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Abstract
Background: The huge amount of data generated by DNA chips is a powerful basis to classify various
pathologies. However, constant evolution of microarray technology makes it difficult to mix data from
different chip types for class prediction of limited sample populations. Affymetrix® technology provides
both a quantitative fluorescence signal and a decision (detection call: absent or present) based on signed-
rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We
developed a new prediction method for class belonging based on the detection call only from recent
Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0
microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM)
patients.

Results: After a call-based data reduction step to filter out non class-discriminative probe sets, the gene
list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe
sets that sequentially improve inter-class comparisons and their significance. The error rate of the method
was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i) determine
a sex predictor with the normal donor group classifying gender with no error in all patient groups except
for male MM samples with a Y chromosome deletion, (ii) predict the immunoglobulin light and heavy chains
expressed by the malignant myeloma clones of the validation group and (iii) predict sex, light and heavy
chain nature for every new patient. Finally, this method was shown powerful when compared to the
popular classification method Prediction Analysis of Microarray (PAM).

Conclusion: This normalization-free method is routinely used for quality control and correction of
collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction
suitable with clinical groups, and looks particularly promising through international cooperative projects
like the "Microarray Quality Control project of US FDA" MAQC as a predictive classifier for diagnostic,
prognostic and response to treatment. Finally, it can be used as a powerful tool to mine published data
generated on Affymetrix systems and more generally classify samples with binary feature values.
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Background
In allowing simultaneous quantification of the expression
level of thousands of genes, DNA chip technology is part
of the revolution in molecular biology towards a compre-
hensive understanding of cell biology at the genome scale,
with considerable stake in improving patient classifica-
tion [1] and treatment. But the huge mass of information
from chips has generated a number of difficulties in inter-
preting results, accentuated by both biological and techni-
cal sources of variability [2-5]. However, this technology
is the only way to dissect biological pathways [6] and dis-
tinguish statistically significant differences in pangenomic
gene expression in a single experiment.

Unsupervised analysis provides patient groups that are
then compared by supervised analysis, like support vector
machines [7], classification trees [8], neural networks [9]
or shrunken centroids [10], and leading to functional
gene signatures for hematological malignancies [11-16].
Most importantly for clinical practice, the prediction of
sample classes occurs whereby a classification system is
trained by a known data set, then tested on a validation
set, and finally used to predict classification [17-19], prog-
nosis [20-26] or response to treatment [27] for new hema-
tology patients, with careful validation procedures [28].

However, all of the previously published methods for
supervised classification and prediction are based on flu-
orescence signal values, making all results dependent on
the way individual chips in an experiment are normalized
using one of the numerous low or high-level normaliza-
tion methods (Global scaling, MAS5, MBEI, RMA,
GCRMA, PLIER, [29]). Affymetrix® technology provides
both a quantitative fluorescence signal and a decision
(present (P) or absent (A) call) based on signed-rank algo-
rithms [30] applied to several spread hybridization
repeats of matched and mismatched probes of each gene,
with possible regional bias [31]. To skip the inter-chip
normalization step [32] and to make the method inde-
pendent of the chip type, we developed a new prediction
method for class belonging based on a statistically-
assessed binary criterion of presence/absence of genes
instead of expression levels, after normalization with
MAS5 or higher. Biological data from normal donors [33]
and three groups of newly-diagnosed multiple myeloma
(MM) patients considered training and predicted groups,
were obtained as previously described [34-36] and statis-
tical issues were addressed by Bonferroni correction for
multiple testing, leave-one-out and 5-fold cross-valida-
tion and validation with independent data [37]. The
present paper reports the development of such predictors
on trivial data (sex determination) and a simple clinical
application (immunoglobulin light and heavy chain
determination). Training is achieved on data from differ-
ent pooled chip types, and reveals powerful predictive

capabilities when compared to the widely used Prediction
Analysis of Microarrays (PAM, [38]) run in parallel on the
Affymetrix-normalized signals. Important applications
potentially derived from this method for high throughput
diagnostic, prognostic and drug response determinations
point to a-la-carte treatment of cancer based on microar-
ray data obtained at the time of diagnosis.

Results
Predictor building
Training data were obtained by pooling samples from
hybridizations either on both A and B chips (noted A+B)
or P chips, having 44,754 probe sets in common, named
"AB+P" set thereafter.

Each class is a collection of sample vectors containing
binary variables: 1 for presence or 0 for absence for probe
sets from the AB+P list.

A preliminary step to reduce the length of sample vectors
and hence computational time is to shorten the initial
gene list. This is readily obtained first by filtering out
probe sets with no presence in samples, and second by
keeping the most class-discriminating probe sets based on
a χ2 test comparing the occurrences of presence/absence
(1/0) among classes.

Every sample of a class is then compared to every sample
of the other for the expression of each probe set by creat-
ing a "XOR" differential vector (vector values set to 1 if

sample calls are different, and 0 if identical). A χ2 calcula-
tion on the occurrences of 1 is made between the differen-
tial vector and the null vector of same length. A sample to
sample comparison for a set of genes is therefore charac-
terized by first: a significance decision (non significant =

0, significant = 1) if the χ2 is reached for a given, Bonfer-
roni-corrected P value (i.e. P value/vector length), and sec-

ond: the χ2 value itself corrected for the vector length

(named ) as an indicator of significance

strength. The final class comparison consists of three val-
ues, the sum of all individual significance decisions
(named NS), the overall strength as the sum of all X2

(named f) and finally the smallest X2 for all the individual
comparisons (named X2

min). For a given gene list, those

three values are initialized. Deletion of a gene without
predictive power from the starting list of genes would
result in improving at least one of the three preceding val-
ues. The principle of the list reduction to a predictor is
therefore to remove each probe set one after the other
from the initial list in order to compute the modifications
of the three preceding values before returning it to the list,

Χ2
2
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g
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and definitely delete from the list the probe set the
removal of which leads to the strongest improvement. The
process stops when no further improvement is possible.
Mathematical inferences and algoritms are detailed in
"Methods".

Whatever the stringency of the P value (noted Pselection) for
the data reduction step, the final predictor has the same
length and content. When there are no longer non-signif-
icant comparisons between classes, deletions occur only
by increasing f or X2

min. Figure 1 displays the evolution of
f and X2

min in the case of training a sex predictor. Selection

was made for Pselection values from .05 to .37, leading to
initial lists from 77 to 1,267 probe sets. The deletion proc-
ess performed at a constant P value of .01 before Bonfer-
roni correction produced an identical 12 probe set
predictor. However, the calculation time has been
decreased by more than 3,000 times over the Pselection
value range.

Sex prediction
The present predictor building method was applied to
predict sex by training with 21 samples of purified popu-
lations of memory B cells, bone marrow plasma cells and
polyclonal plasma cells of healthy individuals separated

Effect of stringency of feature dimensionality reduction on predictor constructionFigure 1
Effect of stringency of feature dimensionality reduction on predictor construction. Probe set selection between 
IgA and IgG heavy chain-expressing MM patient groups over a wide range of Pselection values (from .05 to .37, different colors). 
The number of selected probe sets has no effect on the length and content of the resulting predictor after deletions with a Pbuild 

value equal to or less than .01 divided by the list length for Bonferroni correction, while the computational time (standard 
desktop computer) is strikingly reduced. Close circles: f function or overall strength of interclass comparisons on the left ver-

tical scale. Open circles: X2 or  min, or smallest strength of all interclass comparisons on the right vertical scale. The 

number of non-significant interclass comparisons NS is null here.
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into gender classes of 10 women and 11 men, respec-
tively, and hybridized on A+B chips. With a Pselection value
set as described in previous section for discriminating the
starting probe set selection, the final predictor found
using Bonferroni correction was a short list 12 probe sets
encompassing 7 genes, all of which being not surprisingly
located on the sex chromosomes. The predictor included
the XIST gene, clearly expressed by female samples, as well
as genes located on the Y chromosome and expressed by
male samples. Five commercial RNA extracted from testis
and hybridized in the same conditions were submitted to
classification by successive introduction into either gen-
der class. Calculation of the resulting non-significant
comparisons (see Methods) resulted in classification as
male with no error (data not shown). Leave-one-out cross
validation was performed with the 21 possible sample
removals and the whole process of establishing a discrim-
inative gene list then deleting from it for predictor build-
ing was run, resulting in no classification error when left-
out sample was returned to the correct gender class.

This predictor was then applied to the 68 MM patient
group hybridized on P chips, by successively introducing
them into M or F gender class, and calculating the corre-
sponding NS. Table 1 shows that 67/68 female patients
were accurately classified. The unclassified sample was
rejected from male patients by Y chromosome absence,
but was excluded from women because of a too low XIST
gene level on P chips for "present" status. Twenty-seven
male patients out of a total of 34 were correctly classified
as men, while the remaining 7 were rejected as male by
non significant interclass comparisons, six being rejected
by both gender classes and the other classified as a
woman. In order to check for the male status of these mis-
classified patients, we used a standard short tandem
repeat analysis that clearly evidenced a partial to complete
loss of the Y chromosome, as previously observed for
about 20% of the elder MM patients [39]. Thus, the
present method allows to sort out these male patients
with such a loss of Y chromosome.

The signal data from the same patients used for training
and testing were then applied to PAM Version 2.1 follow-
ing the software recommendations. An error threshold of
4.4 was chosen both to minimize individual and overall
misclassification errors in cross-validation when training,
and to ensure a comparable predictor length. While the
same five genes are common to both predictors, the PAM
one contains six probe sets for the XIST gene. Applying
this predictor to the 68 MM patient test group showed that
if all male patients were correctly classified independently
of Y chromosome deletion, only 12 women out of 34
were classified as such, while the remaining 22 were clas-
sified as men. As preceding, low signals of the XIST gene
on P chips, representing here 50% of the predictor probe

sets, could explain the Y chromosome overvalue and
underline the weakness of using signals through different
chip types.

Monoclonal Ig light chain prediction
When we focused on predicting immunoglobulin chains
of monoclonal malignant plasma cell proliferation, train-
ing for light chain prediction was achieved with 100 MM
patients, expressing 69 kappa (43 A+B chips and 26 P
chips) and 31 lambda (20 A+B chips and 11 P chips)
monoclonal immunoglobulin light chains as assessed by
immunoelectrophoresis. This proportion is in agreement
with the usual one third lambda/two third kappa light
chain distribution in MM [40]. Using either Pselection ≤ 10-

4 or 10-3 for χ2 analysis of discriminative probe sets on the
sample classes led to starting lists of 264 or 442 probe sets.
Initial evaluation of interclass comparisons was then per-
formed using a P value (noted Pbuild) ≤ .01 for χ2 calcula-
tion, corrected for multiple testing by dividing the
precision by the length of the probe list. The 2139 sample-
to-sample comparisons were all significant with a starting
264 probe set list. So the mechanism by which deletions
reduced the list to a final 33 probe set predictor implied
226 deletions by maximizing the fmax function, then 5
deletions by maximizing X2. The same predictor was
obtained with the 442 probe set list, but the computing
time was 5 times longer. Calculation of the error score (NS
= 0) clearly showed that lambda light chains could be dis-
tinguished from kappa without errors at equal to or less
than .01 risk, regardless of disease status, the associated
heavy chain, or the presence of Bence-Jones chains. Leave-
one-out cross-validation was performed for each lambda
and kappa samples through the whole procedure from
selection of the discriminative probe set list to probe set
deletion from that list, generating 100 predictors, all of
which classifying the left-out sample without error when
comparing the NS between the correct and the erroneous
sample reintroduction. Five-fold cross-validation was per-
formed in the same way by separating patients into five
groups and successively testing on each group the predic-
tor trained on the others. Three samples out of 100 were
misclassified. Finally, the same sample classes were sub-
jected to a PAM analysis using the Affymetrix MAS5 or
GCOS-normalized signals without further modifications.
After cross-validation, the error threshold was set to min-
imize misclassification errors in training and led to a 33
probe sets predictor close to the 33 probe sets predictor
obtained by our method. Both predictors were then
applied to the 68 MM patient group hybridized on P
chips. For the call predictor, each new sample was succes-
sively introduced into light chain classes, and the corre-
sponding NS was calculated. Table 1 shows that the call
predictor made no error, while 4/68 patients were mis-
classified by PAM as lambda when kappa.
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Table 1: Prediction in biological assessment. Summary of the light and heavy chain and sex prediction obtained for 47 new patients.

Patient Sex Light chain Heavy chain
NS errors PAM score File NS errors PAM score File NS errors PAM score File

F M P F M P κ λ P κ λ P A G P A G P

E4006 11 0 M 0.000 1.000 M M 9 3 λ 0.000 1.000 λ λ 9 1 G 1.000 0.000 A A
E4020 0 10 F 0.168 0.832 M F 11 1 λ 0.000 1.000 λ λ 23 0 G 0.000 1.000 G G
E4038 0 10 F 1.000 0.000 F F 0 64 κ 1.000 0.000 κ κ Light chain myeloma
E4049 0 10 F 0.000 1.000 M F 0 52 κ 1.000 0.000 κ κ Light chain myeloma
E4050 11 10 MY- 0.000 1.000 MY- MY- 1 50 κ 1.000 0.000 κ κ 15 0 G 0.000 1.000 G G
E4054 11 0 M 0.000 1.000 M M 0 48 κ 0.903 0.097 κ κ 41* 61* A 0.077 0.923 G A
E4055 11 0 M 0.000 1.000 M M 23 0 λ 0.000 1.000 λ λ 56 1 G 0.000 1.000 G G
E4056 0 10 F 1.000 0.000 F F 0 55 κ 1.000 0.000 κ κ 1 2 A 1.000 0.000 A A
E4057 11 0 M 0.000 1.000 M M 7 3 λ 0.008 0.992 λ λ 29 0 G 0.995 0.005 A G
E4060 11 0 M 0.000 1.000 M M 0 35 κ 1.000 0.000 κ κ 48 0 G 0.000 1.000 G G
E4067 11 0 M 0.000 1.000 M M 0 50 κ 1.000 0.000 κ κ 57 0 G 0.000 1.000 G G
E4071 11 0 M 0.000 1.000 M M 0 51 κ 1.000 0.000 κ κ 59 0 G 0.000 1.000 G G
E4073 0 10 MY- 0.000 1.000 MY- MY- 0 58 κ 1.000 0.000 κ κ 48 0 G 0.000 1.000 G G
E4078 0 10 F 0.000 1.000 M F 8 1 λ 0.000 1.000 λ λ IgD myeloma
E4085 0 10 F 0.001 0.999 M F 15 2 λ 0.003 0.997 λ λ Light chain myeloma
E4094 11 0 M 0.000 1.000 M M 0 51 κ 0.770 0.230 κ κ 0 17 A 0.254 0.746 G A
E4105 0 10 F 0.000 1.000 M F 6 3 λ 0.000 1.000 λ λ Light chain myeloma
E4106 0 10 F 0.996 0.004 F F 0 42 κ 0.997 0.003 κ κ 0 5 A 0.065 0.935 G A
E4121 0 10 F 0.000 1.000 M F 27 0 λ 0.000 1.000 λ λ 27 0 G 0.000 1.000 G G
E4122 11 10 MY- 0.000 1.000 MY- MY- 0 59 κ 0.999 0.001 κ κ 0 16 A 1.000 0.000 A A
E4126 11 0 M 0.000 1.000 M M 0 50 κ 0.983 0.017 κ κ 0 17 A 1.000 0.000 A A
E5007 0 10 F 0.000 1.000 M F 0 32 κ 1.000 0.000 κ κ 2 3 A 0.291 0.709 G A
E5024 11 0 M 0.000 1.000 M M 0 51 κ 0.999 0.001 κ κ IgD myeloma
E5029 0 10 F 0.000 1.000 M F 28 0 λ 0.000 1.000 λ λ Light chain myeloma
E5035 0 10 F 1.000 0.000 F F 0 56 κ 0.994 0.006 κ κ 52 0 G 0.000 1.000 G G
E5038 11 10 MY- 0.000 1.000 MY- MY- 0 59 κ 0.974 0.026 κ κ Light chain myeloma
E5040 0 10 F 0.001 0.999 M F 1 38 κ 0.998 0.002 κ κ 96* 43* G 0.000 1.000 G G
E5043 0 10 F 0.001 0.999 M F 0 48 κ 0.994 0.006 κ κ 45 0 G 0.000 1.000 G G
E5046 0 10 F 0.000 1.000 M F 28 0 λ 0.000 1.000 λ λ 0 19 A 1.000 0.000 A A
E5048 11 0 M 0.000 1.000 M M 25 0 λ 0.000 1.000 λ λ 17 0 G 0.000 1.000 G G
E5049 0 10 F 0.001 0.999 M F 1 48 κ 0.996 0.004 κ κ 52 0 G 0.000 1.000 G G
E5065 11 0 M 0.000 1.000 M M 25 0 λ 0.001 0.999 λ λ Light chain myeloma
E5066 0 10 F 0.000 1.000 M F 28 0 λ 0.008 0.992 λ λ Light chain myeloma
E5068 0 10 F 0.000 1.000 M F 16 0 λ 0.122 0.878 λ λ 0 17 A 0.875 0.125 A A
E5069 0 10 F 0.001 0.999 M F 0 62 κ 0.695 0.305 κ κ 104* 44* G 0.000 1.000 G G
E5081 0 10 F 0.000 1.000 M F 26 0 λ 0.212 0.788 λ λ 33 0 G 0.000 1.000 G G
E5084 11 10 MY- 0.000 1.000 MY- MY- 23 0 λ 0.088 0.912 λ λ 0 18 A 0.019 0.981 G A
E5087 0 10 F 1.000 0.000 F F 0 61 κ 0.912 0.088 κ κ 55 0 G 0.000 1.000 G G
E5093 0 10 F 0.999 0.001 F F 1 35 κ 0.978 0.022 κ κ 43 0 G 0.000 1.000 G G
E5103 0 10 F 1.000 0.000 F F 1 39 κ 0.997 0.003 κ κ 47 0 G 0.000 1.000 G G
E5104 11 0 M 0.000 1.000 M M 0 51 κ 0.927 0.073 κ κ Light chain myeloma
E5106 0 10 F 0.002 0.998 M F 0 58 κ 0.873 0.127 κ κ 0 7 A 0.552 0.448 A A
E5125 11 0 M 0.000 1.000 M M 3 13 κ 0.841 0.159 κ κ 5 1 G 0.000 1.000 G G
E5126 11 10 MY- 0.000 1.000 MY- MY- 0 38 κ 0.236 0.764 λ κ 9 0 G 0.000 1.000 G G
E5136 0 10 F 1.000 0.000 F F 0 59 κ 0.391 0.609 λ κ Light chain myeloma
E5138 11 0 M 0.000 1.000 M M 17 1 λ 0.000 1.000 λ λ Light chain myeloma
E5139 0 10 F 0.003 0.997 M F 11 1 λ 0.000 1.000 λ λ 21 0 G 0.000 1.000 G G
E6002 11 0 M 0.000 1.000 M M 0 46 κ 0.958 0.042 κ κ Light chain myeloma
E6003 11 0 M 0.000 1.000 M M 0 53 κ 0.975 0.025 κ κ 44* 65* A 0.855 0.145 A A
E6008 11 0 M 0.000 1.000 M M 0 26 κ 0.891 0.109 κ κ 29 1 G 0.000 1.000 G G
E6011 11 0 M 0.000 1.000 M M 0 56 κ 0.975 0.025 κ κ 49 0 G 0.000 1.000 G G
E6020 11 10 MY- 0.000 1.000 M F 16 0 λ 0.000 1.000 λ λ 6 0 G 0.000 1.000 G G
E6022 0 10 F 1.000 0.000 F F 0 39 κ 1.000 0.000 κ κ 0 4 A 1.000 0.000 A A
E6024 11 0 M 0.000 1.000 M M 10 1 λ 0.000 1.000 λ λ IgD myeloma
E6025 11 0 M 0.000 1.000 M M 4 13 κ 0.003 0.997 λ κ 30 1 G 1.000 0.000 A G
E6026 0 10 F 0.001 0.999 M F 0 27 κ 1.000 0.000 κ κ 36 0 G 0.000 1.000 G G
E6049 11 0 M 0.000 1.000 M M 0 12 κ 1.000 0.000 κ κ 2 4 A 0.008 0.992 G A
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E6054 11 0 M 0.000 1.000 M M 0 40 κ 1.000 0.000 κ κ 3 8 A 0.002 0.998 G A
E6056 11 0 M 0.000 1.000 M M 0 37 κ 1.000 0.000 κ κ 0 6 A 1.000 0.000 A A
E6063 11 10 MY- 0.000 1.000 MY- MY- 1 13 κ 0.999 0.001 κ κ 8 1 G 0.000 1.000 G G
E6074 11 0 M 0.000 1.000 M M 0 22 κ 1.000 0.000 κ κ Light chain myeloma
E6077 11 0 M 0.000 1.000 M M 1 31 κ 1.000 0.000 κ κ 51 0 G 0.000 1.000 G G
E6087 0 10 F 0.002 0.998 M F 15 1 λ 0.000 1.000 λ λ 0 8 A 1.000 0.000 A A
E6092 0 10 F 1.000 0.000 F F 17 1 λ 0.000 1.000 λ λ 67* 50* G 0.000 1.000 G G
E6100 0 10 F 1.000 0.000 F F 1 25 κ 0.477 0.523 λ κ 70* 44* G 0.000 1.000 G G
E6108 0 10 F 1.000 0.000 F F 0 46 κ 1.000 0.000 κ κ Light chain myeloma
E6117 0 10 F 0.009 0.991 M F 13 1 λ 0.001 0.999 λ λ Light chain myeloma
E6120 11 0 M 0.000 1.000 M M 16 2 λ 0.000 1.000 λ λ 0 2 A 1.000 0.000 A A

Abbreviations:
F: female, M: male
P: predicted
MY-: male with Y chromosome deletion
A: IgA, G: IgG
*: When the number of non significant comparisons is identical in both classes for the call predictor at a given precision of the Bonferroni-corrected 
χ2 sample-to-sample comparisons, the P-value is increased by one log unit, adding intra-class errors to interclass ones, but still leading to a correct 
classification.

Table 1: Prediction in biological assessment. Summary of the light and heavy chain and sex prediction obtained for 47 new patients. 
Monoclonal Ig heavy chain prediction
Training and validation were achieved under the same
conditions as described above for the light chains with a
94 patient training group containing 28 IgA (17 A+B chips
and 11 P chips) and 66 IgG (34 A+B chips and 32 P chips)
monoclonal immunoglobulin heavy chains as assessed by
immunoelectrophoresis, a consistent proportion for MM
patients. A 38 probe set predictor was extracted with Bon-
ferroni correction from a starting 225 probe set list, with
no non-significant interclass comparison. Leave-one-out
cross-validation was performed with 94 sub-predictors,
making no classifying error when correctly reintroducing
the left-out sample. Data from the test group were proc-
essed as previously for call predictor and PAM classifica-
tion, excluding the light chain and IgD myeloma patients.
Table 1 displays one classification error (2%) for the
present method versus 9 (18%) for PAM. When the
number of non significant comparisons is identical in
both classes for the call predictor and hampers the classi-
fication decision, the stringency of the Bonferroni-cor-
rected χ2sample-to-sample comparisons is increased by
one log unit. Requirements in sample differences increase,
adding intra-class errors to interclass ones, but still lead-
ing to a correct classification.

Discussion
Microarray technology is rapidly evolving. In order to be
compared, gene expression profiling experiments should
be performed with the same type of chips and normalized
with the same method. This hampers the use of gene
expression data obtained from different microarrays and
studies. The present paper describes a new class predictor
based on the Affymetrix call, making it possible to put
together data from different Affymetrix microarray types.
The call is complementary to the fluorescence signal
measured in arbitrary units and indicates that a gene has

a certain probability of being present (biologically
expressed) in or absent from a sample. The simultaneous
hybridization to a series of perfectly matched and mis-
matched probes allows one to estimate local noise to
threshold the expression and make a decision on the pres-
ence [30]. Due to the increasing chip density, the number
of match-mismatch repeats decreases as the number of
probed genes increases and technology improves, but
nonetheless the detection call strategy is kept by Affymetrix.
Therefore, experiments performed on different Affymetrix
chip types should be comparable, provide they are nor-
malized with compatible software (MAS5 and GCOS).
The availability of data for both training and testing is
constantly growing but keeping with ascendant compati-
bility. In spite of controversial use of negative matches,
Affymetrix was the only way to provide a P/A algorithm
until recent PAN-P development using negative probe
sets. This predictor method could now be applied to other
microarray systems since the PAN-P algorithm allows to
allocate a P/A call to microarray signal data [41]. Thor-
ough signal normalization [42] is necessary to deal with
sample preparation, hybridization, washing and scanning
variability. Our technique using the Affymetrix decision
call avoids this hampering step, but on the other hand,
puts on the same level call-decided present genes with
highly variable expression (from 50 to 10,000 arbitrary
fluorescence units), leading to the same weighting being
given to genes in predictors that have highly dispersed
expression. In addition, a gene was considered absent or
present only by relying on the MAS5 or GCOS decision.
Cut-offs of P-values for detection calls were set at Affyme-
trix default values, with marginal calls considered absent
calls, although more recent techniques are now available
[43]. A and B chips were used in parallel although highly
expressed genes are overexpressed on the A chip com-
pared to the B, which contains many genes that are rarely
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expressed. However, using the detection call overrides
artificial inflating of the B chip intensities relative to the A
ones.

Bonferroni correction was applied to account for multiple
testing. While conservative, this technique is appropriate
for selection from probe set lists large enough to prevent
low sensitivity, and allowed us to show that by applying
the predictor to a completely independent validation set,
the built predictors were highly reliable, with sensitivity
and specificity very close to 100%. The presence of out-
liers in immunoglobulin chain isotype detection was
readily detected without a further specialized method
[44], and confirmed by reassessment of biological data.

Beyond the initial step of data binarization, which is
Affymetrix-specific, selection of and deletion from the
probe set list by considering that each sample group is a
drawing of presence or absence of a gene list is a solution
to the more general problem of classification with limited
cardinality (few samples) and high dimensionality (many
features, here genes or probe sets), making it possible to
extend the present method to any classification of groups
containing vectors of binary data. A preliminary process of
dimensionality reduction is required [45]. In order to
avoid dilution by uninformative genes, a first possibility is
to select probe sets on the basis of their class discriminant
capability, as measured in the present method by a χ2 test
on binary values, or on continuous signal values with
other statistics [17]. For such a reduction, PAM uses a
semi-supervised technique "shrinking" class centroids to
the overall centroid for each probe set [10]. On the con-
trary, to preserve information from all probe sets, a second
possibility is to transform the large feature space into a
smaller one by a limited number of combinations of indi-
vidual information, like principal component analysis in
the SIMCA method [46].

In order to use a χ2 table, the calculated presence content
of a class should not be less than 5, otherwise the class
should be combined with another one to reach the thresh-
old. In this respect, some of our sample groups approach
such a situation. The importance of the selection step is
stressed in Results: the number of selected probe sets
influences the computational time without affecting the
length and quality of the deduced predictor. The deletion
and optimization process is in the order of (starting
length)2 and the number of comparisons for each deletion
increases as the product of each class content, practically
restricting this starting length to less than 1,000. Probe
sets are then individually removed from the selection list
and the resulting significance of inter-class comparisons is
evaluated with the remaining list. The initial number of
non significant sample to sample comparisons NS is
almost always null, since χ2 tends to be equal to the

number of "1" in differential vectors when their length
increases. Therefore NS must be the first process cut-off if
increased by any further deletion. If NS is unchanged, the
second priority is the overall improvement of the signifi-
cance, i.e. an increase in the sum f of residues, because it
underlines the effect of a deletion on all comparisons
simultaneously. And actually, if that priority level is given
to improvement in the smallest residue, the final predic-
tor is longer and less performing. Since deletion decision
for a probe set during the training sequence arises from
updating maximized criteria between its removal and
return, the present method resembles the Forward-Back-
ward algorithm in Hidden Markov Models [47].

The prediction step is achieved by inserting the sample to
predict for in each class successively and measuring the
number of non significant errors generated by the samples
of the other class. A well-classified sample should generate
a low to null number of non significant comparisons
when compared to the samples of the wrong class.

Prediction for gender or Ig light and heavy chain type was
used to test for the method, but it is also useful to generate
quality control when running chips on a per-patient basis.
The prediction method described here is thus routinely
used in our hands for the microarray report we generate
for each patient with multiple myeloma at the University
Hospital of Montpellier. It works well even with patients
expressing Bence-Jones chains. This predictor method
should help to select defined sets of genes with efficient
prediction potential to design dedicated microarrays for
multiplex quantitative assays. However, problems in sex
determination in the context of myeloma arise from par-
tial deletions of the Y chromosome [39]. The present
method excludes most of these patients from both gender
class and allows classifying them as an entity. Predicting
chain isotype is straightforward, and may be used in eve-
ryday clinical practice. This also emphasizes that the
present method is ideally suited for two-class classifica-
tion by a unique score, when establishing a multiclass pre-
dictor needs as much scores as the number of classes
minus 1.

Finally, preliminary results in predicting less clear-cut
classes like MM clinical stages show that, although the
number of starting non-significant errors (NS) is not null,
the present deletion process is able to reduce it to zero and
further shorten the list by the two other criteria to clini-
cally-relevant predictors.

As predictors are composed of "must be present" and
"must be absent" probe sets for a sample group, the
"present" part of the predictor is at least partly a signature
of the group, a "molecular symptom" as recently sug-
gested for stratification of clinical phenotypes [48]. This
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was obvious for the sex predictor, where all the genes pre-
dicting for male gender were on the Y chromosome, and
partly verified in the case of monoclonal component
chains.

However, genes selected for prediction need not be bio-
logically relevant. As pointed out by the MicroArray Qual-
ity Control-II project [49], validation of classifiers should
not involve demonstrating that predictors are "validated
biomarkers of disease status", and our method answers
most of the evaluation criteria set for classifiers in this
project.

In the space of probe sets, each sample could be described
by a linear model with detection calls as independent var-
iables. Approaches like the ones used for mapping of cat-
egorical traits from quantitative loci [50] could then be
applied to generate a threshold model, allowing one to
classify a sample independently of previous training or
validation groups.

Still, the present classifying method, using already proc-
essed call evaluation through standardized tools like
MAS5 or GCOS, gives consistent results rapidly after the
hybridization of patient samples at diagnostic on recent
Affymetrix chip type.

Conclusion
Because of its superseding capabilities, the present call
algorithm-based method looks particularly promising for
further applications like diagnostic classification of mon-
oclonal gammopathies, prognostic grouping and predic-
tion of response to treatment. More widely, it can be used
as a powerful tool to mine self-generated or literature data
on all cancer types. and specially to perform classification
of binary feature-containing samples.

Methods
Samples and database implementation
The process described herein has been tested on sex, mon-
oclonal light chain and heavy chain prediction. Methods
for recruiting patient groups, as well as cDNA preparation
and chip hybridization were described elsewhere [34-36].
Quality controls for hybridization were done and passed
as recommended by Affymetrix so that poorly hybridized
chips containing an excessive number of absent calls were
eliminated. Chip scans were saved into text files through
MAS5 then GCOS Affymetrix® data treatment and trans-
ferred to our RAGE [51] database. All input/output opera-
tions and calculations were managed through a web
interface by Perl-CGI scripts running on an Apache/Linux
server.

Notations

The probe set list PST = (ps1...psk...psg) has an initial length

ginit of 44,928 probes for A+B chips, 54,613 probes for P

chips and 44,754 for both A+B and P combined chips.
Classes XT = (x1...xi...xm) and YT = (y1...yi...yn) contain sam-

ples  and

. P-values are noted Pindice.

Step 1 Prediction Process – Filtering class-discriminating 
probe sets
In order to work on significantly expressed genes only, we
decided to keep a two-level presence status, "Present" as 1
and "Else" as 0. So we used cut-off P-values for detection
calls at more than .04 for both absent and marginal calls,
since the default Affymetrix values are between .04 and
.06 for marginal and more than .06 for absent. As recom-
mended by others [52], probe sets were filtered by select-
ing at least one present call across all samples, to avoid
working on always-absent genes, as described in Algo-
rithm 1, Appendix.

The number of probe sets decreased from 44,928 to
33,360 for U133A+B chips with one forced presence
(default). The decrease rate of gene number was much
lower when further increasing the minimal number of
present calls. Subsequent filtering was achieved by apply-
ing a χ2 test to each probe set distribution in sample
groups considered as multiple drawings of a two-stage cri-
terion (presence = 1, else = 0), with a user-defined Pselection
value, as summarized in the Affymetrix-independent algo-
rithm developed in Algorithm 2, Appendix.

With a user-defined cut-off for Pselection, the resulting sorted
probe set list is subsequently used for supervised analysis.
The Pselection value should be at least .05 to select discrimi-
nating probe sets between classes. Decreasing this value
results in decreasing the number of selected probe sets by
increasing precision. Actually, when many genes are
highly differentially expressed between classes, the
number of selected probe sets is over 500 at the maximal
significance threshold, leading to huge computational
time without change in predictive probe sets. Decreasing
Pselection value yields to a decrease in number of selected
probe sets and deletions, but the final predictor length is
constant over a large range of Pselection down to less than or
equal to .001 (default value), while the computer time is
strikingly decreased for identical probe set content. How-
ever, further decrease in Pselection will make the learning
process impossible because of a too limited discriminat-
ing probe set list with a high rate of non significant inter-
class comparisons.

x x d x d x di
T

i i k i g= ( )1... ...

y y d y d y dj
T

j j k j g= ( )1... ...
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Step 2 Prediction Process – Initializing the discriminating 
probe set list strength
The principle in evaluating the capacity of a probe set list
to separate sample classes is to maximize the significance
of sample to sample comparisons using a χ2 test. Since
detection calls from the same probe set are paired in com-
pared samples, we compare every sample xi of the class X
to every sample yj of the class Y by creating a differential
vector ∆ij whose values are 0 if the two sample detection
calls for a probe set are identical, and 1 if they are differ-
ent. This new vector ∆ij is then compared to the null vec-
tor, representing the H0 hypothesis using a χ2 test, with a
user-defined Pbuild value with Bonferroni correction for
multiple testing and Yates correction for small sample
numbers in two class comparisons.

In the ∆ij vector of g elements, the observed number of "1"
is dij and the number of "0" g - dij. The null vector contains
g "0" only. In both vectors together, containing 2g ele-
ments, the total number of "1" is dij, and the total number
of "0" 2g - dij, giving the calculated numbers of "1" and "0"
in both vectors . The χ2 calculation for the ij comparison
is straightforward:

If the significance threshold is reached, the samples are
not in the same class. This is repeated for comparison of
each class sample paired to any sample of the other class
and the number of non-significant comparisons NS can
be determined. The calculated χ2 value is dependent of g,
the length of the probe set list. Let's consider instead the
expression:

where pij is the probability of "1" in the differential vector
∆ij. It is now independent of the number of probe sets in
a given list. Every resulting X2 will represent the strength of
the sample-to-sample difference. The smallest one, repre-
senting the worst of all comparisons, is noted X2

min and
the sum of the overall residues for class comparison is rep-
resented by the function:

When used for the first time (evaluating the discrimina-

tive probe set list), NS0, f0,  should be substituted to

NS, f, X2 and gselect to glist in Algorithm 3, Appendix.

Step 3 Prediction Process – Shortening the probe set list by 
the best deletion
The principle is to minimize the number of non-signifi-
cant comparisons by successive deletions of the probe set
giving the best improvement from the probe set list. For
the predictor learning step, a maximum for Pbuild should
also be .05. But slightly scaling down Pbuild should result
in avoiding misclassifications at the validation step when
classes present close levels of differential gene expression
(e.g. immunoglobulin light-chain cross-validation, Pbuild
≤ .01, default value). However, a strong decrease should
delete too few probe sets to make the deletion process val-
uable.

The step diagram is described in Algorithm 4, Appendix,
and the process stops when no criterion can be further
improved by probe set removal. The remaining list
becomes the predictor.

Cross-validation
For leave-one-out validation, each sample in turn is
removed from its class, and the whole process of dimen-
sionality reduction and predictor building is run with
Bonferroni correction on the remaining samples as
described for initial classes. Each predictor build in this
way is tested for its capacity to generate misclassification
errors, i.e. the greatest difference in NS when the removed
sample is returned either to the class in which it belongs
(NS should be 0 or small) or to the other class (NS should
be high and ideally equal to the number of samples in the
class of origin minus 1).

Five-fold cross validation is done in the same way by
dividing the sample population into five groups and test-
ing one in turn with a predictor trained with the four
pooled others through the whole process of data reduc-
tion and predictor building.

Prediction
This is achieved in the same way as validation. The new
sample is successively added to one of the known classes,
and the predictor list is run on both situations (class 1
plus new sample versus class 2, then class 1 versus class 2
plus new sample). The preceding method is run, namely
calculating the number of errors generated in both cases
by the algorithm #3, the smallest error number assigning
the correct classification.

cijYates
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Appendix
Algorithm 1. Filtering on presence and data binarization 
(Affymetrix-specific)
1 begin initialize, k ← 0, i ← 0, j ← 0, gpfilter← ginit

2 for k ← k +1

3 sk← 0

3 for i ← i + 1

4 if psk present in xi then xi dk← 1

5 else xi dk← 0

6 sk← sk + xi dk

7 until i = m

8 for j ← j + 1

9 if psk present in yj then yj dk← 1

10 else yj dk← 0

11 sk← sk + yj dk

12 until j = n

14 if sk = 0 then delete psk from PS; gpfilter← gpfilter - 1

13 until k = ginit

16 return PS, gpfilter

17 end

Algorithm 2. Dimensionality reduction: selecting features 
(probe sets) discriminating class X from class Y
1 begin initialize Pselection, k ← 0, i ← 0, j ← 0, gselect← gpfilter

2 for k ← k + 1

3 for i ← i + 1

4 Xok← Xok + xj dk (observed)

5 until i = m

6 for j ← j + 1

7 Yok← Yok + yj dk (observed)

8 until j = n

9  (calculated)

10  (calculated)

11 Yates-corrected

12 if P ( ) > Pselection

13 then delete psk from PS; gselect← gselect - 1

14 until k = gpfilter

15 return PS, gselect

16 end

Algorithm 3. Evaluating inter-class comparison for a probe 
set list of length glist
1 begin initialize Pbuild, NS ← 0, f ← 0, X2 ← 100, k ← 0,
i ← 0, j ← 0

2 for i ← i + 1

3 for j ← j + 1

4 δ ij← 0

5 for k ← k + 1

6 if (xi dk≠ yj dk) then δ ij← δ ij + 1

7 until k = glist

8 (Eq. 1)

9 if  (Bonferroni correction)

then NS ← NS + 1
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Yck
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10 (Eq. 3)

11 if then (Eq. 2)

12 until j = n

13 until i = m

14 return NS, f, X2

15 end

Algorithm 4. Reducing the discriminative list to a predictor

1 begin initialize gpred← gselect, NSmin ← NS0, fmax← f0,

2 do

3 l ← 0

4 flag ← - 1

5 for l ← l + 1

6 remove psl from PS

7 run algorithm 3 with glist← gpred

8 if NS <NSmin

then NSmin ← NS; fmax← f;  ← X2; psns← psl;

flag ← 1

9 elsif NS = NSmin and fmax≤ f

then fmax← f;  ← X2; psf← psl;

if flag ≠ 1 then flag ← 2

10 elsif NS = NSmin and fmax > f and  ≥ X2

then  ← psl;

if flag ≠ 1 and flag ≠ 2 then  ← X2; flag ← 3

11 return psl to PS

12 until l = gpred

13 if flag = 1 then delete psns from PS; gpred← gpred - 1

14 elsif flag = 2 then delete psf from PS; gpred← gpred - 1

15 elsif flag = 3 then delete  from PS; gpred← gpred -

1

16 until flag = - 1

17 return PS (the final predictor)

18 end
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