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Abstract

Background: Multifactor Dimensionality Reduction (MDR) has been introduced previously as a
non-parametric statistical method for detecting gene-gene interactions. MDR performs a
dimensional reduction by assigning multi-locus genotypes to either high- or low-risk groups and
measuring the percentage of cases and controls incorrectly labelled by this classification — the
classification error. The combination of variables that produces the lowest classification error is
selected as the best or most fit model. The correctly and incorrectly labelled cases and controls
can be expressed as a two-way contingency table. We sought to improve the ability of MDR to
detect gene-gene interactions by replacing classification error with a different measure to score
model quality.

Results: In this study, we compare the detection and power of MDR using a variety of measures
for two-way contingency table analysis. We simulated 40 genetic models, varying the number of
disease loci in the model (2 — 5), allele frequencies of the disease loci (.2/.8 or .4/.6) and the broad-
sense heritability of the model (.05 — .3). Overall, detection using NMI was 65.36% across all
models, and specific detection was 59.4% versus detection using classification error at 62% and
specific detection was 52.2%.

Conclusion: Of the |0 measures evaluated, the likelihood ratio and normalized mutual
information (NMI) are measures that consistently improve the detection and power of MDR in
simulated data over using classification error. These measures also reduce the inclusion of spurious
variables in a multi-locus model. Thus, MDR, which has already been demonstrated as a powerful
tool for detecting gene-gene interactions, can be improved with the use of alternative fitness
functions.

Background tical model [1]. The idea of epistasis, or more generally
The statistical definition of epistasis was given by Fisherin =~ "gene-gene interaction", has reappeared as a popular
1918 as deviations from additive effects in a linear statis-  theme in human genetics over the last ten years. There is a
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growing belief that susceptibility to common diseases
may be governed by the potentially complex interaction
of multiple genetic variants. This belief is driven largely by
the notion that large biochemical networks and gene reg-
ulatory processes involving multiple genes have a func-
tional endpoint that may be influenced by the
simultaneous presence of multiple variants in those genes
[2,3].

In addition to its theoretical importance, epistasis has
been functionally demonstrated to play a role in human
disease. Most notably, Hirschsprung's disease was found
to be influenced by polymorphisms in RET and the
ERDB?2 receptor in the Old Order Amish and was con-
firmed in a mouse model [4]. Having both variants simul-
taneously increases risk of disease far beyond the
combined risk of each independent variant.

As epistasis is believed to have important implications for
human disease risk, numerous statistical and computa-
tional approaches have been developed to examine
epistasis in family-based and case-control association
studies [5-9]. Multifactor dimensionality reduction
(MDR) is one such computational method to identify
gene-gene interactions in case-control studies where vari-
ants may or may not exhibit detectable marginal effects.
MDR has been shown previously to have reasonable
power to detect gene-gene interactions in several cases of
experimental error and over a variety of simulated genetic
models [10]. MDR has also been applied to many disease
phenotypes including hypertension [11-13], multiple
sclerosis [14], sporadic breast cancer [15], type II diabetes
[16], coronary artery disease [17], and autism [18].

There have been several notable extensions to the MDR
method. Multifactor Dimensionality Reduction Pedigree
Disequilibrium Test (MDR-PDT) was developed by Mar-
tin et al. to examine multi-locus models in extended ped-
igree data [19]. MDR was extended to use a chi-square
statistic as an alternative to prediction error/classification
error, and to test other forms of cross-validation and per-
mutation testing [20]. MDR was also modified to include
the odds ratio as a quantitative measure of disease risk
[21] - as well as extended into a generalized MDR
(GMDR) to include discrete and quantitative covariates as
well as dichotomous and continuous phenotypes [22].
Velez et al. evaluated the performance of MDR using bal-
anced accuracy for several examples of class-imbalance
[23]. As the balanced accuracy measure provided
improved power for cases of class imbalance, we hypoth-
esized that alternate measures of classification perform-
ance would improve the performance of MDR. In this
study, we demonstrate through simulated data that alter-
ing the scoring measure used in model evaluation and
selection can improve the detection and statistical power
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for complex interaction effects. For the purposes of this
study, simulated epistasis models contain no marginal
effect, where all phenotypic variance attributable to
genetic variation is due completely to the interaction of
genetic loci, as described by Culverhouse et al. [24] To
detect these genetic effects, the influential loci must be
examined jointly.

MDR is a non-parametric statistical method for the analy-
sis of gene-gene and gene-environment interac-
tions[15,25]. Figure 1 illustrates the MDR algorithm.
Additional detail is provided in the "Methods" section.
MDR performs an exhaustive search of all N-locus mod-
els, collapsing multi-locus genotypes into high-risk and
low-risk classes. These high- or low-risk classes are then
compared to the observed status of individuals to produce
a score for the classification. In this manner, all N-locus
models are ranked by a scoring measure, and the model
with the optimal score is selected as the best or "most fit."

Fitness Measures

The results of a classification algorithm can be represented
as a special type of two-way contingency table (also called
a confusion matrix). The true status forms one dimension
of the table and the algorithm classification forms the
other dimension. Two-way tables can be scored with a
variety of measures, many of which have been developed
in multiple disciplines using different terminology to
describe similar concepts. There are several basic terms
and measures using the four cells of a two-way contin-
gency table (Figure 2A).

Sensitivity is the classification accuracy of the cases, or the
proportion of correctly classified cases among all cases in
the data. In the text classification field, this measure is
called recall. Specificity is the classification accuracy of the
controls, or the proportion of correctly classified controls
among all controls in the data. Positive Predictive Value or
Precision is the classification accuracy of the affirmative
classification, or the proportion of actual cases among all
individuals classified as cases. Negative Predictive Value is
the proportion of controls among all individuals classi-
fied as controls. Using these basic values, several compos-
ite measures of association have been developed (Figure
2B-L). The ten measures selected represent a variety of
analysis strategies from several fields including text classi-
fication, machine learning, diagnostic testing, statistical
theory, and information theory. Classification error (CE)
and the related quantity, classification accuracy (1-CE),
are two of the most frequently used and contentious
measures of classification performance. It is defined sim-
ply as the proportion of examples incorrectly labelled by
a classifier. The technical merits of classification error as a
measure of classifier performance have been debated [26-
29].
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MDR process. For a full description of the MDR algorithm, please see the "Methods" section.

Page 3 of 17

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:238

A.Basic Contingency Table Measures _c..

Contral
e &
Specificity —— ;_‘ A B
Positive Predictive Value X
A+B §| c D
Negative Predictive Value == =
C. F-Measure (F)
F-measure is a measure first used by Lewis and Gale for . B PPV
assessing text classification effectiveness (Lewis and Gale 1994),
and is a weighted combination of sensitivity and precisi P
E (] D
b S Sy —— :
=2 A A =05
p? e X The o
Specific

E. Geometric Mean 2 (G2)

Geometric mean 2 is the geometric mean of sensitivity and
specificity, and was also used by Kubat et al. for satellite image
processing as an alternative to ROC analysis (Kubat et al. 1998).

55
o=k

i

G2= . =
A+C D+B

+
:

G.Youden Index (Y1)
The Youden Index (Youden 1950) was developed as a

measure of goodness for diagnostic tests. It is a summary
of test accuracy when the costs of false positives are similar

D
o]

http://www.biomedcentral.com/1471-2105/9/238

B. Classification Error (CE) —
Classification Error and the related measure classification g A B
accuracy (CA) is one of the most frequently used measures of

classification performance. It is defined simply as the

proportion of examples incorrectly labeled by a classifier: c D
B+C Error
CE= ——8M — CA=1|-CE
A+B+C+D

D. Geometric Mean | (GI)

Geometric mean | is the geometric mean of sensitivity and g ‘A B PPV
precision, and was used by Kubat et al. for satellite image |
processing (Kubat et al. 1998).

g (K ) ? M|

o A A n
Gl - = X
AC AtB
F. Euclidean Distance (ED) L
Euclidean di is the di from an ideal classification, g A | B
where sensitivity and specificity both equal one. | B |
{8 -

e

{alo]m
I

o V(B ()

H. Predictive Summary Index (PS)
The Predictive Summary Index (Linn and Grunau 2006) was
proposed as an alternative to the Youdin Index as a
measure of predictability in a diagnostic test.

to the costs of false negatives. NPV ¢
vi- [N . B 4 Sensitivity psi= [ . B i
A+C B+D C+D A+B
. Observed JoaTe . Observed
I. Chi-Square (X2) ]. Likelihood Ratio (LR) '
Chi-square good f-fit is an adj i sum of the squared § A B The likelihood-ratio test is a related measure that statistically § A B
differences between observed and expected frequencies. The .g‘ compares the maximum likelihood of an unrestricted model .5‘
chi-square is a classic test of association in categorical data é with a restricted model (Neyman and Pearson 1928). - g
analysis (Fisher 1934). cC| D 1 8 c| D ~‘ 8
_ < [ [ Observed | - | Expected J? _ Observed
X2= LR = Observed .

iH e 2 % [obs log - R |
K. Normalized Mutual Information L. Normalized Mutual J———
(NMI) Information Transpose (NMIT) iAa|B |
Normalized Mutual Information is an information-theoretic Entropy(ylx) Normalized Mutual Information Transpose is the NMI A ) Entropy(x)
measure of information transmission based on Shannon’s lculated on a transp d ingency table. Here, the E c D
Entropy. It was proposed by Forbes as an ideal measure of | is tr ission b true status and classification. [ = U
classsifier performance (Forbes 1995). _Emi Entropy(xy)

H(y) — H(vIx H(x) — H(x
nj=  HO—HOK) — o) —Hilxi
H(y) H(x)
NMI=1 - -A’In(A)— B*In(B)— C*In(C)— D*In(D) + (A+B)‘In(A+B) + (C+D)"In(C+D) NMIT = 1 :A‘In(A)— B*In(B)— C*In(C) — D*In(D) + (A+C)'In(A+C) + (B+DY'In(B+D)

NIN(N) - ((A+CY'In(A+C) + (B+D)'In(B+D))

Figure 2

NIn(N)— ((A+B)'In(A+B) + (C+DY'In(C+D))

Contingency table measures of classification performance. Four basic contingency table measures (A) can be com-
bined to form several composite measures of contingency table fitness (B-L).

Precision-based and ROC-based measures

F-measure (F) (Figure 2D) is a measure first used by Lewis
and Gale for assessing text classification effectiveness, and
is the inverse of the E-measure [30]. The E-measure is a
weighted combination of sensitivity and positive predic-

tive value derived by van Rijsbergen to satisfy several con-
ditions of measurement theory [31]. Geometric means
have been used as performance measures for classifica-
tion. Kubat et al. defines two such quantities, here labelled
geometric mean 1 and geometric mean 2 [32]. Geometric
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mean 1 (G1) (Figure 2C) is the geometric mean of sensi-
tivity and precision. Geometric mean 2 (G2) (Figure 2E)
is the geometric mean of sensitivity and specificity. This
measure is related to the receiver-operator characteristic
(ROCQ) curve and was used in lieu of ROC analysis by
Kubat et al. as a single measure of classification [27,32].
Euclidean distance from an ideal classification (ED) (Fig-
ure 2F) is a measure also related to ROC curves. This com-
bination of sensitivity and specificity measures the
distance from an ideal classification in ROC space, where
sensitivity and specificity both equal one.

Diagnostic testing measures

The Youden index (YI) (Figure 2G) and Predictive Sum-
mary Index (PSI) (Figure 2H) are summary measures of
certainty for dichotomous diagnostic tests [33,34]. The
Youden index is the sum of the sensitivity and specificity
minus one. The predictive summary index is the sum of
the positive predictive value and the negative predictive
value minus one.

Statistical measures

Pearson's Chi-square goodness-of-fit statistic (y2) (Figure
21) is an adjusted sum of the squared differences between
observed and expected frequencies [35]. The chi-square is
a classic test of association in categorical data analysis. The
likelihood-ratio test (LR) (Figure 2J) is a related measure
that statistically compares the maximum likelihood of an
unrestricted model with a restricted model [36]. In this
setting, the unrestricted model consists of the observed
frequencies in the data and the restricted model consists
of the expected frequencies under the null hypothesis of
no association.

Information theoretic measures

Normalized Mutual Information (NMI) (Figure 2K) was
described by Wickens as a measure of information trans-
mission, based on Shannon's Entropy [37]. Entropy was
developed in communication theory as a measure of dis-
persion for categorical data. Entropy is often measured in
bits, or log base 2 units. Given a two-way contingency
table, four entropy values can be computed: the row
entropy, the column entropy, and two conditional entro-
pies (H(x|y)) not shown):

H(x)=_zpi log,p; (1)

H()’):_zpjl()gzpj (2)
j
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b b
H(ylx)=om| -2 Tosa ) (3)

j 1

The quantities p; and p; represent the empirical probabili-
ties of the predicted and true class states, respectively, and
p;j is their joint probability. Using these values, NMI and
its transpose (NMIT) (Figure 2L) are defined as:

H(x)-H(x]y)

NMIT (y) = NMI(x) = H(x)

(5)

The NMI value is interpreted as the proportion of infor-
mation contained in the row variable that is transferred or
transmitted to the column variable, or more concisely the
amount by which the model reduces our uncertainty
about the true state.

Results

Detection

All detection results are shown in Figure 3 and specific
detection results are in Figure 4. "Detection" is the ability
of the method to correctly identify all disease loci, but
additional non-disease loci may be included in the model
also. "Specific detection" is the ability of the method to
correctly identify all the disease loci and no additional loci
- this could also be phrased as the ability to detect the cor-
rect multi-locus model with no false positive loci. Signifi-
cant differences from classification error (indicated by "+"
and "-" symbols in Figures 3 and 4 to indicate higher
mean and lower mean results respectively) had Wilcoxon
rank-sum p-values below 0.05. Over all models, the mean
detection using classification error was 62% and the mean
for specific detection was 52.2%. Detection was at or
above 80% in all two-locus models, with 100% detection
for all two-locus models with > 1.5% heritability. Detec-
tion diminishes in the three-locus models, with only three
models showing greater than 80%. Detection in four- and
five-locus models drops below 80% except for model 35,
a five-locus model with 3% heritability, which was
detected at 96%. Specific detection using classification
error is above 80% for all two-locus models except the
0.5% heritability models (models 5 and 10). All three-,
four- and five-locus models are below 80% specific detec-
tion except for model 35, with specific detection at 95%.
These models show sporadic detection and specific detec-
tion that does not follow trends based on allele frequency
or heritability.

The precision-based measures F-measure and geometric
Mean 1 performed poorly. Over all models, F-measure
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Figure 3

Detection box plots. The dark vertical line indicates the mean detection using classification error. Dark shading indicates LR
and NMI were significantly better, medium shading indicates no significant difference. Light shading indicates classification error
was better than LR and NMI. "+" on the y axis indicates significantly different from classification error with a higher mean, "-"
indicates significantly different from classification error with a lower mean. Significance was assigned by Wilcoxon rank-sum
tests.
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Figure 4

Specific detection box plots. The dark vertical line indicates the mean detection using classification error. Dark shading
indicates LR and NMI were significantly better, medium shading indicates no significant difference. Light shading indicates classi-
fication error was better than LR and NMI. "+" on the y axis indicates significantly different from classification error with a
higher mean, "-" indicates significantly different from classification error with a lower mean. Significance was assigned by Wil-
coxon rank-sum tests.
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averaged 9.5% detection, with 16 to 23% detection in
two-locus models, 9 to 15% detection in three-locus mod-
els, and less than 5% in four- and five-locus models. Spe-
cific detection was near 0% for all models. Allele
frequency had no impact on detection. Geometric mean 1
performed slightly better than F-measure with 12% over-
all detection. Detection using this measure was sensitive
to the allele frequencies specified in the genetic model.
Detection in the 0.2 MAF models ranged between 24-
34% in two-locus models, 14-24% in three-locus models,
and 4-10% in four- and five-locus models. Detection in
the 0.4 MAF models ranged between 15-19% in two-
locus models, 10-13% in three-locus models, and 2-5%
in four- and five-locus models. Specific detection using
geometric mean 1 was near 0% for all models. Both F-
measure and geometric mean 1 showed significantly
worse detection and specific detection than classification
error in nearly every case. Notably, these two measures
outperformed all others for detection of two very difficult
models (33 and 35), but in these cases the detection was
very low and specific detection was no better than classifi-
cation error.

The ROC-based measures Euclidean distance and geomet-
ric mean 2 also fail to outperform classification error over-
all, but perform well for some models. The average
detection using Euclidean distance over all models was
only 43.3%, but in two-locus models was near 100%
except for the lowest heritability models (5 and 10).
Across higher order models detection was generally scat-
tered with no discernable trend, ranging from 2-77% in
three-locus models, 3-46% in four-locus models, and 0-
41% in five-locus models. Similarly, specific detection
using Euclidean distance was between 90-99% for all
two-locus models except the lowest heritability models
(which were 80% for model 9 and 50% for model 10).
Specific detection in higher order models was also scat-
tered, but in general was higher for higher heritability
models. Geometric mean 2 showed very similar trends for
detection and specific detection to Euclidean distance.
Detection was 85-100% for two-locus models, 13-70%
for three-locus models, 6-20% in four-locus models and
less than 7% in five-locus models. Specific detection was
between 97 and 99% in all but the lowest heritability two-
locus models. All others had less than 10% specific detec-
tion. Using Euclidean distance and geometric mean 2,
only a few models show better detection than using clas-
sification error. The most notable of these is model 14
where geometric mean 2 improved over classification
error by 41.67. Also, both Euclidean distance and geomet-
ric mean two showed significantly improved specific
detection over classification error in all two-locus models
except model 10.
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The diagnostic testing measures Youden Index and Predic-
tive Summary Index (PSI) perform relatively well. Overall,
average detection was 64% using the Youden Index, and
specific detection was 57%. Detection of two-locus mod-
els was 84-100%, 9.5-97% in three-locus models, 5-94%
in four-locus models, and 0-95% in five-locus models.
Specific detection was 90-92% in all two-locus models
except the lowest heritability models which were 65-
72%. Other models have higher specific detection in
higher heritability models that decreases along with herit-
ability. PSI also shows excellent overall average detection
at 66.4% and specific detection at 59%. Detection was
84-100% in two-locus models, 9.5-97% in three-locus
models, 7.4-94% in four-locus models, and 0-98% in
five-locus models. The detection using PSI is lower in two-
locus models than the Youden Index, but PSI shows
slightly higher detection in a few three-, four- and five-
locus models. Compared to classification error, PSI shows
significantly increased detection in 23 of the 40 models. 8
models show no significant difference in detection, and
for 9 models, classification error performs significantly
better. Most of the improvement in detection is seen in
higher order models, and notably, classification error
detects as well or better then PSI for two-locus models.
The Youden index shows better detection for 17 models.
For 15 models, classification error is significantly better,
and there is no significant difference for 8 models. Specific
detection with PSI is improved over classification error in
three-, four- and some five-locus models. Specific detec-
tion in two-locus models however is not consistently
improved. Similar to PSI, the Youden index does not
improve over classification error in two-locus models.
Improvement in detection for the Youden index is in
three- and four-locus models. Detection using the Youden
index is not improved over classification error in five-
locus models. Specific detection with the Youden index is
significantly improved over classification error in all but
five-locus models.

The chi-square and likelihood ratio statistical measures
performed well. Using the chi-square, across all models
average detection was 58.87% and average specific detec-
tion was 51.67%, with 78-100% detection for two-locus
models, 11-82% detection for three-locus models, and 0-
97% detection in four- and five-locus models with little
discernable trend. Specific detection patterns also show
no trend. Overall detection using the likelihood ratio is
65.36% and specific detection is 59.8%. In two-locus
models, detection ranged from 84-100%, 16-96% in
three-locus models, and 0-97% in four- and five-locus
models. Using chi-square, detection of 15 models was sig-
nificantly better than classification error, 10 models
showed no significant difference in detection from classi-
fication error, and 15 models were detected significantly
worse than using classification error. Specific detection
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was significantly better for 19 models using chi-square,
was not significantly different from classification error for
4 models, and was significantly worse than error for 17
models. Most of the detection improvement from using
the chi-square measure was seen in three- and four-locus
models. Detection using likelihood ratio was significantly
better or no different than error for all but 7 models, and
specific detection was significantly improved for all mod-
els except five-locus models, where specific detection of 4
models was significantly worse using the likelihood ratio
and was not statistically different for 2 of the models.

The information theoretic measures NMI and NMI-trans-
pose (NMIT) both perform relatively well. Overall, detec-
tion using NMI was 65.36% across all models, and
specific detection was 59.4%. With NMI, detection of two-
locus models ranged from 84-100%, three-locus models
from 16-96% and four- and five-locus models ranged
from 0-98% detection. For specific detection the trends
were very similar to those of the likelihood ratio, but spe-
cific detection was slightly higher in most cases. Using
NMIT, overall detection was highest of all measures at
70.72%, with a specific detection of 59.8%. Per model
detection rates were lower than with other measures, how-
ever, with two-locus model detection ranging from 45-
98%, three-locus models from 23-98%, and four- and
five-locus models ranging from 0-98%. Trends in specific
detection were erratic, performing better than NMI in
some three- and four-locus models, but much worse
power for two-locus models. NMIT did demonstrate
higher detection of higher order models. Detection using
NMI is significantly better than classification error in 26
models, shows no difference in 8 models, and performs
worse than classification error in 6 models. Specific detec-
tion is either significantly improved with NMI or shows
no significant difference from classification error in all but
4 five-locus models. NMIT performs significantly worse
than classification error for two-locus models, but shows
significantly better detection for three- and four-locus
models, with specific detection following the same trend.

In summary, Euclidean distance, F-measure, geometric
mean 1, and geometric mean 2 perform significantly
worse than classification error in both detection and spe-
cific detection for a majority of simulated models. Two
measures, the chi-square and NMIT show improvement in
detection and specific detection of some models, but are
significantly worse than classification error for other mod-
els, with especially poor specific detection of two-locus
models. The remaining four measures show either
improved or equal detection and/or specific detection
across a majority of models and work well for two-locus
models. These measures, Youden index, predictive sum-
mary index, likelihood ratio, and normalized mutual
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information were evaluated for statistical power using
permutation testing.

Power

All power results are shown in Figure 5 and specific power
is shown in Figure 6. "Power" is detection that is statisti-
cally significant (at a = 0.05), and "Specific power" is spe-
cific detection of the correct multi-locus model that is
statistically significant (at a = 0.05). The process used to
assign statistical significance to a result is dependent on
the assumption that for these simulated data, the permu-
tation distribution of a single dataset is equivalent to the
permutation distribution of other datasets simulated
using the same genetic model. After evaluating the varia-
bility of a = 0.05 critical values, this assumption holds
well (see Additional file 1)

Predictive summary index (PSI) and the Youden index
have power and specific power only in 3% and 2% herit-
ability models - all other models show 0% power and
specific power. PSI outperforms the Youden index for
two-locus models for both power and specific power, but
in higher order models, the Youden index performs
slightly better. Neither of these measures shows improve-
ment over classification error in the context of permuta-
tion testing.

Compared to classification error, the likelihood ratio
shows significantly better power in 29 models, signifi-
cantly worse power in 8 models, and no significant differ-
ence in 3 models. Of the 8 models where error was better,
6 were five-locus models, one was a 0.5% heritability
three-locus model (model 20), and one was a 0.5% herit-
ability two-locus model (model 5). Specific power of the
likelihood ratio is significantly better than error for 33
models, significantly worse for 5 models, and not signifi-
cantly different for 2 models. These five models are the 2-
0.5% heritability five-locus models with 0.4 minor allele
frequencies.

Using NMI, power is significantly better than error in 29
models, significantly worse for 7 models, and not signifi-
cantly different in 4 models. Similar to the likelihood
ratio, 5 of the 7 models are five-locus models, one was the
same 0.5% heritability three-locus model (model 20),
and one was a 0.5% heritability two-locus model (model
5). The same models showing significant differences in
specific power from classification error for the likelihood
ratio are also significantly different using NMI. Specific
power is significantly better for 33 models, significantly
worse for 4 models, and not significantly different for 3
models.

Comparing likelihood ratio and NMI, both show equal

improvement over classification error for specific power.
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Figure 5

Power box plots. The dark vertical line indicates the mean detection using classification error. Dark shading indicates LR and
NMI were significantly better, medium shading indicates no significant difference. Light shading indicates classification error was
nn

better than LR and NML. "+" on the y axis indicates significantly different from classification error with a higher mean, "-" indi-
cates significantly different from classification error with a lower mean. Significance was assigned by Wilcoxon rank-sum tests.
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Specific power box plots. The dark vertical line indicates the mean detection using classification error. Dark shading indi-
cates LR and NMI were significantly better, medium shading indicates no significant difference. Light shading indicates classifica-
tion error was better than LR and NML. "+" on the y axis indicates significantly different from classification error with a higher
mean, "-" indicates significantly different from classification error with a lower mean. Significance was assigned by Wilcoxon
rank-sum tests.
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One model (32) showed significantly worse power com-
pared to error when using the likelihood ratio, but power
was not significantly different when using NMI. Power
using likelihood ratio was significantly better than power
using NMI for 2 three-locus models (11, 12), and 3 four-
locus models (21, 22 and 26). Power using NMI was sig-
nificantly better than power using likelihood ratio for 4
five-locus models (36-40). Specific power using likeli-
hood ratio was significantly better for 9 models - 5 three-
locus models (11, 12, 16, 17, and 18), and 2 four-locus
models (26 and 27). NMI has significantly better specific
power for 4 five-locus models (36-39).

Discussion

This study is an exploration of fitness measures in the
MDR algorithm. Here, we have evaluated ten alternative
measures of fitness for MDR models and compared them
to the traditional measure, classification error (or 1- clas-
sification accuracy). This work is highly motivated by the
dispute over the use of classification error, as it is known
to be an improper scoring rule. In addition, MDR has
been released in a JAVA software package with a user-
friendly Graphical User Interface version where many of
these measures are currently available http://www.epista
sis.org. We felt it was important to know which measures
are robust for higher order interaction models.

The first series of simulations evaluated the traditional fit-
ness measure for MDR, classification error, for a set of dis-
ease models. From these simulations, we observe some
obvious trends in the two locus models as well as some
irregular patterns in the higher order models. With the
two-locus models, the detection and power of MDR using
classification error decreases as the broad sense heritabil-
ity of the model decreases.

Trends for higher order models are non-linear with
respect to broad sense heritability. Most notably, five-
locus models with 0.2 minor allele frequencies had a very
erratic pattern, with the 1.5% and 0.5% heritability mod-
els (models 33 and 35) having near 0% power while the
1% heritability model has 22% power (model 34). These
erratic patterns are likely due to one of two possible sce-
narios. One possibility is related to the way in which the
40 genetic models were created. The genetic algorithm-
based procedure for creating multi-locus models with no
marginal effects is a directed search through the space of
all possible penetrance models. There may be millions of
models which satisfy the heritability requirements, and
we arrive at a random sample from that model space with
each run of the procedure. Thus, there is some random
variability between penetrance functions with similar her-
itabilites selected in this manner. This variability likely
impacts the ability of MDR to detect the effect of that
model, as MDR does not measure an effect based on the
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penetrance table directly, but rather on the derived two-
way contingency table. A second possible scenario is that
these penetrance models were generated with the assump-
tion that there are no main effects of any single locus.
However, in a higher-order models, the simulator does
not test for all possible lower-order models. For example,
if a three-locus model is being generated, there are no sin-
gle locus effects for any of the three-loci; however, the soft-
ware does not test for the presence of two-locus models
embedded within the three loci. Thus, it is possible that
the lower detection and power results are due to multiple
models competing for detection. This was the case for
model 14, for example, where models containing two of
the three loci were detected in 70% of evaluations (data
not shown). For this study, we consider the performance
of classification error as a baseline, so while these effects
are interesting to note, they are irrelevant for evaluating
other classification measures. MDR using classification
error has greater than 80% detection for 14 of the 40
multi-locus models, and greater than 80% power for 13 of
the 40 models.

While high-order (three-, four-, or five-locus) models with
no marginal effects have been speculated to exist, there is
little confirmed experimental or statistical evidence to
support their role in complex disease. It is encouraging to
see however that MDR has appreciable power for many
high-order models in a feasible sample size of 400 cases
and 400 controls. If susceptibility to common disease
truly does involve complex interactions among many var-
iants, tools for detecting these interactions will be critical.

Performance of Alternate Measures

The F-measure and geometric mean 1 both show similar
detection and specific detection results across all models.
These two measures combine precision and sensitivity in
their calculation. In general these measures perform very
poorly compared to classification error, indicating that
information about the specificity of an MDR model
improves the performance of MDR. These measures are
focused on classifying cases correctly. An MDR model that
classifies cases best is not necessarily based on the most
associated genetic factors. The model would not discern
the difference between genetic factors strongly associated
to both cases and controls and only those associated to
cases.

Geometric mean 2 and Euclidean distance are similar in
that they are geometric functions of sensitivity and specif-
icity, functioning similarly to a receiver-operator charac-
teristic analysis. These measures perform commensurately
with classification error for two-locus models, but do not
perform especially well for higher order interactions.
Euclidean distance in general performs better than geo-
metric mean 2 for both detection and specific detection.

Page 12 of 17

(page number not for citation purposes)


http://www.epistasis.org
http://www.epistasis.org

BMC Bioinformatics 2008, 9:238

The one notable exception to this trend is geometric mean
2, which shows very good specific detection in two-locus
models with 0.2 MAF, out-performing all other measures
(Figure 2, 1, 2, 3, 4, 5).

The diagnostic measures Youden index and PSI perform
well in detection and specific detection. The Youden index
seems to show better detection than PSI in two-locus
models and high heritability three-locus models. PSI how-
ever shows better specific detection over all models. Both
measures out-perform classification error in both detec-
tion and specific detection, but those measures do not
show improved power or specific power over classifica-
tion error. One explanation could be that the empirical
distribution of these statistics was not as stable (particu-
larly in the tail region), so the standardized distribution
for each model failed to properly assign statistical signifi-
cance. While the empirical distribution of randomly
selected datasets did not differ significantly from the
standardized distribution, some subtle variability in the
tail regions was noted. Another possibility is that these
measures are more susceptible to noise in the data. The
power and specific power are stronger for 3% heritability
models than for models with lower heritability. While
these measures still have utility for detection, their useful-
ness when assigning statistical significance is questiona-
ble.

The chi-square shows good detection and specific detec-
tion in the four-locus models and a few five-locus models,
but fails to out-perform CE in most other cases. One rea-
son why the chi-square does not perform well in this set-
ting is that theoretically, the chi-square is not a satisfactory
measure of association, and may not rank MDR results to
produce optimal detection [37]. The chi-square tests devi-
ation from independence, but does not necessarily quan-
tify the strength of an association. This is an important
consideration for using the chi-square test in other stud-
ies, particularly whole-genome association studies, as the
chi-square may not necessarily rank signals by strength of
association

The measures that demonstrate the most consistent
improved performance are the likelihood ratio and NMI.
While the improvement is not dramatic, these measures
show equal or better detection and power across nearly all
models. The more dramatic improvement is in specific
detection and specific power, where the genetic model
detected by MDR is the exact model that was simulated.
This is an interesting result because this means that MDR
using NMI or LR is less susceptible to over-fitting (includ-
ing more variables in the model than necessary).

Both the likelihood ratio and NMI measures are based on
entropy, which is loosely analogous to variance in the
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two-way table, and both measures show very similar
trends for detection and power. These two measures are
ultimately related, as the numerator of NMI is a transfor-
mation of the LR [37].

HE) = HEx 1) = g (©)

The likelihood ratio test is a well-established statistical test
to examine a sample's deviation from a null hypothesis.
The statistic itself however does not have an intuitive
interpretation, and often is transformed to achieve a valid
measure of association [37].

NMI of the contingency table treats the "true outcome"
and the "model prediction" as a pair of two-state random
variables. NMI quantifies the amount of uncertainty (or
entropy) about the state of the "truth variable" removed
by the "model prediction variable". NMI has a nice inter-
pretability as the amount by which the model reduces our
uncertainty about the true state. While NMIT performs
well for three-locus models in particular and did outper-
form classification error in many cases, its poor detection
and specific detection of two-locus models makes it an
unattractive measure. In addition, NMIT's interpretation
makes less sense as the amount the true variable reduces
our uncertainty about the model.

NMI includes details of the contingency table not
accounted for by the other measures of model predictabil-
ity. For example, the numerator of NMI takes into account
the power to correctly predict both the cases and controls:
A/(A+B) and D(C+D), respectively. Explicitly, we can
rewrite part of the NMI numerator terms as

Aln(A)+Dln( D ) @)
A+B C+D

which is closely related to Predictive Summary Index
(PSI). In addition, we can rewrite part of the NMI denom-
inator as

Aln[A)JrDln(D) (8)
A+C B+D

which bears strong resemblance to the Youden Index in its
attempt to balance the model sensitivity and specificity:
A/(A+C) and D/(B+D), respectively. The detailed form of
the NMI measure likely leads to its observed ability to dis-
tinguish between closely similar high quality models; and
hence, NMI's improved ability to uniquely determine the
relevant variables (i.e., its ability to achieve higher specific
power). Also, NMI preferentially selects models that clas-
sify either cases or controls perfectly (or nearly perfectly).
These models are more "stable", or less variable, and are
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thus to be preferred by the measure over models where
both cases and controls are misclassified equally. The
dependence of NMI on the contingency table is quite
intricate and warrants further investigation to understand
its strengths and limitations more fully.

While the power improvement using NMI or the likeli-
hood ratio in most cases is not dramatic, these measures
are superior to classification error. Using these measures,
there is higher detection and power of high-order interac-
tions and better specific power overall, so an analyst can
be more confident that an MDR model does not contain
spurious variables. Also, classification error assumes the
distribution of the two classes to be equal. This shortcom-
ing was recently addressed by Velez et al. [23] who used
an average of sensitivity and specificity to compute a bal-
anced classification error (or balanced accuracy) for MDR
model evaluation, and demonstrated its power to detect
gene-gene interactions in cases of class imbalance. Both
NMI and LR also take into account the sensitivity and spe-
cificity of an MDR model, and likewise should not be sus-
ceptible to class imbalance. One clear advantage of
classification error is its interpretability. Of the two
improved measures, NMI perhaps has the easiest interpre-
tation. Its value ranges from 0 to 1, with 0 meaning the
genotype and status are independent and 1 meaning the
genotype completely determines the status. Also, as NMI
provides a direct information theoretical measure of asso-
ciation, it may be preferred over the likelihood ratio test
statistic, which measures deviation from the null hypoth-
esis of independence rather than directly quantifying the
degree of association. For these reasons, we recommend
that NMI be used in lieu of classification error for MDR
analyses. For clarity of interpretation, we recommend
showing the two-way contingency table along with report-
ing the NMI of an MDR result.

Classification error (or classification accuracy) is a widely
used measure of performance in many areas of research.
The results of this study are specific to classification using
the MDR procedure, but this work does provide addi-
tional empirical evidence to support general theoretical
arguments against the use of classification error [26-29].

Limitations

There are some limitations of this work. First, this study
was conducted using simulated data, so confidence in the
results relies on the quality of the simulated data. All dis-
ease loci in a genetic model were simulated with the same
minor allele frequency, either 0.2 or 0.4, which is a sim-
plification. The biological relevance of the penetrance
functions simulated could be questioned, though we use
functions with very small marginal effects as a "worst-case
scenario" and expect the results of this study to generalize
to situations where marginal effects are detectable. It is
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troubling that the trends observed in power and detection
do not always follow the expected trends given the broad-
sense heritabilities simulated. However, as this study is
focused on the relative performance of classification
measures, this point is not critical. Permutation testing for
all 400,000 models evaluated in this study was not com-
putationally feasible, and a single permutation distribu-
tion for each of the 40 models was generated for the 5
measures evaluated for statistical power. These permuta-
tion distributions did not appear to vary significantly by
QQ-plot from a randomly seeded dataset using the same
model. Assigning significance using a permutation distri-
bution uses the tails of the distribution, however, and
some variability in the tails was observed in the QQ-plots.
But the power results do closely follow detection results,
and it seems unlikely that all 40 of the permutation distri-
butions used would consistently over estimate or under
estimate the tail values. The simulated data included only
ten loci total. While small-scale studies are still per-
formed, low-cost genotyping solutions have dramatically
increased the number of polymorphisms examined in a
typical study. While the computation time required to
perform this study prohibited using a large number of
SNPs for this evaluation, we expect that the relative per-
formance of these fitness measures would extend to data-
sets with larger numbers of SNPs. Absolute detection and
power, however, are influenced by a variety of factors
including the number of SNPs in the dataset.

Conclusion

Over a variety of simulated genetic models, normalized
mutual information (NMI) and the likelihood ratio dem-
onstrate stellar performance as measures of Multifactor
Dimensionality Reduction model fitness; an improve-
ment in comparison to classification error. The ability of
MDR to specifically detect only the simulated disease loci
was significantly higher using these two measures for
nearly all genetic models. These measures also show
improved statistical power by permutation testing. Of
these measures, NMI is perhaps easier to interpret, as it is
the amount by which the model reduces our uncertainty
about the true disease state. NMI properly treats imbal-
anced data and provides superior performance over classi-
fication error. Therefore, we recommend using NMI as an
alternative to classification error for MDR analyses.

Methods

MDR algorithm

The MDR procedure is outlined in Figure 1. In step 1 of
the process, the data are divided into a training set (4/5 of
the data) and a testing set (1/5 of the data). Next, we select
the order of interaction n to assess, where a second-order
model consists of two genetic factors (step 2). In step 3,
variable combinations are constructed by selecting a set of
n genetic and/or environmental factors from the set of all
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possible factors N. Each individual in the training set is
grouped according to its state at each of the n factors (i.e.
for 2 loci with 3 possible genotypes, there are 9 possible
combinations; for 3 loci, 27 etc.) Then, each genotype
combination is classified as high- or low-risk depending
on the ratio of cases to controls with that genotype com-
bination (step 4). A threshold T is defined as the ratio of
cases to controls in the data, so T = 1 for balanced data. If
the ratio is < T (there are less cases than controls) the gen-
otype combination is classified as low risk. If the ratio is >
T, the genotype combination is classified as high-risk.

The collection of high- and low-risk multi-locus genotype
groups defines the MDR model for that combination of
factors (step 5). When compared to the true affection sta-
tus, the score or fitness of a model can be represented as a
two-way contingency table in which the true and classi-
fied status are treated as variables(step 6). Typically, this
two-way table is mathematically transformed to a single
value. Classification error, for instance, is the sum of the
diagonal divided by the total N in the training set (unaf-
fected high-risk individuals + affected low-risk individu-
als/total N) (figure 2B). Each variable combination
produced in step 3 is evaluated in this fashion.

The combination of variables with the lowest classifica-
tion error is selected (step 7), and a prediction error is cal-
culated using the testing set by comparing the sum of the
unaffected individuals predicted to be high-risk and the
affected individuals predicted to be low risk divided by
the total N in the testing set (step 8). Variable combina-
tions are generated and evaluated in this manner for each
order evaluation specified in step 2. The lowest classifica-
tion error model and its associated prediction error are
recorded for each order evaluation that is performed.

The entire procedure is performed 5 times, using each 1/
5th as a testing set and each 4/5th as a training set. This
cross-validation (CV) procedure produces 5 sets of results,
one for each CV interval. A model is selected for each
order, and the average prediction error and cross-valida-
tion consistency (CVC) are computed for each (step 9).
The CVC is the number of cross-validation intervals pro-
ducing the model.

From this set of models (one for each order evaluation),
the model with the highest cross-validation consistency
and the lowest average prediction error is selected as the
best overall model (step 10). In the event that two models
have equal measures, the model with the fewest number
of loci is chosen, as it is the most parsimonious.

The statistical significance of this best overall model is
established by Monte Carlo permutation testing (step 11).
K datasets are generated by randomly reassigning the
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affection status of individuals in the dataset (K is typically
> = 1000). The entire MDR process is then repeated for
each of these K replicates to sample the empirical distribu-
tion of average prediction error statistics. This distribution
is used to assign significance to the average prediction
error of the best overall model from the analysis of the
original dataset. The MDR process establishes the fitness
of a given model based on classification error and predic-
tion error.

Simulations

To properly evaluate the performance of various fitness
measures within the MDR process, data with known pat-
terns of association were required. To accomplish this, we
simulated 40 penetrance functions using a genetic algo-
rithm approach (see Additional file 1) [38]. Penetrance
functions range in the number of disease model loci (2, 3,
4, 5 loci) and in the proportion of trait variance explained
by genotypes using "broad sense" heritability (3%, 2%,
1.5%, 1%, 0.5% heritability) described by Culverhouse et
al. [24]. Alzheimer's disease, an example of a common
complex disease, has an estimated heritability between
58% and 79% [39], with polygenetic inheritance. For this
study, our simulated genetic models assume that a small
set of genetic loci (fewer than five) interact to account for
a small proportion of the overall heritability. Penetrance
functions were generated using two minor allele frequen-
cies, 0.2 and 0.4. Using the genomeSIM software [40],
these penetrance functions were used to simulate datasets
consisting of 400 cases and 400 controls with a total of ten
independent loci. Non-disease loci allele frequencies var-
ied randomly from 0.05 to 0.5. Disease loci allele frequen-
cies were set to match the frequencies specified by the
penetrance function. We chose to simulate a small set of
SNPs for each dataset because the goal of this study is to
evaluate the relative detection and power of various fit-
ness measures. This required repeating many replicates,
and the computation time required to perform this exper-
iment prohibited using a large number of SNPs. We expect
that these results would extend to datasets with larger
numbers of SNPs. We simulated 100 datasets for each
genetic model for a total of 4,000 datasets per experiment.
We conducted 100 replicate experiments, for a total of
400,000 datasets.

Analysis

We modified a C++ version of the MDR software to accept
multiple measures of fitness; classification error, geomet-
ric mean 1, F-measure, geometric mean 2, Euclidean dis-
tance, Youden index, predictive summary index, chi-
square test of association, likelihood ratio test, normal-
ized mutual information, and normalized mutual infor-
mation transpose. With each fitness measure evaluation,
the selected measure was used instead of classification
error to rank models during the training phase, and
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instead of prediction error to rank models during the test-
ing phase. All other aspects of the algorithm are
unchanged. Run-time for examining 2 through 5 locus
models with permutation testing using the MDR algo-
rithm was less than 1 hour on a typical workstation com-
puter (2.0 GHz Opteron), regardless of fitness measure.
Run-time scales exponentially with the number of varia-
bles in the dataset.

To evaluate these measures, several quantities were
defined. "Detection" is the ability of the method to cor-
rectly identify all disease loci, but additional non-disease
loci may be included in the model also. "Specific detec-
tion" is the ability of the method to correctly identify all
the disease loci and no additional loci - this could also be
phrased as the ability to detect the correct multi-locus
model. These values are empirically defined as a propor-
tion of MDR evaluations out of 100 datasets where the
condition holds. We conducted this analysis in 100 repli-
cate experiments to provide more accurate estimates of
detection values (for a total of 400,000 results). For
selected measures, we used permutation testing to assign
statistical significance to each MDR result produced in the
study. "Power" is detection that is statistically significant
(at o = 0.05), and "Specific power" is specific detection of
the correct disease model that is statistically significant (at
a = 0.05), Wilcoxon Rank-sum tests were used to formally
compare detection and power results for two measures.
Statistical significance was achieved with a Wilcoxon
Rank-sum p-value < 0.05. All statistical analyses were per-
formed using STATA 9.1.

Permutation testing, which is used to establish statistical
significance of an MDR result, is a computationally inten-
sive process. To circumvent the computational burden of
performing permutation tests for each of the 400,000 data
set evaluations, we produced one standard empirical dis-
tribution (K = 10,000) for each of the 40 genetic models.
Thus, the result from each of the 10,000 dataset evalua-
tions was assigned statistical significance from one stand-
ard empirical distribution generated based on the genetic
model used to simulate that data. To evaluate this
assumption, we generated the permutation distributions
of 10 randomly generated datasets under each genetic
model, for each fitness measure. We then estimated the
distribution of a = 0.05 critical values collected from these
10 permutation distributions, and recomputed power and
specific power using the 5thand 95t percentiles of the dis-
tribution (see Additional file 1). Using these values does
not change the relative rankings of power or specific
power results.
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