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Abstract

Background: A multiple sequence alignment (MSA) generated for a protein can be used to
characterise residues by means of a statistical analysis of single columns. In addition to the
examination of individual positions, the investigation of co-variation of amino acid frequencies
offers insights into function and evolution of the protein and residues.

Results: We introduce conn(k), a novel parameter for the characterisation of individual residues.
For each residue k, conn(k) is the number of most extreme signals of co-evolution. These signals
were deduced from a normalised mutual information (Ml) value U(k, [) computed for all pairs of
residues k, I. We demonstrate that conn(k) is a more robust indicator than an individual Ml-value
for the prediction of residues most plausibly important for the evolution of a protein. This
proposition was inferred by means of statistical methods. It was further confirmed by the analysis
of several proteins. A server, which computes conn(k)-values is available at http://www-bioinf.uni-

regensburg.de.

Conclusion: The algorithms H2r, which analyses MSAs and computes conn(k)-values, characterises
a specific class of residues. In contrast to strictly conserved ones, these residues possess some
flexibility in the composition of side chains. However, their allocation is sensibly balanced with
several other positions, as indicated by conn(k).

Background

Without any doubt, a multiple sequence alignment (MSA)
offers a wealth of information about the related protein.
Most easily, conserved residues can be identified, which
indicate positions crucial for function or structure. There-
fore, MSAs are frequently the basis for the prediction of
important residues; see e.g. [1,2]. For quantification of res-
idue conservation several scores have been introduced; for
areview see [3]. Even more effort needs the recognition of
those residues, which are not strictly conserved, but
depend on the composition of their neighbourhood. In

the simplest case, two contacting residues may show a
strictly coupled occurrence of amino acids. In addition to
direct contacts, several, less obvious reasons like the con-
certed instrumentation of active sites or the signalling of
allostery may be responsible for dependencies in amino
acid frequencies. In summary, the co-evolution of resi-
dues is expected to induce patterns detectable by correla-
tion analysis. Knowing these correlations does help to
characterise more residues, may facilitate the understand-
ing of protein function, and implies additional con-
straints to be considered in protein design and
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mutagenesis experiments. The importance of these signals
and their consequences have long been realised [4] and
quite different approaches have been introduced to iden-
tify correlated pairs. Neher has adapted a method devel-
oped to analyse noisy patch clamp signals [5]. Gobel et al.
have determined a correlation coefficient [6]. The mutual
information content of residue pairs [7,8] or chi-squared
statistical methods have been exploited [9]. A similar
approach has been used to map allosteric communication
in GroEL [10]. In order to enhance the quality of the pre-
diction, additional parameters like alignment stability
have been utilised [11].

The above methods rely on the computation of a global
co-variation statistic for the identification of correlated
residues. In contrast to these concepts, methods based on
the idea of "perturbations" have been introduced recently
[12,13]. An in silico perturbation is a constraint that limits
the occurrence of amino acids at a certain position. Each
choice selects a specific subset of MSA sequences and may
cause variations in the column-specific occurrence of
amino acids. Analysing these patterns, Ranganathan and
co-workers have proposed the existence of energetically
coupled residues [14]. A similar algorithm has been
applied to identify networks that regulate allostery [15].
In combination with molecular dynamics, perturbation
analysis has been used to predict residues essential for
catalysis [16].

The enormous increase of sequence information resulting
from genome sequencing projects has broadened the data
basis for coupling analysis. Therefore, methods can be
used that examine a large number of parameters. Even
more, the existence of a high quality MSA is crucial for the
analysis of correlated mutations. The sequence space of a
protein has to be sampled correctly; otherwise, the quality
of the predictions will deteriorate. If similar sequences
originating from closely related species majorise an MSA,
signals caused by a shared evolution of the proteins may
be stronger than correlation patterns. Such bias will influ-
ence any calculation. However, methods based on the
analysis of perturbations may be susceptible to less
accented distortions. In this case, smaller sets of sequences
determine predictions and may constitute signals inter-
preted as perturbations. If these subalignments are domi-
nated by closely related sequences, the predictions may be
wrong.

This is why we prefer algorithms exploiting exhaustively
the information deposited in each column of an MSA. In
the following, we report H2r, a novel algorithm of that
kind. H2r combines classical and well-proven concepts of
computer science. It was our aim to focus on reliability
even at the expense of sensitivity. We will confirm H2r's
robustness and show that coupled residue pairs identified
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by H2r constitute tightly interconnected networks. Param-
eters will be introduced that allow the characterisation of
these networks and individual residues. It will be demon-
strated that the mode of generating MSAs does not mark-
edly influence H2r's results. We study predictions in
protein 3D-space and discuss possible reasons for the evo-
lution of correlation patterns.

Results

The measure U(k, 1) exploits all the association preserved
in columns of MSAs

A large number of algorithms, utilising quite different
principles have been introduced to identify correlated
mutations. The co-variance algorithm proposed in [12]
uses the concept of perturbations for the identification of
coupled residues. In order to identify perturbations, all
those positions k have to be found, where an amino acid

al =X occurs with a certain minimal frequency f,;,(a¥ ).
For those sequences possessing X at position k, the condi-
tional frequencies f(aé |ak = X) at all other positions !
have to be determined and compared e.g. to mean fre-
quencies f(a;). However, this approach does not fully

exploit the information given by the MSA as only one set
of conditional probabilities is analysed for each column.
If (say) one amino acid X is represented in 40% of the
sequences at position k, 60% of the information embed-
ded in columns k and [ is left without interpretation. This
is also true for the algorithm introduced in [13], which
uses likelihood values. To overcome this drawback we
propose U(k, 1), which originates from Shannon's infor-
mation theory [17] and is closely related to an approach
that has been introduced recently [8]. Formally, Shan-
non's concepts are similar to Boltzmann's statistical
mechanics. However, these ideas are solely based on
probabilities and do not need an interpretation as energy
terms.

A parameter frequently used for quantifying the composi-
tion of an individual column % is its entropy H(k); see [18]
and references therein:

20
H(k) ==Y f(al)In f(af) (1)

i=1
Here, f(a¥ ) is the frequency of amino acid a; at position k.

Please note that we use frequencies instead of probabili-
ties. We consider the MSA as a representative sample
allowing the estimation of all the parameters we need.
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The entropy H(k, I) of two variables (columns) k and [ is
H(k D) == flaf,a})In f(af, a) )
ij

Using formulas (1) and (2), the mutual information MI(k,
) =H(k) + H(I) - H(k, 1) can be computed. MI-values have
been the basis for several analyses. However, it has been
shown that raw MI-values are a poor indicator for the pre-
diction of co-evolution [8]. More reliable are normalised
MI-values. For synthetic MSAs, the ratios MI(k, 1)/H(k, 1)
or MI(k, 1)/(H(k) + H(1)) have performed best [8]. In the
following, we use the parameter U(k, I), which is a meas-
ure for the dependency of k on I and vice versa:

H(k)+H(1)—H(k,1)
H(k)+H())

Uk, 1) =2 3)

It follows that 0 < U(k, 1) < 1.0: If columns k and I are com-
pletely independent, then H(k, I) = H(k) + H(!) and U(k,
1) vanishes. If the two columns are completely dependent,
then H(k) = H(l) = H(k, 1) and U(k, 1) equals 1.0. For the
analysis of correlated mutations in MSAs, high values of
U(k, 1) indicate a strict pair-wise co-occurrence of amino
acids in columns k and I. In more detail, formula (3) has
been discussed in [19], which comprises an implementa-
tion, too. H(k, ) can directly be deduced from frequencies

f(ak, a?) , which have to be determined forall i = 1..20, all

j =1..20 amino acids, and all combinations of positions k
and L. This implies that the MSA has to be large enough to
allow a reliable estimation of these frequencies. For a sim-
ilar approach, a lower limit of approximately 125
sequences has been determined [8]. For synthetic MSAs,
we have shown that U(k, I)-values range as expected; see
Additional File 1.

conn(k), a novel parameter for the characterisation of
individual residues

To begin with, the outcome of a mutational analysis iden-
tifies coupled residue pairs k, I. Additionally, these values
allow the assessment of individual positions k. For the
ATP synthase ¢ subunit of Escherichia coli, it has been
made plausible that residues with highest Z-scores
deduced from normalised MI-values are more likely to
change the activity than those with low values [20]. How-
ever, an individual score may be misleading. The risk of
misclassification increases for weaker signals, i.e. for lower
U(k, 1)-values. Merely by chance and due to random fluc-
tuations, residue pairs might be assigned a relatively large
value resulting in a strikingly high Z-score.
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For any noisy signal, the quality of a prediction can be
enhanced by sampling, i.e. by adding up several analyses.
We applied this principle for the identification of conspic-
uous positions. In agreement with previous findings [20],
high scoring residue pairs identified by H2r form tightly
connected networks; see Additional File 1. Therefore, we
utilised concepts of network analysis for the assessment of
residues. A commonly used parameter that allows a char-
acterisation of individual nodes within a network is their
connectivity; see [21] and references therein. Here, we
define the connectivity conn(k) as the number of high-
scoring pairs a residue k is an element of. Connectivity val-
ues differ significantly: For the MSA associated with the
PFAM [22] entry PF01053, conn(388) was 10 and
conn(111) was 1. In order to illustrate how networks of
interconnected residues are located in 3D-space, Figure 1
indicates those residues contributing to the conn(388)-
value. The MSA of PF01053 (Cys_Met_Meta) and the
related protein structure (pdb-code 1QGN) have already
been a test bed for in silico analysis [13]. A further exam-
ple, which supports the conn(k)-approach is the SH3
domain: For a chi-squared approach it has been shown
that 5 residues participate in 53 of 92 significant co-varia-
tions [9].

In order to assess the parameter conn(k) in detail, we
examined the outcome of H2r on several datasets. The first
two experiments were carried out to estimate the proba-
bility of conn(k)-values for MSAs bearing no coupling sig-
nals of real proteins.

For parameter optimisation (see Additional File 1), we
compiled a set containing 20 PFAM entries, which we
named H2r_train. We used H2r to determine the occur-
rence and frequency of conn(k)-values for these MSAs.
However, for the following assessment we had randomly
assigned U(k, 1)-values in the range of 0.0 to 1.0 to all pairs
k, 1. For this test, 500 individual experiments (one MSA
each) were analysed. A second test was based on PF01053
that was introduced above. Here, we did 1000 independ-
ent experiments by assigning U(k, 1)-values randomly and
analysing the distribution of conn(k)-values. Results of
both experiments are summarised in Table 1. Altogether,
the experiments indicate that conn(k)-values > 4 are highly
unlikely to occur merely by chance. The frequency for
conn(k) = 4 is < 2.5-103, a connectivity conn(k) > 6 was
not observed in any of these experiments. Please note that
only the 75 largest U(k, I)-values were analysed for each
MSA. This has to be considered when interpreting the
above frequencies.

As a further test for the robustness of our approach, we
analysed PF00018. This dataset subsumes 3506 sequences
of SH3 domains. The domain consists of approximately
60 residues occurring in a large number of eukaryotic pro-
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Figure |
Highest scoring residues k of IQGN interlinked with position 388. All residues k, which are an element of the 10 high-
est scoring pairs (388, k), were plotted in space filling mode and labelled. The colour code indicates the magnitude of their

conn(k)-values.
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teins involved in signal transduction. The 3D-structure of
the related Fyn domain (a Src family tyrosine kinase; pdb-
code 1SHF) has been determined [23]. Co-variation anal-
ysis has been utilised to predict tertiary contacts and to
design compensating hydrophobic core substitutions [9].
Applying our default filter criteria (see Additional File 1)

resulted in the dataset SH3_filt, which consisted of 471
sequences. Its U(k, I)-values were relatively low, the largest
one, U(85,114) was 0.28. This observation indicates that
these correlations are much weaker than those observed
in Cys_Met_Meta, which possesses a maximal U(k, I)-
value of 0.72. As PF00018 contains 3506 sequences, we

Table I: Frequency of conn(k)-values resulting from randomly assigned U(k, I)-values

conn(k)
| 2 3 4 5 6
H2r_train (500 samples) 0.82 0.16 0.02 24103 2.6:10 32105
PF01053 (1000 samples) 0.90 0.10 4.2-103 1.3-104 - -

The datasets H2r_train, consisting of 20 randomly selected PFAM entries (see Additional file |, Table S2) and PFO1053 were analysed as explained.
However, U(k, I)-values were assigned randomly. For H2r_train, 500 MSAs were analysed; for PFO1053, 1000 experiments were done. For all
experiments, the number of residues possessing the respective conn(k)-values was determined. The table lists frequency values deduced from the

analysis of 75 HSRPs per sample.
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used a bootstrapping approach to repeat the experiment
several times and to analyse the results statistically. We
generated 20 datasets by randomly selecting 210
sequences in each case. The results are summarised in Fig-
ure 2. Residues 85, 86, 97, 114, and 115 possess the five
highest mean connectivity values; see Panel A. This find-
ing corresponded to the SH3_filt results (compare Panel
B) and proposed to accept conn(k)-values > 5. Further-
more, this cut-off was supported by the following corre-
spondences of function and conn(k)-values.

According to [23], the following structural and functional
features of the SH3 domain are relevant to interpret the
above results: A patch of aromatic residues is flanked by
two loops: the n-Srcloop (Ser115, Glu116) and the RT-Src
loop (Arg96, Thr97). The ligand binding properties of the
aromatic surface could be modulated by the residues of
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the RT-Src and the n-Src loop. Residues 85 and 86 are pre-
sumably important for linking the domain to the rest of
the protein. Please note the correspondence of function
and high connectivity values for 4 out of 5 predictions
generated by H2r.

However, the extreme variation of conn(k)-values occur-
ring for individual datasets of the bootstrapping approach
made clear that the filtering of the input sequences is a
critical step. A random selection of 210 sequences resulted
e.g. for residue 135 in conn(k)-values ranging from 2 to 8.

The maximal U(k, I)-value determined for an MSA indi-
cates the strength of the coupling signal. Our analysis of
synthetic MSAs allows a rough estimation of the values;
see Additional File 1. For Cys_Met_Meta, this maximum
was 0.72, which is quite high. Above, we made plausible
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Figure 2

Residue k

Conn(k)-values for PF00018. PFO0018 comprises 3506 sequences, which are arranged in a single MSA. 20 subsets were gen-
erated by selecting randomly 210 sequences in each case. Boxplots resulting from conn(k)-values > 2 are summarised in Panel
A. Panel B shows the predictions with conn(k) > 2 for the dataset SH3_filt, which contains 47| sequences and was created by fil-

tering PFO00 18 with default filter values.
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that a conn(k)-value > 4 can be considered reliable in this
case. For PF00018, the maximal U(k, I)-value was 0.28.
For this dataset, biochemical findings allowed us to
explain the role of residues with conn(k)-values > 5. As a
(conservative) rule of thumb, we propose a cut-off of 0.5:
If the maximal U(k, 1)-value is > 0.5, H2r lists residues
with conn(k)-values > 4 otherwise those > 5.

The above random sampling of sequences without any fil-
tering induced a large variation of conn(k)-values. In order
to characterise the outcome of H2r for a sampling on fil-
tered data, we created datasets by randomly choosing 75%
or 60% of the remaining sequences. Resulting conn(k)-val-
ues showed that the composition of these MSAs did not
markedly affect H2r's results (see Additional File 1). After
applying our filtering procedure, the set of residues with
highest conn(k)-values remained stable.

conn(k) is more robust to random noise than individual
Ml-values

The ATP synthase & subunit of E. coli has been extensively
mutated and the effects of mutations have been character-
ised and compiled (see [20] and references therein). For
an in silico analysis, a specific MSA has been generated and
normalised MI-values have been used to compute Z-
scores [20]. For each residue, the largest Z-score has been
determined and compared to the above list of mutational
effects. The authors have concluded that positions with
high maximum Z-scores are more likely to change the
activity of the protein upon mutagenesis than positions
with a low score. We analysed the corresponding PF02823
and projected the results onto the structure deposited in
pdb-file 1AQT. In addition, we computed a normalised
MI-value as has been used previously [20] and determined
the ranks of corresponding values. Detailed results are
compiled in Additional file 1, Table S9. For this dataset,
the ranks of maximal U(k, I)-values and normalised MI-
values were identical for all high scoring residues. This
indicates that both parameters allow equally well to quan-
tify the coupling of residues. The maximal U(k, I)-value
was 0.37 in this case. Therefore, H2r considered conn(k)-
values > 5 as reliable. This was true for positions 12, 65,
72, and 81. For positions 65 and 81 their susceptibility to
mutational effects is known, none has been reported for
the remaining two positions. If the four largest U(k, I)-val-
ues were used for predicting conspicuous residues k, a
comparison of this approach and the conn(k) method
gave the following result: In both cases, 2 positions
known to be susceptible to mutational effects were pre-
dicted correctly. It is unknown, how mutations affect the
other two residues. Thus, if one utilises the concordance
with known mutational effects as an indicator for predic-
tion quality, both approaches have a similar performance.
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However, if the coupling signals were less pronounced the
number of unclear predictions increased drastically for
the maximum score approach. In Table 2, we have com-
pared conn(k) and the maximal U(k, I)-value deduced
from PF00018 representing the SH3 domain. The largest
U(Fk, 1)-value is 0.28. For none of the extra residues pos-
sessing maximum U(k, [)-values ranked 2 or below 3, a
clear function has been reported in [23]. In summary,
these findings indicate that conn(k)-values are more
robust and more reliable than individual U(k, I)-scores.

Interestingly, residues 72 and 73 of the ATP synthase ¢
subunit had in both of the above experiments high MI-
values; however no high Z-score has been reported [20].
This difference is most probably due to variations in the
composition of the underlying MSAs.

conn(k)-values characterise a so far unidentified group of
residues

In order to compare the output of H2r to a perturbation
based method, we analysed the MSA of globin sequences,
as compiled in [14]. For this dataset, 32 residues have
been predicted to constitute a network of allosteric com-
munication. Applying our standard procedure, the largest
U(k, 1)-value was 0.72. 9 residues gained a conn(k)-value >
4. These were - projected onto 2DN1 - residues 97, 40,
57, 93, 131, 37, 85, 2, 39. Only 3 of these predictions
(printed in bold) were in agreement with previous find-
ings as reported in [14].

For the following comparisons, we used the above intro-
duced proteins represented by a PFAM entry and a related
protein structure: Cys_Met_Meta (PF01053, 1QGN) [13],
SH3 domain (PF00018, 1SHF) [9], and ATP synthase ¢

Table 2: Analysis of SH3 domain

# Conn(k) Max U(k, 1)
) 13 (1) 0.25 (3)
114 7(2) 0.28 (1)
97 6 (3) 0.25 (3)
85 5(4) 0.28 (I)
86 54) 0.23 (10)
100 0.26 (2)
99 0.26 (2)
113 0.25 (4)
121 0.25 (4)
103 0.24 (5)
89 0.24 (5)
130 0.24 (7)
141 0.23 (10)

The MSA constituting PFO00 8 was analysed by using H2r. Residue
numbers resulting from a projection of the MSA onto pdb structure
1SHEF are listed in the first column. The second column lists conn(k)-
values, the third one the maximal U(k, [)-values. The rank of each
prediction is given in brackets.
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subunit (PF02823, 1AQT) [20]. We selected these pro-
teins, as all three have been studied extensively by means
of in silico methods. Please note that we did not compile
specific MSAs but used the precompiled full PFAM align-
ments for the following tests.

The server based on [10,24] did not find correlated muta-
tions for PF00018, PF01053, and PF02823. P2PConPred
is a server for the prediction of residue-residue contacts
and residue correlations [25], which exploits pair-to-pair
amino acid substitution matrices deduced from high
quality alignments. For each of the above datasets, we
selected a full PFAM alignment, used default parameters,
and projected the results onto the above structures offered
by the server. None of the predictions was a HSRP (data
not shown). CorrMut is a server identifying correlations in
the evolution of amino acid sequences [26]. After select-
ing a pdb-file as input, it returns a list of correlated residue
pairs. The analysis of the above structures contained no
HSRP in all three cases (data not shown).

Based on a chi-squared statistical method, the 25 top co-
varying SH3 residues have been computed and ranked [9].
Our results did not coincide with these findings; the fol-
lowing ranks (given in brackets) have been assigned to the
residues predicted by H2r: 85 (15), 86 (-), 97 (-), 114
(22), 115 (-). Thus, H2r did not confirm any of the 14 top
ranking predictions. Interestingly, our implementation of
a Gobel like algorithm [6] assigned highest connectivity
values to residues 91 (6), 92 (-), 93 (-), 98 (-), and 100
(11). Again, the ranks that are given in brackets demon-
strate that these results do not coincide with the findings
of the chi-squared test. In summary, these findings made
clear that MI-based methods like H2r and the above algo-
rithms differ quite significantly in their predictions. This
statement is further supported by an analysis of a larger
dataset reported in the Additional File 1.

Predicting co-evolving residues for enzymes of tryptophan

synthesis

As illustrative examples, we analysed three enzymes of the
tryptophan synthesis pathway. TrpA and TrpB constitute
the affa tryptophan synthase complex, which catalyses
the final reaction from indole-3-glycerole phosphate + L-
serine to L-tryptophan + H,O. The « subunit (TrpA)
cleaves indoleglycerol-3-phosphate to glyceraldehyde-3-
phosphate and indole. The latter is transported through a
hydrophobic tunnel to the associated f subunit (TrpB),
where it is condensed with L-serine to yield L-tryptophan.
A sophisticated mechanism of allostery links the « and
monomers of the synthase[27]. Both proteins share a
common evolution [28]. In Figure 3, the predictions of
H2r for TrpA and TrpB are plotted as projected onto pdb-
entry 1KFI [29]. For TrpA, 6 conspicuous residues have
been identified. Residue 162, which possesses the largest
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conn(k)-value, is an element of the TrpA/TrpB interface
[30]. Residue 125 stabilises the inactive conformation of
the active centre [31]. Residues 4, 101, and 153 are all near
the active centre. Residues 4 and 125 are in close contact.
The role of residue 92 is unclear.

For TrpB, 5 residues possessed a conn(k)-value > 4;
conn(90) = 8 is the highest value. Residue 90 is near the
lysine, which binds PLP and catalyses the reaction. Resi-
due 19 is an element of the TrpA/TrpB interface [30] and
is at the bottom of the hydrophobic tunnel. Residue 175
is an element of the hydrophobic tunnel [32] and part of
the COMM domain, which is involved in the allosteric
communication with TrpA [29]. The role of residues 83
and 121 is unclear.

The anthranilate phosphoribosyl transferase (TrpD) catal-
yses the group transfer of 5'-phosphoribose from D-5-
phosphoribosyl-1-pyrophosphate to the nitrogen atom of
anthranilate, which is the third step in L-tryptophan bio-
synthesis. For TrpD, H2r predicted 5 residues as suspi-
cious; see Figure 4. Conn(284) was 11. Please note that the
residues 235, 297 (dist,,;,, = 0.89 A) and 50, 54 (dist,,;, =
0.72 A) are contacting residue pairs. For all these residues,
the reason for high conn(k)-values is unclear.

H2r as a web-service

We have implemented a server offering H2r as a web tool
[33]. After uploading a MSA in multiple FASTA format,
H2r determines bootstrap supported conn(k)-values and
reports the results via email. The web-interface can be uti-
lised to change parameters like the number of HSRPs or
the usage of pseudo counts. For parameter selection,
please see the Additional File 1.

Discussion

conn(k)-values extend the set of evolutionary relevant
residues

Incorporating MSAs turned out to improve the outcome
of many applications like e.g. the prediction of protein
2D-structure [34] or fold-recognition [35]. The reason is
that a MSA describes more precisely the requirements that
have to be satisfied at each residue position of a protein.
Highly conserved residues tend to correlate with structural
or functional importance. Therefore, the identification of
conserved residues is e.g. relevant for the identification of
binding sites [36-38]. A projection of conserved residues
onto protein structure helps to identify conservation pat-
terns [39,40]. Correlation analysis as used by H2r supple-
ments the repertoire of entropy-based methods of single
residues by extending it to residue pairs. The information
associated with high conn(k)-values is comparable to that
of strictly conserved positions: Both signals, which are
based on statistical analyses, identify (statistically) suspi-
cious residues. However, in both cases the origin of these
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Residues of the TrpA/TrpB complex possessing highest conn(k)-values. For TrpA and TrpB (pdb-code 1KF]), residues
with conn(k)-values > 4 were plotted in space filling mode and labelled. For TrpA conn(162) = 8 and for TrpB conn(90) = 8 were

the highest values.

signals can only be elucidated by exploiting additional
knowledge. A typical example for this enigmatic informa-
tion is TrpD. 4 of the 5 residues constitute two contacting
residue pairs, which supports the significance of the
related signal. Nevertheless, the conn(k)-values alone do
not explain the function of these residues or the origin of
the signals.

H2r is a novel approach based on classical, well-proven
concepts

Shannon's theory of communication has turned out to be
useful in many fields of application. In computational
biology, e.g. sequence logos are frequently used to assess
individual columns in MSAs [18]. A mutual information
index MI(k, I) (as defined by formula (4)) was the basis
for the work presented in [7]. In biological sequences, MI

describes the extent of association between residues k and
1.

flaf )
Y
f(ai )f(“j)

However, it turned out that unfiltered MI-values are a
poor indicator for the prediction of co-evolution [8].
Therefore, normalised MI-values have been introduced

[8].

Mi(k,)= Y f(af,a})log, ()
ij

We prefer U(k, I) as it takes into account the entropy val-
ues H(k) and H(1), which express the degree of conserva-
tion at positions k and I. U(k, 1)-values are normalised and
the results deduced from synthetic MSA_1 (see Additional
File 1) allow us to estimate the coupling strength. Com-
pared to perturbation based methods, U(k, I) has two
major advantages: 1) It is less susceptible to signals of a
common evolution that might dominate those sequences
constituting a perturbation. Generally, these signals are
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TrpD 1017

Figure 4
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TrpD residues with highest conn(k)-values. For TrpD (pdb-code 1017), five residues had conn(k)-values > 4. Conn(284)

was | I.

quite strong [41,42]. In addition, we considered this prob-
lem by filtering the input and by using bootstrapping. 2)
All the information saved in the columns is exploited. The
comparison of U(k, I)-values plotted in Additional Figure
2 clearly illustrates the inferiority of the perturbation
approach. Comparing e.g. the columns representing frac
values 0.4 and 0.8 illustrates the loss of information. If
(say) a perturbation is due to an amino acid occurring in
40% of the sequences, the information content of the
remaining 60% of the sequences is ignored. If a second
amino acid induces a similarly strong perturbation, the
U(k, 1)-value increases significantly; compare Additional
Figure 2. The same is true for other combinations. A per-
turbation-based approach does not distinguish between
these cases. This example makes clear that the analysis of

all frequencies f(a¥, a;) significantly strengthens the abil-

ity of an algorithm to identify coupled residues.

Gaps have to be excluded from analysis

A well-known problem in the analysis of MSA is the inter-
pretation of columns containing gaps. For the identifica-
tion of correlation patterns, a gap cannot be treated as
21stamino acid when calculating frequencies. In this case,
columns consisting mostly of gaps would be identified as
strictly coupled. Figure 5 illustrates the situation: By inter-
preting gaps as amino acids, column pairs (2, 3) as well as
the pairs (1, 2) and (1, 3) would be assigned as being cor-
related due to the high number of gaps occurring pairwise
(signalling a strict coupling) and a certain correlation
among the remaining symbols. In addition, positions
with a high percentage of gaps would create misleading
results for amino acid frequencies due to the small sample
size available at those positions. Therefore, it is necessary
to eliminate positions containing a certain amount of
gaps, as done in [1,24,43-45]. A gap in a sequence means
the absence of a residue in the protein structure. Such a
deletion is a quite different mutation than a substitution
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Figure 5

Modes of handling gaps. For a correlation analysis, gaps
cannot be treated like an additional amino acid. Otherwise
e.g. column-pairs (I, 2), (I, 3), and (2, 3) would be predicted
as possessing a strong coupling signal. Columns 4 — 6 illus-

trate the computation of frequencies f(aik,a;) for H2r. All

sequences containing a gap at position i or j were removed.
In the case of columns i =4, j =5 it is one sequence (labelled
red). For the determination of frequencies in columns i =5
and j = 6, four sequences have to be removed (labelled
green).

of one amino acid with another one. It follows that inser-
tions and deletions should be treated different from sub-
stitutions. However, for the calculation of pseudo counts
(see Additional File 1) there exists no model for handling
this situation adequately. In addition, one might argue
that positions that can be deleted are unlikely to be
important for structure or function. These arguments pro-
pose to ignore gaps.

On the other hand, ignoring gaps is not appropriate, too.
It could be that a substitution of a small side-chain with a
large one induces the loss of a residue position. Columns
5 and 6 of Figure 5 illustrate the situation (interpret S as a
small and L as a large side chain). Such a correlation can-
not be detected when ignoring gaps. In the case of H2r,

frequencies f (aik, aﬂ») are the basis for computing U(%, )-

values. These frequencies are deduced from those
sequences possessing a gap neither at position k nor at .

http://www.biomedcentral.com/1471-2105/9/151

Thus, all dependencies, where gaps are not involved, are
determined in a correct manner. Therefore, the U(k, I)-val-
ues will at all positions solely depend on the signals
induced by the amino acid propensities. Thus, ignoring
gaps is equivalent to an analysis with 20 instead of 21
symbols. This limitation has to be considered when inter-
preting conn(k)-values.

conn(k) is a robust indicator for co-evolution

Correlation signals can be used to compile networks of
residues [12]. In the context of HSRPs, simple algorithms
are sufficient for cluster and network generation; see Addi-
tional File 1. From the analysis of networks, it is known
that some nodes may possess a conspicuously high con-
nectivity. Such nodes were named hubs. Hubs hold
together large parts of a network. However, what is the
meaning of hubs in protein structures? The examples
given above may illustrate their role. Cystathionine y syn-
thase (LQGN) consists of two domains [46], which have
- according to the CATH database [47] — been designated
1QGNAO1 and 1QGNAO02. 1QGNAO1 binds PLP and
consists of residues 48 - 307. 1QGNAO02 binds the sub-
strate cysteine [46] and consists of residues 308 - 445. All
residues with conn(k)-values > 4 are located at the inter-
face of these two domains; compare Figure 6. Residue
388, having the highest conn(k)-value of 10, is an element
of 1QGNAO02, which is not the PLP binding domain.
However, this residue is located directly opposite of PLP.
For this example, the findings support the notion that
conn(k)-values identify residues that signal the concerted
co-evolution of domains to form a novel protein function.
The functional role of residues possessing high conn(k)-
values in the SH3 domain indicates their importance, too.
The same is true for most of the conspicuous TrpA/TrpB
residues.

Future improvements

For a reliable prediction of residues that play a major role
in protein function or evolution, robustness has to be
implemented on all levels of algorithmic design. For suc-
cess, the generation of high quality MSAs is a critical step.
Both the advent of novel algorithms [48,49] and methods
to extract reliable regions [50] plus the wealth of samples
originating from completely sequenced genomes put
these analyses on a sound basis. Our tests demonstrated
that the predictions of H2r were not markedly affected by
the mode of MSA generation. This indicates that state of
the art programmes and datasets like PFAM offer MSAs of
similar quality, which proved to be adequate for coupling
analysis. Nevertheless, the composition of the samples fed
into an algorithm has to be controlled. Assessing the local
quality of MSAs as introduced with T-Coffee [51] and the
phylogenetic relation of sequences as implemented with
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Figure 6
Location of IQGN residues with highest conn(k)-values. The cystathionine y synthase consists of two domains. Residues
48 — 307 constitute the PLP binding domain IQGN AOI (plotted in blue). Residues 308 — 445 constitute domain 1QGN A02
(plotted in yellow), which binds the substrate cysteine. Residues possessing conn(k)-values > 4 were plotted in space filling

mode. The conn(k)-values were: conn(388) = 10, conn(268) = 8, conn(305) = conn(386) = conn(391) = conn(393) = 5, conn(308)
=4.

http://www.biomedcentral.com/1471-2105/9/151

CorrMut [26] could be means to further enhance the pre-
diction quality.

In addition, it should be possible to improve the above
core algorithm. Shannon's theory does only consider the
frequency of symbols and does not regard the features of
the represented objects. In the case of MSAs, it would be
reasonable to analyse the composition of columns and to
assess the properties of occurring amino acids e.g. by
applying a BLOSUM-like scoring function. This is why we
are planning to model the biological context more specif-
ically.

Conclusion

conn(k) is a novel parameter for the characterisation of a
specific class of residues. In a robust way, it indicates the
strength of co-variation detectable among residues. In

contrast to strictly conserved residues, amino acid compo-
sition is allowed to vary for these residues. However, the
instrumentation of these positions is sensitively balanced
with several other ones. Just as strictly conserved residues,
these ones offer an enigmatic signal of protein evolution
or function. For a complete decoding, knowledge about
the protein, its function, and evolution has to be consid-
ered.

Methods

An entropy based score for the determination of
correlations

For a random variable (column) k, whose values are
linked to a discrete set of frequencies f(a;) of amino acids,
the entropy H can be computed according to formula (1).
The entropy H(k, 1) of two variables (columns) k and [ is
defined by formula (2). In order to measure the depend-
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ency of k and I, the coefficient U(k, I) can be computed
according to formula (3). All frequencies have to be
deduced from an MSA. An implementation for computing
U(k, 1) is described in [19].

Adding pseudo counts

The frequency f(a¥) of each amino acid a; occurring at

position k was corrected according to [52]:

k 20 k
n(a;)+A X nlay)S(ajap)/n(k) (5)
1=1,l#

n(k)+2[n(k)

flaf) =

n( alk ) is the occurrence of amino acid g; at position k, n(k)
is the total occurrence of all amino acids at position F,
S(a;, a;) are Blosum50 [53] scores and A is a weight factor,

with 0 < 1< 1.0. For H2r, we used 4 = 1.0.

The frequencies f (alk, a?) were based on corrected occur-

rences n,,,, (a¥, a;) :

20
Ren(af ) =n(af,al)+ 2 ) n(al,al)S(a;,a,) /()

m=1,m#l
(6)
n(alk,ai») is the occurrence of pairs of amino acids g; at

position k and a; at position I. n(k) is the sum of all

n(ak, a;) values. The n,,,-values were normalised so that

the sum of the n_,,-values was equal to the sum of the

(uncorrected) n(alk,a;) values.

Assessing residue conservation

For each column of an MSA, the largest frequency of any
amino acid a; was determined. If f, ,.(a;) = 0.95, the col-
umn and the related residue were regarded as strictly con-
served.

Processing the input

Let S, ... S, be the n sequences constituting the input
(MSA) sequ_in. For the computation of sequence identity
values ident, the number of identical residues (ignoring
gaps) was determined. The two parameters ident,,;,, and
ident,,,, defined the minimal and the maximal sequence
identity values used for comparison. In pseudo-code the
algorithm works as follows:

Input: sequ_in = {S,,..., S,}

http://www.biomedcentral.com/1471-2105/9/151

Output: The set filtered
Add S, to filtered

Fori=2ndo

Compare S; to all sequences of filtered and determine
ident
<ident > ident

If ident for all comparisons

min max

Add S; to sequ_in

}

Due to the results of parameter optimisation (see Addi-
tional File 1), the default for ident,,;, was 20% and for
ident,, . it was 90%. Columns possessing more than 25%
gaps were masked and not processed further. Please note
that the first sequence of the input is always an element of
the set filtered.

Measuring distances between residues

For measuring distances of residues, we used routines
compiled by M. Gerstein [54]. We defined the distance
dist,;,(k, 1) of two residues k, I as the minimal space
between van der Waals radii of any pair of atoms belong-
ing to k or I, respectively. Thus, a distance of 0 A indicates
that at least two atoms of k and [ are in direct contact in
3D-space.
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