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Abstract

Background: Machine-learning tools have gained considerable attention during the last few years
for analyzing biological networks for protein function prediction. Kernel methods are suitable for
learning from graph-based data such as biological networks, as they only require the abstraction of
the similarities between objects into the kernel matrix. One key issue in kernel methods is the
selection of a good kernel function. Diffusion kernels, the discretization of the familiar Gaussian
kernel of Euclidean space, are commonly used for graph-based data.

Results: In this paper, we address the issue of learning an optimal diffusion kernel, in the form of
a convex combination of a set of pre-specified kernels constructed from biological networks, for
protein function prediction. Most prior work on this kernel learning task focus on variants of the
loss function based on Support Vector Machines (SVM). Their extensions to other loss functions
such as the one based on Kullback-Leibler (KL) divergence, which is more suitable for mining
biological networks, lead to expensive optimization problems. By exploiting the special structure
of the diffusion kernel, we show that this KL divergence based kernel learning problem can be
formulated as a simple optimization problem, which can then be solved efficiently. It is further
extended to the multi-task case where we predict multiple functions of a protein simultaneously.
We evaluate the efficiency and effectiveness of the proposed algorithms using two benchmark data
sets.

Conclusion: Results show that the performance of linearly combined diffusion kernel is better
than every single candidate diffusion kernel. When the number of tasks is large, the algorithms
based on multiple tasks are favored due to their competitive recognition performance and small
computational costs.

Background

Many types of genomic data can be represented as a graph
(network), where the nodes represent genes or proteins,
and edges may represent similarities between protein
sequences, edges in a metabolic pathway, and physical
interactions between proteins [1]. Machine learning tools

have been commonly used to analyze biological networks
for knowledge discovery and pattern analysis [2]. In this
paper, we focus on learning from biological networks for
protein function prediction. This problem has been stud-
ied extensively by using computational approaches
recently [1]. Neighborhood-based methods [3,4] assign
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functions to proteins based on the most frequent func-
tions within a neighborhood of the protein and they differ
mainly in how the "neighborhood" of a protein is
defined. More sophisticated prediction functions have
been exploited in [5,6]. Methods based on network diffu-
sion [7,8] view the protein network as a flow network and
functions of proteins are diffused from annotated pro-
teins to their neighbors in various ways. Other approaches
for protein function annotation from biological networks
include the graph-cut-based approaches [9,10] and those
derived from the kernel methods [11-13].

Kernel methods are versatile tools for learning from
graph-based data, as they only require the characteriza-
tion of similarities between objects by the use of kernel
trick [2,14]. Diffusion kernels [15], which can be consid-
ered as the discretization of the well-known Gaussian ker-
nel of Euclidean space, are commonly used for graph-
based data. In kernel methods, the information on the
data is conveyed only in the kernel function, which
uniquely determines the mapping of the original inputs
onto a feature space. Thus, one of the central issues in ker-
nel methods is the selection of a good kernel function for
a specific problem at hand. A recent trend in kernel learn-
ing (selection) is to formulate it as convex programs,
which lead to a globally optimal solution [16]. The idea of
learning a linear combination of pre-specified kernels for
Support Vector Machines (SVM) was originally proposed
in [17] where this problem was formulated as semidefi-
nite programs (SDP) and Quadratically Constrained
Quadratic Programs (QCQP). In general, approaches
based on learning a convex combination of kernels offer
the additional advantage of facilitating heterogeneous
data integration from different sources [18].

The objective functions for kernel learning used in [17]
are performance measures for hard margin SVM, 1-norm
soft margin SVM, and 2-norm soft margin SVM. An alter-
native criterion for kernel matrix learning is the Kullback-
Leibler (KL) divergence [19] between the two zero-mean
Gaussian distributions defined by the input and output
kernel matrices [20]. One particularly appealing feature of
the KL divergence criterion is that unlabeled (test) data
can be integrated naturally into the training process,
thereby improving generalizations. The formulations in
[17] also use unlabeled data, but in a weak form by
enforcing the trace magnitude of the kernel matrix includ-
ing both training and test data in the constraint. Direct
incorporation of unlabeled data by the formulations in
[17] through the KL divergence criterion involves a matrix
determinant term. The resulting formulation is a so-called
maximum-determinant problem [21], which is a general
framework that contains semidefinite programming
(SDP) [16] as a special case. Although its theoretical
soundness, experiences with semidefinite programming
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indicate that it is computationally expensive and thus can
not be scaled to large-scale problems. The maximum-
determinant problem is a more general framework than
SDP and the path-following algorithms used to solve it is
more expensive.

Diffusion kernels [15] capture the long-range relation-
ships between vertices of graphs and are state-of-the-art
for building kernels for graphs. In this paper, we focus on
learning diffusion kernels constructed from biological
networks, using the KL divergence criterion. In particular,
we show that when the KL divergence criterion is used to
optimize a convex combination of diffusion kernels with
different parameters, the resulting optimization problem
does not involve the matrix determinant term and thus
can be solved by gradient descent methods. Previous stud-
ies [22,23] have shown that the removal of the matrix-
determinant term in the KL divergence criterion has lim-
ited effect on its performance. When this modified crite-
rion is used to learn a linear combination of diffusion
kernels, the resulting optimization problem is convex and
thus solutions by gradient descent methods are guaran-
teed to be globally optimal. A protein typically performs
multiple functions. Most existing approaches formulate a
separate task for each of the functions and they are learned
independently. They decouple the functions of proteins
and potentially compromise the performance as the func-
tions of proteins are usually related. We show that our sin-
gle-task kernel learning formulation based on the KL
divergence criterion can be extended to the multi-task case
by enforcing all tasks to share a common kernel. The
resulting formulation leads to a single optimization prob-
lem, which learns multiple functions of proteins simulta-
neously. Experimental results show that this multiple-task
kernel learning in a joint optimization framework keeps
competitive prediction performance, while its computa-
tional cost is similar to that for a single task, thus dramat-
ically reducing the time complexity.

Methods

We study the problem of protein function prediction from
biological networks, which are represented as graphs. For
agraph G, the vertices represent proteins and edges char-
acterize the relationship between proteins. In the follow-
ing discussion, the vertex and edge sets are denoted as V
and E, respectively. The total number of proteins in the
network is n = |V|. The adjacency matrix A is used to
denote the similarity between vertices where A;; describes
the similarity between vertices v; and v;. The functions of
some proteins in the network are already known and the
goal of protein function prediction is to infer the func-
tions of unannotated proteins based on the functions of
annotated proteins and the network topology. In particu-
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lar, for a graph G = (V, E), the vertices in V can be parti-
tioned into a training set and a test set. The functions of
proteins in the training set are already known while those
of proteins in the test set are unknown. Each edge in E
reflects the local similarities between its ending vertices.
The learning problem is to predict the functions of pro-
teins in the test set based on the label information of train-
ing set and the topology of the graph.

Background and Related Work

Kernel methods are particularly suitable for learning from
graph-based data, as they only require the similarities
between proteins to be encoded in the kernel matrix. In
kernel methods, a symmetric function x: XxX — R,

where X denotes the input space, is called a kernel func-
tion if it satisfies the Mercer's condition [14]. When used
for a finite number of samples in practice, this condition

can be stated as follows: for any x;, ...x, € X the Gram
matrix K € R, defined by K;; = x(x; x;) is positive sem-
idefinite. Any kernel function x implicitly maps the input
set X to a high-dimensional (possibly infinite) Hilbert

space H. equipped with the inner product (--),,
k

through a mapping ¢, : X — H,

K(x,2) = (94 (%), 9 (2)) 4, - (1)

The adjacency matrix A can't be directly used as a kernel
matrix. First, the adjacency matrix contains the local sim-
ilarity information only, which may not be effective for
function prediction. Secondly, the adjacency matrix may
not even be positive semidefinite. To derive a kernel
matrix from the adjacency matrix, the idea of random
walk and network diffusion has been used. The basic idea
is to compute the global similarity between vertices v; and
vj as the probability of reaching v; at some time point T
when the random walker starts from v;. This idea is justi-
fied at least to some extent by observing that the random
walker tends to meander around its origin as there is a
larger number of paths of length |T| to its neighbors than
to remote vertices [2].

To avoid some potential problems such as the choice of
value for T and assurance of positive semidefiniteness for
the kernel matrix, a random walk with an infinite number
of infinitesimally small steps is used instead. It can be for-
mally described as:

K:Iim(1+ﬁSLJS:eﬁL, (2)

500
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where f is a parameter for controlling the extent of diffu-
sion and L € R"*"is the graph Laplacian matrix defined as

L = diag(Ae) - A, (3)

where A is the adjacency matrix, e is the vector of all ones,
and diag(Ae) is a diagonal matrix with the diagonal
entries being the corresponding row summation of the
matrix A. It turns out that for any symmetric matrix L, e/
is always positive definite and thus can be used as a kernel
matrix. The diffusion effect of such kernel can be explicitly
seen when it is expanded as [2]:

2 3
eﬁL:I+,BL+ﬂ7L2+%L3+-", )

where the local information encoded in L is continuously
diffused by repeated multiplications. The parameter £ in
the diffusion kernel controls the extent of diffusion and it
has a similar effect as the scaling parameter in Gaussian
kernels. If the Sis too small, the local information can not
be diffused effectively, resulting in a kernel matrix that
only captures local similarities. On the other hand, if it is
too large, the neighborhood information will be lost. Fur-
thermore, the optimal value for 4 is problem and data-
dependent. Thus it is highly desirable to tune the g value
adaptively from the data.

We approach the kernel tuning problem by learning an
optimal kernel as a linear combination of pre-specified
diffusion kernels constructed with different values of f.
This is motivated from the work in [17] where the optimal
kernel for SVM, in the form of a linear combination of
pre-specified kernels, is learned based on the large margin
criteria. In particular, the generalized performance meas-
ure based on 1-norm soft margin SVM used in [17] is

05 (K) =~ max

{2a"e — o' G(K)ar}, (5)
a:C2a20,0."y=0
where C > 0 is the regularization parameter in SVM, e is
the vector of all ones, G(K) is defined by G;(K) = k(x;
x;)yy; and the i-th entry of y denoted as y; is the class label
(1 or -1) of the i-th data point x;. Lanckriet et al. [17]
showed that when the optimal kernel is restricted to the
linear combination of the given p kernels K;, ..., K, the
kernel learning problem can be formulated as a semidefi-
nite program. Furthermore, when the coefficients of the
linear combination are constrained to be non-negative,
the kernel learning problem can be formulated as a Quad-
ratically Constrained Quadratic Program [16]. As was
shown in [20], an alternative performance measure is the
KL divergence between the two zero-mean Gaussian dis-
tributions associated with the input and output kernel
matrices. We show that when this KL divergence criterion
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is used to learn a linear combination of diffusion kernels
constructed with different values of g, the resulting opti-
mization problem can be solved efficiently. We further
show that it can be extended to the multiple-task case.
Such integration of multiple tasks into one optimization
problem can potentially exploit the complementary infor-
mation among different tasks.

Diffusion Kernel Learning: The Single-Task Case

We focus on learning an optimal kernel for a single task,
which will then be extended to the multi-task case. The
underlying idea is that the Laplacian matrix L, defined in
Eq. (3), contains the connectivity information of all verti-
ces in the graph. By adaptively tuning the kernel con-
structed from L on the training vertices, the entries
corresponding to test vertices are expected to be tuned in
some optimal way as well. To restrict the search space and
improve the generalization ability, we focus on learning
an optimal kernel as a linear combination of a set of dif-
fusion kernels constructed with different values of g, indi-
cating different extents of diffusion. In particular, we
choose a sequence of values for fas f, ..., and the cor-
responding diffusion kernels can be constructed as

Ki=eﬁiL, i=1,---,p. (6)

We may assume that the kernels defined in Eq. (6) reflect
our (weak) prior knowledge about the problem. The goal
is to integrate the tuning of the coefficients into the learn-
ing process and the algorithm can adaptively select an
optimal linear combination of the given kernels. Note
that it is numerically favorable to normalize the kernels
though this does not affect the results theoretically [14].
We normalize the kernels as follows:

BiL
- e
K; = W , (7)
trace(e’17)
and the optimal kernel can be represented as
p P
Ko = Y iR =Y o ° (8)

ay Py trace(eﬂ 1

for a set of non-negative coefficients {o;}?,

Kullback-Leibler Divergence Formulation

Kernel matrices are positive semidefinite and thus can be
used as the covariance matrices for Gaussian distribu-
tions. It was shown in [20] that the kernel matrix can be
learned by minimizing the Kullback-Leibler (KL) diver-
gence between the zero-mean Gaussian distributions
associated with the input and output kernel matrices. In
this paper, we focus on learning the optimal coefficients
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a; from the data automatically based on minimizing this
KL divergence criterion. As described in [20], the KL diver-
gence between the zero-mean Gaussian distributions
defined by the input kernel K, and output kernel K, can be
expressed as

KL(N, [N,)=— trace(K 1)+%log\Kx|—%log|Ky|——

)

where |-| denotes the matrix determinant, N, and N,
denote the zero-mean Gaussian distributions associated
with K, and K|, respectively, and n is the number of sam-
ples. When the output kernel K is defined as K, = yy7, the
KL divergence in Eq. (9) can be expressed as

KL(N, [N,) = %yTK;Iy + %log | K, | +const,

(10)

where "const" denotes terms that are independent of K,,
and K, is the input kernel matrix, which is defined as a lin-
ear combination of the given p kernels as

Bil u
i~ .M
trace(eﬁlL)

(11)

Note that a regularization term, with A as the regulariza-
tion parameter, is added to Eq. (11) to deal with the sin-
gularity problem of kernel matrices as in [20], and we

require Zf: ,@; =1 as in multiple kernel learning (MKL)

[17]. The optimal coefficients a = [a;, ..., |" are com-
N,). By substituting Eq. (11)
into Eq. (10), and removing the constant term, we obtain

the following optimization problem:

puted by minimizing KL(N,|

-1
p p

min{a’ E o;K; +Al | a+log E oK+ Al

o

i=1 i=1

(12)

where a = (&, ..., ¢,)T, @ 0 denotes that all components
of « are non-negative, and the vector a € R" is the prob-
lem-specific target vector, corresponding to the general
target in Eq. (9), defined as follows:
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1 ifv; is in the positive class,

(13)

a; =4 -1 ifv; is in the negative class,

0 ifwv; isin the test set.

Note that we assign the label 0 to vertices in the test set so
that it will not bias towards either class. Similar idea has
been used in [24] for semi-supervised learning. In multi-
ple kernel learning [17], the sum-to-one constraint on the
weights is enforced as in Eq. (12). We present results on
both constrained and unconstrained formulations in the
experiments. Results show that the constrained formula-
tions achieved better performance than the unconstrained
ones.

Recall that the graph Laplacian matrix L is symmetric, so
its eigen-decomposition can be expressed as

L = PDPT,
where

D = diag(d,, ... d,) (14)
is the diagonal matrix of eigenvalues and P € R" * " is the
orthogonal matrix of corresponding eigenvectors. Accord-
ing to the definition of the function of matrices [25], we
have

ePl = pp.pT, (15)

where

D, = diag(eP®, ., ePidn). (16)

The main result is summarized in the following theorem:

Theorem 1. Given a set of p diffusion kernels, as defined in
Eq. (7), the problem of learning the optimal kernel matrix, in
the form of a convex combination of the given p kernel matrices
as in Eq. (12), can be formulated as the following optimization
problem:

n b2
min,, z —] +log(g;) (17)
j=1 &j
p
subject to Zai =1, (18)
i=1
a>0, (19)
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where b = (b, ..., b,) = PTa, g;is the j-th diagonal entry of the
diagonal matrix G, defined as

p

G= Zai _bi + Al
P trace(D;)

and D; is the diagonal matrix defined in Eq.(16).

(20)

Proof. The first term in Eq. (12) can be written as:

_1
p ~
aT[ZaiKi +AI ] a
i=1

-1
p BiL
a’ Zai%+ll a
trace(eﬁl )
» -1
D.
= a'P| Y o———+A| Pla
[Z trace(eﬁiL) ]

, -1
_ Eaiqu b
trace(Dj)

(21)

where the third equality follows from the property of the
trace, that is,

trace(eP") = trace(PD,P") = trace(D;).

Similarly, the second term in Eq. (12) can be written as:

log oK, +AI| = log o ———m—+ Al
i=1 - i=1 l trace(eﬁlL)
2 BiD
= log i———a—+ Al
o l trace(eﬁlD)
= log|G]

= log(ﬁ 9))
j=1
= ilog(g i)
j=1

(22)

By combining the first term in Eq. (21) and the second
term in Eq. (22), we prove the theorem.

The formulation in Theorem 1 is a nonlinear optimiza-
tion problem. It involves a nonlinear objective function
with p variables and linear equality and inequality con-
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straints. Due to the presence of the log term in the objec-
tive, it is a non-convex problem and a globally optimal
solution may not exist. However, our experimental results
show that this formulation consistently produces superior
performance.

Convex Formulation

The optimization problem in Theorem 1 is not convex.
Previous studies [22,23] indicate that the removal of the
log determinant term in the KL divergence criterion in Eq.
(12) has a limited effect on the performance. This leads to
the following optimization problem:

n
min, a’ Zaiki +AI | a (23)
j=1
p
subject to Zai =1, (24)
i=1
a>0. (25)

Following Theorem 1, we can show that the optimization
problem above can be simplified as

n b2
min,, 1

= 8j

(26)

p
subject to Za,— =1,

i=1
az0.
where g;and b are defined as in Theorem 1.

The optimization problem in Eq. (26) is convex and thus
a globally optimal solution exists. Numerical experiments
indicate that the simple gradient descent algorithm con-
verges very quickly to the optimal solution. Furthermore,
the prediction performance of this convex formulation is
comparable to that of the formulation proposed in Theo-
rem 1. This convex formulation shares some similarities
with the one in [26], where a set of Laplacian matrices
derived from multiple networks is combined.

Diffusion Kernel Learning: The Multi-Task Case

It is known that proteins often perform multiple func-
tions, which are typically related. Many existing function
prediction approaches decouple multiple functions and
formulate each function prediction problem as a separate
binary-class classification problem. Such methods do not

http://www.biomedcentral.com/1471-2105/9/162

consider the relationship among the multiple functions of
a protein and potentially compromise the overall per-
formance.

We propose to extend our formulation for the single-task
case to deal with multiple tasks simultaneously. In partic-
ular, we formulate a single optimization problem for the
simultaneous prediction of multiple functions for a pro-
tein. The joint learning of multiple functions can poten-
tially exploit the relationship among functions and
improve the performance. In terms of computational
complexity, the proposed joint optimization problem is
shown to be comparable to that of the single-task formu-
lation.

A key observation is that when the pre-specified diffusion
kernels are computed from the same biological network
with different values of §, the graph Laplacian matrices are
the same for all tasks. By enforcing all tasks to share a
common linear combination of kernels, we obtain the fol-
lowing joint optimization problem:

—1

3 p
min E(a(k))T Zalf(i +AL | a® +tlog
a
k=1 i=1

D
Zaiﬁi + Al

i=1

(27)
p

subject to Zai =1, (28)
i1

a0, (29)

where a®) e Rrfori =1, ..., t is the vector of class labels for
the k-th task as in Eq. (13), and ¢ is the number of tasks.
Note that all ¢ tasks are related in this joint formulation by
enforcing a common kernel matrix for all tasks. The objec-
tive function in Eq. (27) uses an equal weight for all tasks.
If some tasks are known to be more important than oth-
ers, a more general objective function with varying
weights for different tasks may be used instead. Following
Theorem 1, we can simplify the optimization problem in
Eq. (27), as summarized in the following theorem:

Theorem 2. Given a set of p diffusion kernels, as defined in
Eq. (7), the problem of optimal multi-task kernel learning, in
the form of a convex combination of the given p kernels, can be
formulated as the following optimization problem:

AR,
min,, 22%+t210g(gj) (30)
J j=1

k=1 j=1
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p
subject to Zai =1, (31)
i=1

>0, (32)

where g;is defined as in Theorem 1, b, = PTa(), a(¥) is defined
as in Eq. (13) for the k-th task, and t is the total number of

tasks.

Proof. The first term in Eq. (27) can be rewritten as

B

t L (. n bz(j)
S $ 310
k=1

k=1 j=1

k=1 k=1

-1
t 4 L p
'’ K+ Al N b Db
Z{a [Z 2 & et

Similarly, the second term can be rewritten as

p n
tlog Zaiﬁﬁll =t210g(gj). (33)
i=1 j=1

The detailed intermediate steps of derivation are the same
as those in the proof of Theorem 1 and thus are omitted.
By combining these two terms together, we prove the the-
orem.

The optimization problem in Theorem 2 is not convex.
Similar to the single-task case, the log determinant term in
Eq. (27) may be removed, which leads to the following
convex optimization problem:

min 2 i bi(j) (34)
o .
k=1 j=1 &j
P
subject to 205,— =1, (35)
i=1
az0. (36)

Experimental evidences show that this convex optimiza-
tion problem is comparable to the formulation in Theo-
rem 2 in prediction performance.

Results and Discussion

We evaluate the performance of the proposed formula-
tions on two benchmark data sets, and compare them
with relevant methods, including the Neighbor Counting
approach [4] and the FS-Weighted Averaging approach

http://www.biomedcentral.com/1471-2105/9/162

[5,6]. We construct 60 diffusion kernels from each data set
using different values for # and the proposed formula-
tions are applied to compute a linear combination of the
pre-computed kernels. The performance of the obtained
kernel is compared with that of the individual kernel. To
see the relative performance of the objective functions, we
also use the 1-norm soft margin SVM criterion, proposed
in [17], to compute the linear combination of kernels and
the results are presented. All of the formulations proposed
in this paper are solved using the MATLAB [27] function
fmincon which employs the sequential quadratic program-
ming method [28]. The QCQP formulation for optimiz-
ing the 1-norm soft margin SVM criterion is solved using
the MOSEK [29] software package. After the kernels are
computed, they are fed into SVM for classification and the
LIBSVM [30] software package is used in the experiments.
All of the experiments are performed on a PC with Intel
Pentium D 820 2.8G CPU and 2G RAM.

In the following experiments, a total of 60 diffusion ker-
nels are pre-computed and the values of £ used are g, = -
0.1 x i, fori=1, ..., 60. In order to investigate the perform-
ance of each individual kernel, we use each kernel for the
classification and compute the average Receiver Operating
Characteristic (ROC) values over all of the tasks. The ROC
value produced by the best averaged individual kernel is
used as a baseline. It is called rBaseline as all tasks are
restricted to use the same kernel. We further relax the
requirement that all tasks use the same kernel and com-
pute the sequence of ROC values achieved by the best
individual kernel for each of the tasks. This is considered
another baseline called uBaseline as the kernel used by
each task is unrestricted. Note that the kernel matrices for
both rBaseline and uBaseline represent the single best can-
didate kernel in the ideal case that the labels of test data
are known, and their performance is not guaranteed in
practice. In contrast, the kernel matrices computed by the
proposed formulations are the optimal kernel matrices in
the form of linear combination of the given candidate ker-
nel matrices. In order to evaluate the effectiveness of the
weights obtained by the proposed formulations, we assign
each kernel the same weight and compute the perform-
ance of the combined kernel. It is called eBaseline as all
kernel matrices have an equal weight.

For convenience of presentation, the formulations pro-
posed in Theorem 1, Eq. (26), Theorem 2, and Eq. (34)
are denoted as DKLy;, DKL, mDKL,,;, and mDXKL, respec-

tively. For DKL, and mDXKLy;, we also propose to remove
the constraints in their optimization problems and the

resulting formulations are denoted as DKL}, and

mDKLY,; , respectively. (See the caption of Table 1 for
detailed description.) The method based on optimizing 1-
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Table I: Summary of the proposed formulations. DKL}

Algorithm  Single task ~ Multiple tasks ~ Convexity  Constraint
DKL 4 v 4
DKLy, v 4

4
DKL‘II(L
mDKL 4 v 4
mDKLy, 4 4

v

mDKL‘I‘Q

These formulations are categorized in terms of the number of tasks,
convexity, and whether the weights on kernels are constrained.
DKLKL, DKL, and DKLIIJ(L denote formulations using the Kullback-

Leibler (KL) divergence criterion, the KL divergence criterion with
the log term removed and the unconstrained version for single task,
respectively. A lower case m is added before each method to denote
the corresponding formulations for multiple tasks.

norm soft margin SVM criterion by solving QCQP pro-
posed in [17] is denoted as SM1. The six proposed formu-
lations are summarized in Table 1.

Experiments on the Ligand Data Set

The Ligand data set was derived by Vert and Kanehisa [31]
from the Ligand database of chemical reactions in biolog-
ical pathways [32]. It contains a graph reflecting the inter-
actions between proteins and the function information
for them. The graph is a yeast biological network in which
a path between vertices implies a possible series of reac-
tions catalyzed by proteins along it. The numbers of verti-
ces and edges in this graph are 753 and 7860, respectively.
For the functions of proteins, the functional categories of
the MIPS Comprehensive Yeast Genome Database
(CYGD) [33] are considered as the gold standard. These
categories are not mutually exclusive, and each protein
may have multiple functions. There are 36 different func-
tions considered for this data set.

Comparison of ROC Values

We use the ROC as the performance measure and the A
value is fixed to 10-¢in the experiments. Our experimental
results show that the algorithms are not sensitive to the
value of A, as long as it is neither too large nor too small.
Figure 1 plots the number of tasks with ROC value above
a threshold for all methods. The average ROC values
achieved by all methods are also summarized in Table 2.
In order to test statistical significance, we also compute
the p-values of Wilcoxon signed test and the results are
reported in Table 3. We can observe that mDKL achieves
the best performance among all methods. All the pro-

http://www.biomedcentral.com/1471-2105/9/162

posed formulations except mDKLY; outperform the

three baseline methods. This implies that the computed
linear combination of kernels can potentially exploit the
complementary information in different kernels and thus
improve performance. The ROC value achieved by SM1 is
lower than those of the three baseline methods, implying
that the SVM criterion is less effective for such tasks. Note
that the SM1 criterion also uses information from unla-

beled data, but in a weak form. The mDKLY,; formulation

achieves a ROC value lower than the three baseline meth-
ods. This shows that the constraints have important nor-
malizing effects and can not be removed. By comparing
the relative performance of formulations with and with-
out the log term, we can conclude that removing this term
usually does not affect the performance. Another impor-
tant observation is that mDKL and mDKLy, outperform
DKL and DKLg;, implying that constraining the multiple
tasks to share a common kernel does not degrade the per-
formance if the kernel used is a linear combination of ker-
nels obtained by the proposed formulations. In contrast,
if the kernel used is a single kernel, this restriction will
degrade the performance, as illustrated by the relative per-
formance of rBaseline and uBaseline. For the eBaseline

method, it can be observed that, except for mDKLY; , all

of other proposed formulations outperform it. This illus-
trates that our formulations can compute an optimal ker-
nel matrix by assigning different weights to the candidate
kernel matrices. We can observe from Table 3 that the dif-
ference between the performance of the two baseline
methods (rBaseline and eBaseline) and that of DKL and
mDKL are statistically significant. All diffusion kernel
based approaches are competitive with the Neighbor
Counting approach [4] and the FS-Weighted Averaging
approach [5,6]. Neighbor Counting and FS-Weighted
Averaging use the local information, more specifically the
level-1 neighborhood (Neighbor Counting) and both
level-1 and level-2 neighborhoods (FS-Weighted Averag-
ing), for the prediction. The experimental results show the
effectiveness of capturing the long-range relationships
(global information) between proteins in the network in
diffusion kernels [15].

Figure 2 plots the average ROC values for the 60 kernels
(the maximum mean ROC value is used in rBaseline) and
Figure 3 plots the best ROC values for the 36 tasks. We can
observe that for tasks 29 and 33, the best ROC values are
small. This implies that all the kernels perform poorly for
these two tasks. To illustrate the relative performance of
the proposed formulations with that of the baseline
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Table 2: Mean ROC values and execution time (in seconds) of
various methods on the Ligand Data Set.

Algorithm Mean ROC Time
uBaseline 0.8346 —-
rBaseline 0.8223 ——-
eBaseline 0.8267 —-
DKL 0.8523 165.52
DKLy, 0.8523 665.13
0.8365 4406.64
DKL‘ll(L
mDKL 0.8542 5.6l
mDKLy, 0.8538 12.33
0.8213 62.80
mDKL‘fQ
Neighbor Counting 0.7010 ----
FS-Weighted Averaging 0.7785 ----
SMI 0.8162 739.69

rBaseline denotes the baseline method that requires all tasks share a
common kernel, uBaseline corresponds to the baseline method
without this requirement, and eBaseline denotes the baseline in which
all of the candidate kernel matrices are assigned the same weight.

method graphically, we plot in Figure 4 the ROC values
obtained by the proposed formulations with respect to
uBaseline using scatter plots. We can observe that there are
two points below the 45-degree line in each plot. Those
two points correspond to tasks 29 and 33 and they are dif-
ficult to classify by all methods. As most points in the
plots are above the 45-degree line, we can conclude that
the proposed formulations outperform uBasline on most
tasks.

Table 3: p-values obtained from Wilcoxon signed test comparing
DKL and mDKL with other formulations for the Ligand data set.

Algorithm DKL mDKL
uBaseline 1.456E-2 5.690E-3
rBaseline 8.188E-4 2.091E-4
eBaseline 7.524E-5 2.548E-5
DKL 1.000 1.249E-2
DKLy, 3.217E-1 1.279E-2
1.112E-4 3.852E-5
DKLLf(L
mDKL 1.249E-2 1.000
mDKLy, 1.404E-1 6.849E-2
3.852E-5 7.013E-6
rnDKLlf(L

For the Ligand data set, each algorithm produces an ROC vector
consisting of ROC values over each task. We use Wilcoxon signed
test to test the difference of the paired data. The null hypothesis of
this test is that the ROC vectors produced by the two compared
algorithms have the common median. The numbers reported in this
table are the p-values that represent the probabilities that the null
hypothesis is true. Typically, the null hypothesis is rejected if p < 0.05.
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Comparison of ROC values for various algorithms on the
Ligand Data Set. The horizontal axis represents the ROC val-
ues and the vertical axis is the number of tasks with ROC
values above the corresponding horizontal axis value.

Comparison of Execution Time

In order to compare the efficiency of various kernel learn-
ing methods, we list in Table 2 the execution time of the
compared methods. It can be observed that all methods
based on multiple tasks are more efficient than their sin-
gle-task counterparts. In particular, the execution time of
mDKL is roughly 1/36 of that of DKL, which is consistent
with our theoretical analysis. In general, convex formula-
tions are more efficient than their non-convex original

0.83 T T T T T

Mean ROC

Figure 2

Mean ROC values over 36 tasks for each kernel on the Lig-
and Data Set (the kernel with the maximum mean ROC value
is used in rBaseline). The horizontal axis denotes the -/ val-
ues used to build the corresponding kernel and the vertical
axis is the mean ROC value.
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Figure 3

Best ROC values for tasks achieved by the best kernel
(uBaseline) on the Ligand Data Set. The horizontal axis rep-

resents the tasks and the vertical axis is the corresponding
best ROC value.

formulations and the optimization problems with the
constraints removed take a longer time to converge. By
taking the performance into account, the DKL and mDKL
may be the best choices in practice.

(A) uBaseline Vs. DKL (B) uBaseline Vs. DKL7,
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Figure 4

Comparison of the relative performance of the proposed
formulations with that of uBaseline on the Ligand Data Set.
The horizontal axis represents uBaseline and the vertical axis
corresponds to DKL, DKL, , mDKL, mDKLy, . Each point in
the scatter plots corresponds to ROC values produced by
the compared methods on the same task.
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Stability Test

In order to obtain a robust performance estimate for the
various methods, we randomly partition the data set into
a training set and a test set ten times and the average ROC
values and standard deviations across splittings are
reported in Table 4. Compared with the results in Table 2,
we can see that the relative performance of each method
in these two tables is very similar. In particular, mDKL and
mDKLy, achieve the best overall performance. Except for

the two unconstrained formulations DKLy, and

mDKLY,; , all of other proposed formulations achieve

higher ROC values than the three baseline methods. It is
worth noting that the performance of uBaseline and
rBaseline is obtained by using the labels of both the train-
ing and test data and such performance is not guaranteed
in practice when only the labels of the training data are
used.

Experiments on the von Mering Data Set

The von Mering data set was created by von Mering et al.
[34] from protein-protein interactions identified via six
different methods. It contains a graph consisting of 2617
vertices (proteins) and 11855 edges. There are 76 different
functions (tasks) associated with the proteins in the
graph. The performance of different methods is reported
in Figure 5. Two baseline methods, rBaseline and uBase-
line, constructed exactly the same way as those for the Lig-
and data set are used and their performance is
summarized in Figure 6 and Figure 7, respectively. The
value for is again set to 10-¢ in the experiments. Figure 8
compares the relative performance of the proposed for-
mulations with that of the uBaseline graphically.

Table 4: Average ROC values and the corresponding standard
deviations over |1 splittings on the Ligand Data Set. One of the
splittings was specified by the contributor of the data and the
remaining ten splittings are randomly generated.

Algorithm Average ROC Standard deviation
uBaseline 0.8326 0.0064
rBaseline 0.8181 0.0062
eBaseline 0.8193 0.0070
DKL 0.8493 0.0034
DKLy, 0.8493 0.0032
0.8318 0.0061
DKL?(L
MDKL 0.8507 0.0033
mDKLy, 0.8507 0.0033
0.8209 0.0031
mDKL‘f(L
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Comparison of ROC values for various algorithms on the
von Mering Data Set. The horizontal axis represents the
ROC values and the vertical axis is the number of tasks with
ROC values above the corresponding horizontal axis value.

Comparison of ROC Values

We use the ROC values of each method to compare their
relative performance. Similar to Figure 1 for the Ligand
data set, Figure 5 plots the change of the number of tasks
with ROC value above a certain threshold as the threshold
varies for each of the compared method. For ease of com-
parison, Table 5 also lists the average ROC values achieved
by the compared methods. Similarly, the p-values of Wil-
coxon signed test for this data set are reported in Table 6.
As the SM1 formulation requires excessive storage and
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Mean ROC

0.778
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Figure 6

Mean ROC values over 76 tasks for each kernel on the von
Mering Data Set. The horizontal axis denotes the -£ values
used to build the corresponding kernel and the vertical axis
is the mean ROC values.
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Figure 7

Best ROC values for diferent tasks achieved by different ker-
nels on the von Mering Data Set. The horizontal axis repre-
sents the tasks and the vertical axis is the corresponding best
ROC values.

computational time for this relatively large data set, we are
not able to obtain its result in this experiment. From these
results we can observe that mDKL and mDKLy, achieve

the best performance. In general, the performance of DKL,

(A) uBaseline Vs. DKL (B) uBaseline Vs. DKL,
1 1
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Figure 8

Comparison of the relative performance of the proposed
formulations with that of uBaseline on the von Mering Data
Set. The horizontal axis represents uBaseline and the vertical
axis corresponds to DKL, DKLy, mDKL, mDKL,. Each
point in the scatter plots corresponds to ROC values pro-
duced by the compared methods on the same task.
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DKLy, mDKL, and mDKLy, is very close. All of the pro-

posed formulations except DKL}, perform better than

the three baseline methods. The difference between DKL
and DKLy, as well as the difference between mDKL and

mDKLy, is very small, which further confirms that the

removal of the log term does not affect the performance of
algorithm much. For the formulations with constraints

removed, i.e., DKL, and mDKLY; , their performance is

the lowest among the proposed formulations. Similar to
the case for the Ligand data set, we conclude that con-
straining the multiple tasks to share a common kernel
does not degrade the performance if the kernel used is a
linear combination of kernels obtained by the proposed
formulations. In contrast, if the kernel used is a single ker-
nel, this restriction will degrade the performance, as illus-
trated by the relative performance of rBaseline and
uBaseline. In terms of the eBaseline, we can observe from
Table 5 that all of our proposed formulations achieve
higher ROC values than the eBaseline method, in which
all of the kernel matrices are assigned the same weight. We
can observe from Table 6 that the difference between the
performance of all of the three baselines and that of DKL
and mDKL is statistically significant. We can again observe
that all diffusion kernel based approaches are competitive
with the Neighbor Counting approach and the FS-
Weighted Averaging approach.

Figure 8 presents the scatter plots of four proposed formu-
lations with respect to uBaseline. It can be observed that
most points are above the 45-degree line, which implies
that the linear combination of kernels is better than the

Table 5: Mean ROC values and execution time (in seconds) of
various methods on the von Mering Data Set.

Algorithm Mean ROC Time
uBaseline 0.8061 -
rBaseline 0.7832 —-
eBaseline 0.7945 -
DKL 0.8339 3441.13
DKLy, 0.8340 7445.67
0.7968 35384.84
DKL?L
mDKL 0.8345 54.64
mDKL, 0.8345 67.52
0.8129 151.49
mDKLLl‘(L
Neighbor Counting 0.7076 -
FS-Weighted Averaging 0.7544 -—--

SMI — —

http://www.biomedcentral.com/1471-2105/9/162

Table 6: p-values obtained from Wilcoxon signed test comparing
DKL and mDKL with other formulations for the von Mering data
set.

Algorithm DKL mDKL

uBaseline 5.849E-7 2.966E-7

rBaseline I.510E-10 1.038E-10

eBaseline 4.268E-10 2.863E-10

DKL 1.000 6.531E-2

DKLy, 3.776E-1 1.669E-1
6.870E-11 3.193E-11

u

DKL

mDKL 6.531E-2 1.000

mDKLy, 5.971E-2 1.637E-1
3.193E-11 8.252E-12

u
mDKLY,

For the von Mering data set, each algorithm produces an ROC vector
consisting of ROC values over each task. We use Wilcoxon signed
test to test the difference of the paired data. The null hypothesis of
this test is that the ROC vectors produced by the two compared
algorithms have the common median. The numbers reported in this
table are the p-values that represent the probabilities that the null
hypothesis is true. Typically, the null hypothesis is rejected if p < 0.05.

ideally best individual kernel. In general, the performance
of DKLy;, DKL, mDKLy,;, mDKL is better than uBaseline.
And this is also confirmed by the mean ROC values listed
in Table 5.

Comparison of Execution Time

Table 5 also lists the execution time of various kernel
learning methods. Similar conclusions can be drawn from
this table as to the execution time on the Ligand data set.
All methods based on multiple tasks are more efficient
than their single-task counterparts. By comparing the
results in Table 2 and Table 5 we can also observe that as
the number of tasks increases, the time difference between
methods based on multiple tasks and those based on sin-
gle tasks increases too. Thus, the formulations based on
multiple tasks are preferred when the number of tasks is
large.

Stability Test

Similar to the Ligand data set, we generate ten random
splittings of the data into training and test sets and report
the average ROC values and standard deviations in Table
7. By comparing with results in Table 5, we can see that
the relative performance of each method is similar in both
tables. All of the proposed formulations outperform
eBaseline.

Conclusion

In this paper, we address the issue of learning an optimal
diffusion kernel based on KL divergence criterion for pro-
tein function prediction. By exploiting the special struc-
ture of the diffusion kernel, we show that this KL
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Table 7: Average ROC values and the corresponding standard
deviations over | | splittings on the von Mering Data Set. One of
the splittings was specified by the contributor of the data and the
remaining ten splittings are randomly generated.

Algorithm Average ROC Standard deviation
uBaseline 0.8078 0.0045
rBaseline 0.7863 0.0064
eBaseline 0.7909 0.0078
DKL 0.8398 0.0042
DKLy, 0.8398 0.0042
0.7991 0.0059
DKLL]‘<L
mDKL 0.8402 0.0042
mDKLy, 0.8402 0.0042
0.8194 0.0046
mDKL?(L

divergence based kernel learning problem can be formu-
lated as a simple optimization problem, which can be
solved efficiently. We also extend the formulation to the
multi-task case where we predict multiple functions of a
protein simultaneously.

We have conducted experiments on two benchmark data
sets. Our results show that the performance of linearly
combined diffusion kernel is better than every single can-
didate diffusion kernel. Results also show that the
removal of the log term in the KL divergence criterion
does not degrade its recognition performance, while it
leads to a reduced computational cost. When the number
of tasks is large, the algorithms based on multiple tasks are
favored due to their competitive recognition performance
and small computational costs. One possible extension is
to incorporate the learning of the regularization parame-
ter in the proposed formulations as in [17]. The difference
between the proposed learning framework and those in
[17] is that our formulations require that the eigenvectors
of the candidate kernel matrices to be the same. Thus the
proposed formulations may not be applied for heteroge-
neous data integration. We plan to apply the proposed
algorithms for the analysis of other graph-based biologi-
cal data.
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