. A correct
network is essential for estimation of gene-gene interac-
tions using SEM. However, learning the optimal network
from data subject to a goodness-of-fit index is NP-hard.
Although global optimization techniques, such as simu-
lated annealing and genetic algorithms, may be applied,
the required computation time is not feasible. To make
the learning process practical, we propose a stepwise
approach. The key idea is to generate a set of candidate
networks and retain plausible links by both using SEM
and iteratively filtering with a moving window as follows.
For any network generated in the iteration, we apply SEM

to estimate x(t), Λ and w. The significance of each link (λij

and Wkl) is tested by its associated t-statistic. Let ti-window

(denoted by ) be a window of some given lower

and upper bounds in the ith iteration to screen for signif-
icance of generated links. A link with a t-statistic value

greater than , within  or less than  is regarded

as a candidate link, a possible link or a futile link (denoted
by c-link, p-link and f-link), respectively.

Let Sc, Sp and Sf denote the sets of c-links, p-links and f-

links, respectively. Suppose that EFA suggests k factors for
a given data set. Given fixed k - 1, k or k + 1 factors, EFA is
applied again to learn the associated latent (factor-gene)
structures. SSEM begins with the aforementioned latent
structure and a fully connected gene structure, namely,
each gene is regulated by all genes and k - 1, k or k + 1
latent factors. To start the stepwise search, SEM is applied

to the initial networks to estimate x(t), Λ and w. For a
given initial network, first let the initial t0-window be

. Then, a set of networks Φ0 can be generated as fol-

lows. Checking the t-statistics of all links against the t0-

window , we discard all f-links, and retain all c-

links, while considering all 0–1 combinations of p-links.
Suppose there are l p-links in an initial model, then there
are 2l combinations of each p-link being included in a
model or not. Models including all c-links and each afore-
mentioned combination are considered, and these 2l

models can be viewed as generated by the t-window filter-
ing. That is, the t-window serves as a filter to eliminate

insignificant (the less-likely-to-exist) links. Specifically, Φ0 =

{φ|φ ∈ Sc ∪ Lp, ∀ Lp ∈ P(Sp)}, where P(Sp) = {Lp|Lp ⊆ Sp} is

the power set of Sp and Lp is a subset of Sp. Furthermore, we

apply SEM to each candidate network in Φ0 to obtain the

pre-specified goodness-of-fit index. To save computation
time and to ensure that the superior networks are kept for
the next iteration, only the top m networks (denoted by

Ω0) are retained for the next iteration.

Similar to the initial iteration, for each iteration i ≥ 1,
SSEM generates a set of candidate networks by t-window
filtering all networks generated by the top m networks

from iteration(i-1), i.e., Ωi-1, with k - 1, k or k + 1 factors,

respectively, to form Φi. So in total, there are 3 m seed

models to generate networks. Among the networks in Φi

∪ Ωi-1, only the top m networks (Ωi) are retained by the
specified goodness-of-fit index for iteration (i + 1). First,
we let the ti-window equal to the ti-1-window +c. We use c
= 0.1, but c can be other small constants. Again, given the

ti-window, each link in the jth network in Ωi-1 can be dis-
carded, retained or considered according to its t-statistic
value. We denote the collection of these f-links, c-links,
and p-links by Sjf, Sjc, and Sjp, respectively. A set of candi-

date networks is generated by retaining all c-links and con-
sidering all 0–1 combinations of p-links with k - 1, k or k
+ 1 factors in the model, and this set is denoted by

 = {φ|φ ∈ Sjc ∪ Lp, ∀

Lp ∈ P(Sjp)}. We combine all the generated sets to result in

the ith set of networks .

Evaluating the specified goodness-of-fit index for every
network in Φi, we obtain the top m scored networks from
Φi ∪ Ωi-1, which form Φi, to go to iteration (i + 1). The iter-
ation terminates if the specified goodness-of-fit index can
not be further improved.

The proposed SSEM algorithm
Initialization
Fit EFA to a given data set to determine the number of fac-
tors, say k.

• Apply EFA to generate three initial networks by estimat-
ing the latent structures with k - 1, k or k + 1 latent factors,
respectively.

• For given k factors, obtain the latent structure by elimi-
nating the links with factor loading less than a constant
(the default value used is 0.2).

• Specify an MSC.

Stepwise search
• For each initial network:
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Step 1. Set iteration i = 0, run SEM on the data set. Specify

the t0-window = . Generate a set of networks that

consist of all c-links and one of all the 0–1 combinations
of p-links. Compute the MSC of all networks and select

the top m models to form the candidate set Ω0.

Step 2. Set i = i + 1. Specify the ti-window

.

Step 3. Similarly to Step 1, for each network in Ωi-1, gener-
ate a set of networks, and form Φi

Step 4. Evaluate the MSC for all networks in Φi, and
choose the best m networks from Φi ∪ Ωi-1 to form the ith
candidate set Ωi.

Step 5. If the ith top 1 MSC = the (i-1)th top 1 MSC, stop
; Otherwise, go to Step 2.

• Select the best m networks from the union of all net-
works generated by different initial guesses.

Availability and requirements
Project home page is in [48]. SSEM algorithm is written in
Visual C++ 6.0, and it calls SAS 8.2 and Mplus 3.0. Pro-
gram runs under Windows 2000 or higher version operat-
ing system. The zipped code of SSEM is attached in
Additional file 7. Visual C++, SAS and Mplus are readily
available for purchase through Microsoft, SAS and Mplus,
respectively.
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