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Abstract
Background: Association testing is a powerful tool for identifying disease susceptibility genes
underlying complex diseases. Technological advances have yielded a dramatic increase in the
density of available genetic markers, necessitating an increase in the number of association tests
required for the analysis of disease susceptibility genes. As such, multiple-tests corrections have
become a critical issue. However the conventional statistical corrections on locus-specific multiple
tests usually result in lower power as the number of markers increases. Alternatively, we propose
here the application of the longest significant run (LSR) method to estimate a region-specific p-value
to provide an index for the most likely candidate region.

Results: An advantage of the LSR method relative to procedures based on genotypic data is that
only p-value data are needed and hence can be applied extensively to different study designs. In this
study the proposed LSR method was compared with commonly used methods such as Bonferroni's
method and FDR controlling method. We found that while all methods provide good control over
false positive rate, LSR has much better power and false discovery rate. In the authentic analysis on
psoriasis and asthma disease data, the LSR method successfully identified important candidate
regions and replicated the results of previous association studies.

Conclusion: The proposed LSR method provides an efficient exploratory tool for the analysis of
sequences of dense genetic markers. Our results show that the LSR method has better power and
lower false discovery rate comparing with the locus-specific multiple tests.

Background
Recently whole genome association studies (WGA) with
high density SNP data are becoming popular due to new
technology in genotyping (e.g., Affymetrix and Illumina)
[1-4]. Optimal study design in whole genome association

remains unresolved although the two-stage association
test design has gained popularity [5,6].

In order to improve power, many samples have been used
in WGA studies; however the cost for such studies is still
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expensive even though the expense of genotyping has
dropped significantly. One problem common of WGA
studies is a high false positive rate if the direct method,
based on the simple chi-square test for association, is per-
formed without any correction for multiple testing. By far,
the most commonly used remedy is the Bonferroni
approach. However, its overly conservative correction
might result in power reduction. There have been several
methods proposed to circumvent the problem of the over
correction of multiple testing procedures, e.g. false discov-
ery rate (FDR) methods [7-9] that control the expected
proportion of false rejections, or False Positive Report
Probability (FPRP) [10] which requires explicit considera-
tion of the prior probability for each hypothesis under
association. Although the FPRP method aims to provide a
higher power than traditional association test, the need
for priors is not always possible. The FDR controlling
method was originally designed for multiple comparisons
of independent tests [7], and was then later extended to
dependent cases under certain conditions, e.g. assuming
the test statistics are either equally positively correlated
and normally distributed, or having satisfied so-called the
positive regression dependency [11]. As for the high den-
sity SNP data that were considered in this study, the afore-
mentioned assumptions need to be justified in advance.

Most direct association tests are locus-specific and there-
fore seldom account for the association of different mark-
ers. Different markers usually have heterogeneous genetic
backgrounds, such as allele frequency and marker charac-
teristics. Single-point inference sometimes yields a mis-
leading conclusion for an overall phenomenon. Methods
considered multiple markers simultaneously and
included logistic regression analysis, haplotype analysis
[12,13], global significance method [14], multivariate
association analysis [15], and the consideration of gene-
gene interactions [16].

Instead of testing the significance of a single marker, our
novel method tests the significance of all markers within
a defined region, and therefore can be regarded as a simul-
taneous test for multiple markers that account for the
dependence of close genetic markers.

The proposed "longest significant run" (LSR) method is a
two-stage procedure. The first stage conducts conven-
tional association tests, such as the chi-square test for the
case-control design or the transmission disequilibrium
test [17] for the family-based design. Based on the pre-
specified size of a given test, the p-value of each test is con-
verted into a zero/one indicator (1 for significance or 0
otherwise). In the second stage, this binary sequence is
scanned for the longest region of consecutive 1s (hence
"longest significant run") and the results determine

whether or not the run is inordinately long or simply a
random pattern.

This region-specific testing procedure is motivated by the
dependence of association tests on dense markers: if a dis-
ease susceptibility gene lies in a specific region, then the
disease gene and the nearby markers will show a relatively
positive trend of association (i.e., linkage disequilibrium
(LD)). A special non-random pattern (i.e., a cluster of pos-
itive signals) indicates that disease genes may be included
in the candidate region. The evidence supporting such a
non-random pattern is then evaluated with the magnitude
of the longest run of consecutive significance.

There is a long list of applications for longest run statistics
[18,19], one of which concerns the alignment and testing
of the homology among DNA sequences. Considering
two aligned sequences with length n, a match of locus
between the sequences is assigned to be "1", and a mis-
match is "0". More homologous sequences should have
larger longest matching subsequences (run) than others
[20], and its corresponding probability is used as an
important reference to the homology between two
sequences.

Given a similar concept, we use the longest significance
run to find a region that is most likely to harbour a disease
susceptibility gene in association studies. The dependent
structure of the binary sequence is obtained from associa-
tion tests by considering it as a discrete-time Markov chain
model. Using extensive simulations, we demonstrate that
the LSR approach provides a reasonable model of depend-
ence for association test results whereby the false-positive
and false-negative rates are all controlled effectively. The
program in R code for LSR method is available (Addi-
tional File 1).

Results
The program SIMLA version 3.1 (SIMulation of pedigree
data for Linkage and Association studies)[21] was used to
simulate family-structure genetic data. The program is
available [22]. In the process, we generated 1000 trio fam-
ilies with genotypic data for SNP (single nucleotide poly-
morphism) markers. To determine the effects of the
number of SNP markers, we considered two cases for 50
and 100 SNPs in a candidate region. To mimic the sce-
nario of dependent markers, we considered a dense inter-
marker distance with a mean of 6 kb and a standard
deviation of 10.7 kb. Note that in 500 K Affymetrix data,
marker distance has an average of 5.8 kb and a standard
deviation of 10.7 kb. In the simulation, the intermarker
distance is generated from a left-truncated normal distri-
bution with mean 6 kb and standard deviation 10.7 kb.
Under the setup, the distribution of intermarker distance
is similar to that of real Affymetrix data in the aspects of
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mean and standard deviation. Furthermore, the preva-
lence of the disease in the simulation was set as 0.1, and
genetic relative risk was set to be 2.0, 2.5 and 3.0. The
allele frequencies were 0.075 and 0.1, and an additive dis-
ease model was assumed. Note that the use of high rela-
tive risk is for observing contrasting powers between the
methods under the stringent definition we used for detect-
ing true positive markers (described in next sections).
Under a looser definition, the relative risk can be lowered
to 1.5 or less.

In the simulation, the location of disease gene was
assigned to be within the two central markers, and the dis-
ease haplotype was comprised by 15 markers clustering
around the disease gene. We had also tried randomly
assigning the location of disease genes to be within any
non-boundary markers, and found similar results. We
considered three haplotype scenarios: (1) three common
haplotypes each with a frequency of 30%, (2) two com-
mon haplotypes each with a frequency of 45%, and (3)
two haplotypes with frequencies of 85% and 5%. Since
the results of the three scenarios were similar, we present
the scenario of three-common-haplotype.

During the first stage of the LSR method, the transmission
disequilibrium test from the TDT procedure of SAS/
GENETIC package release 8.2.39 [23] was used to test the
locus-specific association for each marker. The output p-

values { , j = 1, Λ n} were transformed into a sequence

of significance indicators {Xj, j = 1,Λ,n} based on a test

size α1, where Xj is 1 if the test of the jth marker is signifi-

cant and 0 otherwise. In the second stage, we scanned this
binary sequence to identify the longest perfect run of 1, L0,

the nearly perfect run of 1 allowing one zero within,
namely the L1 and the run of 1 allowing two zeros within,

namely the L2. For each of these three LSR statistics, the

corresponding tail probabilities were calculated using the
method of Chang et al. [20].

Testing statistics
Although allowing more interruptions (larger k) seems to
make the LSR approach more plausible, it is helpful only
if it can bridge up nearby but separated clusters of "1's".
On the other hand, containing irrelevant markers may
complicate further analysis to identify the target gene. To
compromise the situations we defined the testing statis-
tics, LSR{k}, as Li with minimal tail probability, for i from
1 to k and considered only kϕ2. In the simulation, we
compared our method with the Bonferroni method, the
popular correction used for multiple tests, by evaluating
three quantities, namely the false-positive rate, power,
and false discovery rate in the following three sections.

False-positive rate
According to our setup in the simulation, markers in a
sequence can be divided into three categories: 2 target
markers where the disease gene lain between them, 13
nearby markers in linkage disequilibrium (LD) with the 2
target markers, and other markers that are in linkage equi-
librium (LE). For the purpose of stringency, a true positive
detection was considered only if at least one of the two tar-
get markers was significant under the criterion of each
method. For Bonferroni's method, the criterion is that a
target marker's p-value < α2/n. For the FDR controlling
method, Benjamini and Hochberg [7] proposed the fol-
lowing criterion. The n single marker p-values were sorted
from smallest to largest: P(1) &#x22C3; P(n). Starting from
P(n), we compared P(i) with i·α2/n. This process was con-
tinued as long as P(i) > i·α2/n. If k is the turn around
point, then significance is declared if a target marker cor-
responds to the kth smallest p-value. For our LSR method,
the criterion was that a target marker is covered by a sig-
nificant LSR (p-value< α2). On the other hand, a false pos-
itive case was considered if a LE marker was detected
under each of the three criteria described above. If a non-
target LD marker was selected, neither a false positive nor
a true positive would be counted.

The false-positive rate is the probability that a test mistak-
enly rejects the null hypothesis. In our case, it is the rate at
which a test falsely detects disease susceptibility genes
where none exists. In our first part of the simulation, no
disease gene was assumed. Table 1 lists the corresponding
false-positive rates for the two LSR approaches and Bon-
ferroni approach based on 200 replications for each of the
eight scenarios (2 disease gene allele frequencies, 2 rela-
tive risk, 2 marker numbers). The test size in the first stage
was α1 = 0.1, and the test size was α2 = 0.05 in the second
stage. We found that all the false-positive rates were under
or similar to the pre-specified nominal test size α2, indi-
cating that all the methods adequately controlled the
false-positive rate.

Power and false discovery rate
Statistical power is the probability that a test correctly
rejects the null hypothesis. In our case, it is the probability
that a method correctly accesses at least one of 2 target
markers with statistical significance. On the other hand,
the false discovery rate is the fraction of false positives
among all tests declared significant.

Figures 1, 2, 3, 4 illustrate the performance of Bonferroni
and LSR methods given different nominal test sizes. The
test size in the first stage for LSR was α1 = 0.05 and 0.1 and
the test size in the second stage was α2 = 0.05. Higher level
of significance (0.1) at screening stage resulted in better
power than that of α1 = 0.05, in trade of a slightly higher
false discovery rate. LSR2 had better performance in both

p̂ j
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power and false discovery rate than LSR1. The stringent
definition of a "run" for LSR1 yields a relatively narrow
candidate region that was more likely to miss the target
markers. Both LSR1 and LSR2 had better power and false
discovery rate than those from the Bonferroni approach

among all the scenarios that we tried. LSR1 has similar
power to that of the FDR controlling method, but better
false discover rate. In summary, in terms of power, LSR2 >
LSR1~ FDR controlling method > Bonferroni; and in terms
of false discovery rate, LSR2~LSR1 ~<FDR controlling

Table 1: Comparisons of false positive rate while the SNP data are in linkage disequilibrium.

Marker number Relative risk Allele frequency False positive rate

Bonferroni LSR1 LSR2

50 2.0 0.075 0.035 0.01 0.015
2.0 0.1 0.04 0.01 0.01
2.5 0.075 0.05 0.025 0.025
2.5 0.1 0.04 0.015 0.015

100 2.0 0.075 0.04 0.015 0.015
2.0 0.1 0.025 0.035 0.055
2.5 0.075 0.045 0.025 0.035
2.5 0.1 0.02 0.025 0.035

Simulation was based on 200 replications with sample size 1000, under additive disease model. Screening criteria for LSR:α1 = 0.10, and level of 
significance for all methods:α2 = 0.05

Comparisons of power among the procedures of Bonferroni correction, two LSR methods, and FDR control methodFigure 1
Comparisons of power among the procedures of Bonferroni correction, two LSR methods, and FDR control 
method. The allele frequency is 0.075, and the number of markers is 50. Two criteria, α1 = 0.05 and 0.1, are used for the LSR 
method.
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method < Bonferroni. The detailed results are available in
Tables 2 and 3.

The good performance of LSR does not indicate that it can
completely replace the marker-specific test procedures like
the Bonferroni approach. Rather, we consider LSR as a
useful screening tool to find a smaller region that possibly
contains the disease susceptibility gene. After the region is
identified, each maker within the region still needs to be
examined biologically. At this stage, LSR2, although better
than LSR1 with respect to both power and false discovery
rate, pays a token for retaining more makers for further
examining. Analogue can be inferred in comparing the
performance of using α1 = 0.1 over α1 = 0.05 as the
threshold in the first stage of LSR, where the former usu-
ally includes more markers.

The tail probabilities of LSR were calculated under the
null hypothesis of no disease marker. In the simulation,
Markov independence was assumed for the binary

sequences under null hypothesis. Nonetheless, the
method can also be applied to the scenario of first order
Markov-dependency, if the corresponding transition
matrix can be assumed or estimated. We provide a robust
approach to estimate the dependency structure of the
sequence using the concept of sliding window, which is
described in the method section. The method was applied
on the following authentic data as illustration.

Demonstrating the applications of our method to two 
authentic data sets
Example of psoriasis data
We assessed the practical application of the LSR method
using an authentic genetic data set collected for a psoriasis
study [24]. Psoriasis is a common chronic skin disorder
characterized by inflammation and scaling. Recent studies
indicate a significant association of important psoriasis
predisposing loci with chromosome 17 [24,25]. Helms et
al. [24] collected 242 European nuclear families compris-
ing 572 psoriasis cases and genotyped 123 genetic mark-

Comparisons of power among the procedures of Bonferroni correction, two LSR methods, and FDR control methodFigure 2
Comparisons of power among the procedures of Bonferroni correction, two LSR methods, and FDR control 
method. The allele frequency is 0.1, and the number of markers is 50. Two criteria, α1 = 0.05 and 0.1, are used for the LSR 
method.
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Comparisons of power among the procedures of Bonferroni correction, two LSR methods, and FDR control methodFigure 3
Comparisons of power among the procedures of Bonferroni correction, two LSR methods, and FDR control 
method. The allele frequency is 0.075, and the number of markers is 100. Two criteria, α1 = 0.05 and 0.1, are used for the LSR 
method.
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Table 2: Comparisons of power and false discovery rate among the procedures of Bonferroni correction and two LSR methods.

Marker number Relative risk Allele frequency Power False discovery rate Length*

Bonferroni LSR1 LSR2 Bonferroni LSR1 LSR2 LSR1 LSR2

50 2.0 0.075 0.15 0.16 0.255 0.14 0 0 4.27 5.72
2.0 0.1 0.285 0.3 0.48 0.07 0 0 5.765 7.645
2.5 0.075 0.53 0.69 0.81 0.06 0 0 8.7 10.39
2.5 0.1 0.68 0.815 0.92 0.03 0.005 0.005 9.695 11.74
3.0 0.075 0.83 0.91 0.98 0.04 0 0 10.7 12.9
3.0 0.1 0.925 0.99 1 0.03 0 0 11.5 14.0

100 2.0 0.075 0.065 0.225 0.365 0.28 0.015 0.02 4.34 5.715
2.0 0.1 0.185 0.37 0.485 0.18 0.005 0.02 5.685 7.1
2.5 0.075 0.47 0.72 0.87 0.11 0.005 0.025 8.435 10.26
2.5 0.1 0.605 0.905 0.945 0.05 0.01 0.005 10.07 11.33
3.0 0.075 0.78 0.94 0.985 0.02 0.005 0.005 10.9 13.0
3.0 0.1 0.91 0.99 1 0.03 0.005 0.005 11.6 13.8

Simulation was based on 200 replications with sample size 1000, and SNP data were generated under additive disease model with 15 markers in 
linkage disequilibrium. Screening criteria for LSR:α1 = 0.05, and level of significance for all methods:α2 = 0.05
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Table 3: Comparison of power and false discovery rate among the procedures of Bonferroni correction and two LSR methods.

Marker number Relative risk Allele frequency Power False discovery rate Length*

Bonferroni LSR1 LSR2 Bonferroni LSR1 LSR2 LSR1 LSR2

50 2.0 0.075 0.15 0.31 0.44 0.14 0 0.005 5.95 7.765
2.0 0.1 0.285 0.57 0.66 0.07 0 0 7.74 9.66
2.5 0.075 0.53 0.855 0.895 0.06 0.005 0.005 10.22 12.05
2.5 0.1 0.68 0.935 0.98 0.03 0 0 11.23 13.215
3.0 0.075 0.83 0.965 0.99 0.04 0.005 0 11.9 13.9
3.0 0.1 0.93 0.995 1 0.03 0 0 12.6 14.6

100 2.0 0.075 0.065 0.33 0.5 0.28 0.03 0.04 5.91 7.51
2.0 0.1 0.185 0.55 0.635 0.18 0.02 0.055 7.28 9.055
2.5 0.075 0.47 0.835 0.91 0.11 0.015 0.04 9.82 11.755
2.5 0.1 0.605 0.945 0.98 0.05 0.005 0.005 11.33 13.475
3.0 0.075 0.78 0.985 1 0.02 0.005 0 12.2 14.1
3.0 0.1 0.91 1 1 0.03 0 0 12.8 14.6

Simulation was based on 200 replications with sample size 1000, and SNP data were generated under additive disease model with 15 markers in 
linkage disequilibrium. Screening criteria for LSR:α1 = 0.10, and level of significance for all methods:α2 = 0.05

Comparisons of power among the procedures of Bonferroni correction, two LSR methods, and FDR control methodFigure 4
Comparisons of power among the procedures of Bonferroni correction, two LSR methods, and FDR control 
method. The allele frequency is 0.1, and the number of markers is 100. Two criteria, α1 = 0.05 and 0.1, are used for the LSR 
method.
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ers on chromosome 17q25. The family-based association
test TDT-AE [26] was applied to locate the psoriasis sus-
ceptibility genes.

In the first stage of LSR procedure, we used α1 = 0.05 as a
test size to convert the sequence of p-values into a binary
sequence. Under null hypothesis assuming Markov inde-
pendency, the LSR obtained a significant p-value <0.001,
and the region of 12 consecutive markers identified by L0
captured two functional genes SLC9A3R1 and
DKFZPP564C103, which are known to be psoriasis-
related. The results are consistent with the finding of
Helms et al. [24].

However, when we proceeded with the sequential good-
ness-of-fit tests proposed by Anderson and Goodman
[27], the hypothetical assumption of {Xj} being an inde-
pendent sequence was rejected thereby supporting the
hypothesis of it being a first order Markov dependence.
Therefore, a sliding windows approach was applied with
size of 40 markers and sliding distance of 10 markers to
estimates of the transition matrix under the hypothesis of
Markov dependency. The same region was identified by
LSR with p-value 0.007 under the dependency assump-
tion of null hypothesis. Similar results were produced
when minor variations in window size and sliding dis-
tance were used.

In this example, L1 and L2 did not further extend the
region of L0, therefore, L0 is sufficient to confirm this can-
didate region. On the other hand, in order to attain
approximately evenly spaced intermarker distance for
simple-count approach and avoid combining two distinct
chromosome regions, we tried only using the results from
the 5th to the 86th loci among the 123 markers. Moreover,
we also excluded results from marker loci with less than
50 trios in the analysis to preclude possibly unreliable
association results. It resulted in 78 loci included in the
final analysis. The consequent analysis also came out with
the same significant region with a p-value <0.001. Of par-
ticular note, all of the 123 markers had p-value >0.0001,
therefore, none of them was significant after direct Bonfer-
roni adjustment.

Example of asthma data
Asthma is a common chronic disease characterized by air-
way inflammation resulting in some symptoms such as
the difficulty of breathing, attacks of wheezing and cough-
ing, etc,. In the positional-cloning study of Allen et al.
[28], there were 224 families containing 239 asthma chil-
dren and 79 markers covering a region of 384 kb on chro-
mosome 2q14. Immunoglobulin E often causes asthmatic
inflammation and has been recognized to be an impor-
tant concomitant factor of children asthma. Allen et al.
[28] conducted the transmission disequilibrium tests to

assess the relationship between marker loci with asthma
and immunoglobulin E.

Using test size α1 = 0.05, the sequence of p-values was con-
verted into a sequence of twenty-three 1s and fifty-six 0s:

X =
[0000000011111110111110010011000100000101101
011001000000000000000000000000000000].

The goodness-of-fit test suggested that the sequence fol-
lows a first order Markov chain. In the second stage of LSR
method, we estimated the transition probabilities η00 and
η11 to be 0.647 and 0.7, respectively, and identified L1
(from marker 543WTC21P at 191388 to 543WTC91P at
252279, details are listed in Additional File 2) with length
13 and yielded the corresponding p-value 0.0002. Note
that L1 contains a significant candidate region of 60891 bp
closed to an asthma-suspected gene DPP10 with functions
of catalytic activity and dipetidyl-peptidase IV activity. The
conclusion is consistent with Allen et al. [28] who found
the highly significant STRP marker D2S308 at 261056 in
the vicinity of our identified region.

Discussion
As discussed by Rosenthal [29] and Zaykin et al. [30], a
series of border-line significant results may together sug-
gest significance. Therefore, it is likely that two consecu-
tive p-values of 0.06 may suggest evidence against the null
than one isolated p-value of 0.05. This phenomenon is
often observed in the identification of candidate regions
of complex disorders if the marginal effect of a disease
allele is modest or minor with a few adjacent loci that are
in LD. In this study, we propose the longest significant
run, LSR, to estimate region-specific p-values while
searching for disease susceptibility genes in gene mapping
studies. The method transforms the p-values from locus-
specific association tests (e.g., the transmission disequilib-
rium test or any other association test) to a binary
sequence with the value '1' representing significance and
'0' otherwise, and determines the LSR to identify the loca-
tion of the target disease susceptibility gene. The statistical
significance of LSR method can be accessed by imbedding
the sequence onto a Markov chain. A sequential good-
ness-of- fit-test [27] can be used to justify the assumption
that a sequence of indicator of p-values is Markov chain,
simulations assuming no disease gene were carried out,
and the test did not reject the null hypothesis of Markov
independence 99.8% of the time (998 out of 1000). On
the other hand, in the simulations assuming a disease
gene with allele frequency of 0.075 and RR = 2.5 imbed-
ded in a region flanking with dense markers, the test
rejected the null hypothesis of Markov independence
92.4% of the time (924 Out of 1000) but did not reject the
null hypothesis of first order of Markov chain 74.4% of
Page 8 of 13
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the time (744 out of 1000). Likewise, the test did not
reject the null hypothesis of first order Markov chain
82.2% of the time (822 out of 1000), assuming a disease
susceptibility gene with allele frequency of 0.1. The allele
frequencies in our simulations were assumed for the dis-
ease-causing alleles. The allele frequency for most markers
in genome-wide association study is higher than 0.05,
therefore we chose to use disease-causing allele frequen-
cies to be 0.075 and 0.1. Other frequencies were also
tested and found that the power was positively correlated
with the allele frequency. This disease related marker was
removed in all our subsequent analyses. Only results from
additive disease model were reported since it was more
plausible for complex diseases; we also examined domi-
nant model which showed higher power and recessive
model which showed lower power.

The LSR method avoids the controversial multiple-test
adjustment required for locus-specific association tests,
and thus has potential applications in exploratory data
analysis. For example, if there were a few significant mark-
ers in a genome-wide association found by using single
locus test [31], our proposed methods can be applied to
screen out the most likely region for further biological
examination. However, for an isolated significant marker,
it is likely that the LSR method will miss the signal. There-
fore, single-maker method and LSR method should be
considered complementary.

In addition to the perfect LSR, we also propose a "nearly
perfect" LSR in which a few interruptions (insignificance)
are allowed within the run. Our simulation results suggest
that the LSRs which allow for one or two interruptions
within the run are generally more flexible and have some
gain of testing power. The approach can be easily
extended to allow more interruptions by modifying the
imbedded transition matrix in Equation (5) in the
method section.

An advantage of our proposed method relative to testing
procedures based on genotypic data is that only p-value
data are needed. This method can be adapted extensively
to different study designs and testing procedures if reliable
p-values are provided. An important application is meta-
analysis which combines p-values from different studies.
Due to the high sensitivity of LSR method, many pub-
lished results with summarized p-values originally
reported as insignificant can be reanalyzed by this method
for more convincing conclusions.

To explore the genetic structure of human genome, we
downloaded the first 3,000 markers of chromosomes 1, 5,
10, 15 and 20, respectively, from the HAPMAP website
[32]. According to Gabriel's criterion (95% CI of D' = 0.7,
0.98) [33], there are 672 LD blocks among the 15,000

markers. The mean frequency and standard deviation of
the top haplotype are 0.55 and 0.19. They are 0.24 and
0.09 for the second haplotype and 0.12 and 0.07 for the
third one. If the top two or three haplotypes are defined as
the "common haplotypes", about 62% of the 672 LD
blocks have a cumulative frequency of 90% and about
99.4% of the blocks have a cumulative frequency of 50%.
To compare the powers of our proposed method between
optimal and modest LD scenarios, we used two settings of
haplotype frequencies, (85%, 5%) and (30%, 30%, 30%)
for the former and a setting of (35%, 10%, 5%), where the
frequencies were roughly those mean frequencies minus
one respective standard deviation, for the latter. As
expected, the former scenario with optimal LD block
resulted in better power for all methods in our simulation
than the latter with modest LD block. The power of LSR2
for this modest LD scenario is about 77% assuming 0.1
disease allele frequency, RR = 3 and α1 = 0.1. The power is
about 23% for the Bonferroni procedure. The results for
the different LD scenarios comprised of 3 common haplo-
types are also presented in Figure 5.

We further compared the power of our proposed methods
with those of haplotype analyses carried out by the FBAT
program [34] assuming RR = 2 and disease allele fre-
quency of 0.075. For the optimal LD scenarios, the multi-
ple-degree of freedom (m-df) and single-degree of
freedom (1-df) haplotype tests yield powers of 0.46 and
0.232, respectively, for the setting of (85% and 5%). The
powers for m-df and 1-df are 0.35 and 0.176, respectively,
for the setting of (30%, 30%, 30%). For the modest LD
scenario of (35%, 10%, 5%), the powers for m-df and 1-
df are 0.18 and 0.126, respectively. The power of LSR2 is
0.44 with α1 = 0.1 and the power of Bonferroni procedure
is 0.15. Therefore, the power of LSR2 is about the same as
the power of haplotype analyses under optimal LD scenar-
ios but outperforms under modest LD scenario. Powers
using other values of RR were also calculated. In general,
powers of both haplotype analyses and LSR increase
assuming higher values of RR.

Our simulation study demonstrates that all the methods
adequately control the false-positive rate, however, the
LSR methods, in particular, LSR2, had better performance
in both power and false discovery rate than those for the
Bonferroni and FDR controlling methods. Moreover, as
the number of markers increases, the power of both the
Bonferroni and FDR controlling method drops signifi-
cantly, whereas the power of LSR remains high and may
even increase slightly.

Further studies for potential extensions of the LSR method
are currently under development. Firstly, the LSR method
transforms continuous p-values to a dichotomous ran-
dom sequence of 0s and 1s, which may cause a loss of
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information. This limitation implies that some isolated
disease susceptibility loci cannot be identified by the LSR
method. A model based on a more complex continuous-
state stochastic process constitutes an alternative that
would exploit more information. Secondly, in our simu-
lation, we assumed that there is only one disease suscepti-
bility gene in the region of interest. However, the LSR
method will miss some isolated target genes when a
region contains two or more. One remedy is to extend the
LSR theory to incorporate the second or third longest sig-
nificant run.

The remarkable advances in genotyping technology have
facilitated the pursuit of genome-wide association map-
ping. The increased density of available SNP markers pro-
vides finer resolution and higher statistical power for gene
mapping. For example, the average distance between two
SNPs using the 100 K assay of Affymetrix [35] is 24 kb.
The intermarker distance is only 5.8 kb for the 500 K
chips. We foresee that the multiple tests correction will
remain a crucial issue as the number of genetic markers
becomes very large. Our method can be applied to such

data in combination with the sliding window method to
screen out candidate regions associated with the disease
genes.

Conclusion
In summary, the LSR method provides an efficient explor-
atory tool for the analysis of sequences of dense genetic
markers thereby complementing current locus-specific
methods. Our simulation study demonstrates that the LSR
method has reasonable statistical power and avoids the
over-correction problem that plagues most of the locus-
specific methods. When applied to actual genetic data, the
LSR method successfully confirmed the location of two
important psoriasis-associated genes and an asthma-
related gene. The application to genome-wide screening
studies may further enhance the proposed LSR method.

Methods
Suppose that there are a total of n genetic markers in a
study. The LSR method contains two main stages, the first
of which transforms the results from n locus-specific asso-
ciation tests into a sequence of significance indicators and

Comparisons of power among the procedures of Bonferroni correction and two LSR methods under different common haplo-type frequency scenariosFigure 5
Comparisons of power among the procedures of Bonferroni correction and two LSR methods under different 
common haplotype frequency scenarios. The allele frequency is 0.1, and the number of markers is 50. Two criteria, α1 = 
0.05 and 0.1, are used for the LSR method.
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the sequence is used in the second stage to locate the LSR
and compute its tail probability.

The first-stage procedure

Association tests are applied to examine the significance
of associations between genetic markers and a disease sus-
ceptibility gene, and the corresponding p-values (signifi-

cance probabilities) of the tests are denoted by { , j = 1,

Λ n}. Under the pre-specified test size, α1, we consider an

indicator function of the test on marker j: Xj = I[ , <α1]

where I [A] = 1 if event A holds, and I [A] = 0 otherwise.

In the following hypothetical example of 15 genotyped
genetic markers (n = 15), the corresponding p-value vector

of 15 association tests is  = [0.30, 0.04,

0.03, 0.04, 0.12, 0.04, 0.02, 0.01, 0.35, 0.50, 0.02, 0.03,

0.04, 0.45, 0.04] Based on the setting of α1 = 0.05, we

obtain

X = [X1, L, X15] = [0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1],
(1)

where markers 2, 3, 4, 6, 7, 8, 11, 12, 13, and 15 show sig-
nificant association with the disease susceptibility gene.

The second-stage procedure
Before applying the LSR method, the assumption of
Markov chain for the sequence of the indicator of p-values
can be checked by carrying out the goodness-of-fit test of
Markov Chain [27]. Assuming that the binary random
sequence {Xj, j = 1,Λ,n } to be a first order Markov chain
stochastic process satisfying

Pr{Xj = sj | Xj-1 = sj-1,Λ, X1 = s1 = Pr{Xj = sj | Xj-1 = sj-1},
(2)

where sk ∈ {0,1} = insignificance, significance}, k = 1,Λ, n
. Let the initial probability be Pr{X1 = 1} = η1 and Pr{X1 =
0} = 1 - η1, then the transition probability matrix is

where η00j + η01j = 1 and η10j + η11j = 1, j = 2,Λ,n. This
model assumes conditional independence and is well
established in a variety of fields.

An inordinately long LSR indicates possible associations
between markers and a disease susceptibility gene. Due to
random error, low heterozygosity or other unknown rea-

sons, not all markers linked to the disease gene show pos-
itive association. Hence, it is sensible to allow for a few
interrupting 0s (insignificances) in a run. We denote the
more flexible run as a "nearly perfect run" in contrast to a
perfect run that does not contain 0s. A unifying notation
of the length of an LSR is Lk, where the subscript k denotes
the number of interrupting 0s. When k = 0, the case
reduces to a perfect run. In the example in Equation (1),
L0 = 3, L1 = 7, L2 = 8 and L3 = 12.

Consider the following hypotheses
H0: "there is no disease susceptibility gene in the sequence
of markers", versus

H1:"there is at least one disease susceptibility gene in the
sequence".

According to the argument above, an inordinately long
LSR (i.e. large Lk) indicates a non-random cluster of signif-
icant associations with nearby markers, suggesting that
disease susceptibility genes may exist in the candidate
region. For a pre-chosen k, an intuitive rule to reject H0 is
Lk > m*, where the constant m* is the minimum integer of
m satisfying the following inequality

Pr{Lk ≥ m | H0} ≤ α2 (4)

for a test size α2. To determine the critical region, we need
to calculate the tail probability of testing statistic Lk.

Distributions of LSR statistics
There has been a long history of studies on the distribu-
tion of the length of the longest run. Erdõs and Révész
[36] considered a binary sequence from a coin-tossing
game, with outcomes of head (coded as "1") and tail
("0"). The p-value of L0 of LSR is analogous to the tail
probability of their longest head-run. Fu and Koutras [19]
have provided an algorithm to calculate the exact proba-
bility of L0. Arratial et al. [37] and Karlin et al. [38] have
provided asymptotic results on the distribution Lk, how-
ever, the former method [37] is valid only for independ-
ent sequences, whereas the latter [38], although allowing
dependency, yields a large bias for the estimation of tail
probability when n is of moderate size (e.g., n = 200) [20].

Chang et al. [20] provided an algorithm and software to
calculate the exact probability of Lk by the following for-
mula:

where u = [1,0,Λ,0], ν = [1,Λ,1,0] and the exact form of the

imbedded transition matrix Λi is a function of η1 and ηsti s

p̂ j

p̂ j
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in Equation (3). By considering a homogeneous Markov

chain, the subscript i can be suppressed and Λi and ηsti can

be reduced to Λ and ηst. We estimated the initial probabil-

ity by the proportion of the occurrence of "1" in {Xj, j =

1,Λ,n}, i.e.,  = (number of "1")/n. Under null hypoth-

esis H0 of independency, {Xj is assumed to be of no special

pattern and the transition probabilities η1t and η0t can be

replaced by  and 1 - . For dependent sequences, we

propose the following approach.

Estimation of dependency structure under null hypothesis
To examine the Markov chain assumption on sequence
{X1...Xn}, we used the following sequential goodness-of-
fit tests proposed by Anderson and Goodman [27]:

(i) H0: independent sequence vs. H1: first order Markov
chain

(ii) H0: first order Markov chain vs. H1: second order
Markov chain

If the first order Markov chain hypothesis is accepted, we
suggest using the following approach to estimate the
dependency structure and calculate the p-value.

Consider a set of sliding windows of fixed size w and slid-
ing distance d, d <w <n, under proper choices of d and w,
the windows {X1...Xw}, {X1+d...Xw+d}, ..., {X1+sd...Xw+sd}

will cover nearly the whole sequence, where s is the largest
integer smaller than or equal to (n-w)/d. For the subse-

quence in the i-th window, the transition probabilities ηst

(i) = P(Xi+1 = t | Xi = s), where s, t = 0,1, are estimated by its

maximal likelihood estimator, namely, (i) = (number

of consecutive (1,1) pairs)/(number of 1s), and 

(number of consecutive (0,0) pairs)/(number of 0s), for i
= 1 to d+1. For a homogeneous first-order Markov chain,

we estimate  and  by the medians of (i)'s and

(i)'s, respectively, and  and

.

The validity of the sliding window approach is based on
the assumption that most of the widows contain no dis-
ease markers, and therefore the sequences within the set
of sliding windows of fixed size w can be used to estimate

the transition probabilities. After (i)'s are estimated

from each window, the robustness of median can dimin-
ish the influence from those few windows which might

contain disease markers. With the estimated ηst's, tail

probabilities of LSR statistics can be calculated using (5),
and then the null hypothesis of no disease gene is rejected

if Lk ≥ mα, where mα is a threshold such that Pr{Lk ≥ m

α|H0} = α.

To summarize, we performed simulation studies to inves-
tigate the false-positive rate, the power, and the false dis-
covery rate of the proposed LSR method, and we
compared the results with those from Bonferroni method.
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