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Abstract

Background: Biologically active sequence motifs often have positional preferences with respect
to a genomic landmark. For example, many known transcription factor binding sites (TFBSs) occur
within an interval [-300, 0] bases upstream of a transcription start site (TSS). Although some
programs for identifying sequence motifs exploit positional information, most of them model it only
implicitly and with ad hoc methods, making them unsuitable for general motif searches.

Results: A-GLAM, a user-friendly computer program for identifying sequence motifs, now
incorporates a Bayesian model systematically combining sequence and positional information. A-
GLAM's predictions with and without positional information were compared on two human TFBS
datasets, each containing sequences corresponding to the interval [-2000, 0] bases upstream of a
known TSS. A rigorous statistical analysis showed that positional information significantly improved
the prediction of sequence motifs, and an extensive cross-validation study showed that A-GLAM's
model was robust against mild misspecification of its parameters. As expected, when sequences in
the datasets were successively truncated to the intervals [-1000, 0], [-500, 0] and [-250, 0],
positional information aided motif prediction less and less, but never hurt it significantly.

Conclusion: Although sequence truncation is a viable strategy when searching for biologically
active motifs with a positional preference, a probabilistic model (used reasonably) generally
provides a superior and more robust strategy, particularly when the sequence motifs' positional
preferences are not well characterized.

Background because of their biological importance, much experimen-
Transcription factor binding sites (TFBSs) provide a spe-  tal effort has been expended in identifying them. Because
cific example of biologically functional sequence motifs  experimental identification is expensive, there are now
that sometimes have positional preferences. TFBSs con-  many computational tools that identify TFBSs as the sub-

tribute substantially to the control of gene expression, and  sequences, or "motifs", common to a set of sequences.
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Most TFBSs correspond to short and imprecise motifs [1],
however, so all computational tools in a recent contest
performed rather poorly in identifying known TFBSs [2].

Although some tools have an ad hoc basis [3-5], other
tools have a basis in the calculus of probability, and can
therefore immediately and systematically combine
sequence with other sources of information. Most proba-
bilistic tools align candidate subsequences and convert
the nucleotide counts in the alignment columns into a
position-specific score matrix (PSSM). Most PSSMs are
based on the log ratio between a motif model and a back-
ground model. Tools then identify putative motifs by
maximizing the log ratio, usually with expectation maxi-
mization (EM) [6] or Gibbs sampling [7-9].

Experiments have shown, however, that besides common
sequence motifs, TFBSs also have positional preferences,
as illustrated in Figure 1. In yeast, TFBS positions demon-
strate a strong bias toward locations between 150 and 50
bases upstream of the TSS [10]. In E. coli, TFBS positions
tend to be located between 400 and O bases upstream of
the translation start site [11]. In the words of Wray et al.,
"for at least some regulatory elements, function constrains
their position with respect to the transcriptional start site"
(TSS) [1]. On the other hand, the trends regarding the
positional preferences of TFBSs appear inconsistent. Wray
et al. continue "for most transcription factors, however,
binding sites lack any obvious spatial restriction relative
to other feature of the locus" [1].

Some computational methods do exist to exploit the posi-
tional preferences of TFBSs. The first computational study
using positional preferences used an empirical prior dis-
tribution of known positional information with respect to
the translation start site from the E. coli genome [12]. This
simple method, however, is applicable only to very simple
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Positions of hypothetical TFBSs (gray boxes) with
respect to the corresponding TSS.
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organism like E. coli. Another computational study used
position to calculate p-values for candidate motifs that
formed a cluster [13]. The p-values were based on one par-
ticular database, however, and might not generalize relia-
bly. Moreover, the corresponding model is not a
probability model, making the systematic combination of
sequence and positional information problematic. Yet
another computational study modeled the positional
preferences of TFBSs with a uniform prior, only mention-
ing the possibility of a more informative prior [11]. A sys-
tematic computational study to find new TFBS motifs by
exploiting positional preferences applied a chi-square test
to bins of positions near TSSs [14]. The chi-square test
found one 8-letter word with significant positional prefer-
ences, the "Clus1" word, TCTCGCGA. The study's use of
binning probably reduced the power of statistical tests,
however. Shortly thereafter, in confirmation of the
reduced statistical power, a systematic study of a human
promoter dataset [15] identified 801 8-letter words with a
positional preferences with respect to the TSS [9]. Interest-
ingly, although 388 of the 801 words appeared in the
TRANSFAC database [16], 413 of the words did not, sug-
gesting that TFBS positional preferences were much more
pervasive than previously believed. A later study showed
that in eukaryotes the distribution of TFBSs was not uni-
form with respect to the TSS [17]. A study using chromatin
immunoprecipitation followed by DNA hybridization
(ChIP-Chip experiments) inferred TFBSs within sheared
DNA fragments by using prior probability distributions to
model positional preference [18]. The model was not
directed at identifying TFBSs by their positional prefer-
ences with respect to genomic landmarks, however.
Finally, a study applied a Poisson approximation to bins
of positions within promoters to identify TFBSs by their
positional preferences with respect to the TSS [19].

Several studies, therefore, have examined the positional
conservation of TFBSs. Consequently, TFBS positional
preferences are relatively well understood, particularly
when compared to most non-coding DNA. Very few com-
putational tools systematically combine positional prefer-
ence with sequence information, however, and to our
knowledge, no general-purpose computational tools
using positional information are currently available.
Standard tools like MEME [6], AlignACE [10], and Motif-
Sampler [20], e.g., do not use positional information.
Accordingly, this article evaluates the accuracy of predic-
tions from a Bayesian model combining sequence with
positional information, implemented in the newest ver-
sion of the tool A-GLAM [9]. We assessed predictions
from A-GLAM with and without the positional informa-
tion, using a standard dataset of sequences with known
TFBSs, and were therefore able to measure the contribu-
tion of positional information to TFBS prediction accu-

racy.
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Results

Results for the TSS Tompa dataset

The TSS Tompa dataset is one of two test datasets consid-
ered in this study and contains 23 data subsets (see Meth-
ods). Table 1 shows an anecdotal A-GLAM alignment
using positional information for the dataset 'hmO08t' from
the TSS Tompa dataset, which contains 10 sequences of
length 2001. Run in its ZOOPS mode (Zero Or One Per
Sequence), A-GLAM returned candidate alignments with
only one or zero candidate site per sequence. In addition
to sequence conservation, the alignment shows positional
conservation within an interval of [-220, -1], much nar-
rower than the input interval, [-2000, 0] bp upstream of
the transcription start site (TSS). The alignment also over-
lapped several known sites (underlined in Table 1), with
a correlation coefficient of 0.574, indicating good overlap.

Table 1 does not show the corresponding alignment with-
out positional information, because its width was a bio-
logically unrealistic 126 bp long. The alignment showed
little positional conservation, with a range of [-2000, -
1237]. It also showed essentially no overlap with the
known sites, with a correlation coefficient of -0.012.

For TFBSs predicted without positional information, E-
values were immoderately small, even for incorrect pre-
dictions. (Some incorrect predictions even displayed a
numerical underflow E-value of 0, data not shown.) In
contrast, the E-values in Table 1 were quite moderate, per-
haps because they had to reconcile conflicting constraints
from different sources of information on the motifs.

Alignments for more data subsets can be found in Supple-
mentary Tables 1-6 [see Additional file 1]. We collected

Table I: The A-GLAM output with positional information for
'hmO8r'.

Name Start Alignment End Score E-value

seq 0 -66 GTCACGGC -59 11.0093 6.65E-06
seq_2 -65 GTGACGTT -58 10.3315 2.30E-05
seq_3 -58 ATGACGTC -51 11.2688 2.94E-06
seq_5 -188 GTGACGTC -181 11.4594 1.28E-06
seq_7 -184 CTGACGAC -177  9.86871 4.64E-05
seq_9 -101 ATGACGTC -94 10.9283 8.09E-06
seq_ 10 -220 ATCACGGC =213 7.58906 3.78E-04
seq_l 1 -80 GTGACGTC -73 11.1306  4.75E-06
seq_l2 -52 CTGACGGC -45 10.0764 3.50E-05
seq_l4 -8 CTGATGTC -1 7.60515 3.69E-04

A-GLAM predicted TFBSs in 10 data subsets in the TSS Tompa data
subset hm08r'. The column "Name" shows each data subset; the
column "Alignment", the corresponding predicted TFBS. The start and
end positions with respect to the corresponding TSS are shown in the
columns "Start" and "End". The columns "Score" and "E-value" show
bit scores and E-values that A-GLAM assigned to predicted TFBSs.
The known binding sites in the alignment are underlined.
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alignments (with positional information) whose correla-
tion coefficient (CC) is larger than 0.08. The hmO03r data
subset does not appear in Tables 1-6, despite a CC of
0.386, because the corresponding alignment had a biolog-
ically unrealistic width of 224 bp. Unrealistically large
alignment widths are much less common for alignments
with positional information than without. In Supplemen-
tary Tables 2-6, the alignments without positional infor-
mation are omitted because they show essentially no
overlap with known binding sites.

Table 2 summarizes results for all 23 TSS Tompa data sub-
sets. Some 18 out of the 23 datasets show improved pre-
dictions after adding positional information. Overall, the
combined correlation coefficient (CCC; see Methods) at
the bottom of Table 2 improved from -0.008 to 0.101. To
evaluate the statistical significance, let y and y, denote the
average correlation coefficient for each data subset with-
out and with positional information. A one-sample Wil-
coxon test against the one-sided null hypothesis y > 7,
yielded a p-value of 0.002, supporting the alternative
hypothesis that y <y,.

Results for TRANSFAC dataset

The TRANSFAC dataset contains 82 data subsets. Supple-
mentary Table 8 contains detailed results for the input
interval of [-2000, 0]. With the addition of positional
information, the CCC has improved from -0.009 to 0.027
with a p-value of 10-8 (Wilcoxon test as above). The CCC
for TRANSFAC dataset (0.027) is smaller than for TSS
Tompa dataset (0.101), and the positional information
makes a more significant change in the CCC for the
TRANSFAC dataset (p = 108) than for the TSS Tompa
dataset (p = 0.002), probably because the TRANSFAC
dataset contains 82 data subsets; the TSS Tompa dataset,
only 23. In the case of subtle differences, the larger
TRANSFAC dataset provides more evidence, leading to
smaller p-values.

Cross-validation using TSS Tompa dataset

Because we used known binding sites to estimate the
hyperparameters of the model (see Methods), one might
suspect over-fitting. Moreover, because the distribution of
locations might vary from one type of TFBS to another,
the proposed model might not be appropriate for the dis-
covery of unknown binding sites of different types of
TFBSs. Cross-validation addressed these issues (see Meth-
ods).

Over the 100 random partitions from TSS Tompa dataset,
the sample average of the CCC was 0.086; its sample
standard deviation, 0.027; its 90% confidence interval,
(0.049, 0.133); and its range, (0.029, 0.155). (The
TRANSFAC dataset was not used for 5-fold cross-valida-
tion because of amount of computation required.) The
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Table 2: The correlation coefficients for the TSS Tompa data subsets

Data Subset Without positional information With positional information Improvement
hmOlr -0.012 -0.007 0.005
hmO02r -0.009 -0.007 0.002
hmO3r -0.037 0.386 0.423
hmO04r -0.008 -0.005 0.003
hmO5r -0.031 -0.019 0.012
hmOé6r -0.014 0.156 0.170
hmO07r -0.015 -0.015 -0.001
hmO08r -0.012 0.574 0.586
hmO9r -0.011 0.358 0.369
hm10r -0.019 0.083 0.102
hmllr -0.028 -0.012 0.016
hm13r -0.015 -0.016 -0.001
hm14r 0.204 -0.018 -0.222
hmI5r -0.011 -0.012 -0.002
hmlér -0.011 -0.006 0.005
hml7r -0.015 -0.012 0.004
hm18r -0.018 0.094 0.112
hm19r -0.010 -0.007 0.003
hm20r -0.026 0.046 0.073
hm2lr 0.401 0.384 -0.016
hm22r -0.020 -0.020 0.000
hm24r -0.016 -0.010 0.006
hm26r -0.016 0.099 0.115

Combined CC -0.008 0.101 0.109

Table 2 shows the correlation coefficients for A-GLAM's predictions on the 23 subsets of the TSS Tompa dataset. The column, "Improvement",
quantifies the effect of positional information on predictions, by showing the difference between the correlation coefficients in the second and third
columns, "Without Positional Information" and "With Positional Information".

CCC for the model using sequence information alone was
-0.008. Because the CCC for sequence alone lay outside
the range (0.029, 0.155) of the 100 CCCs using positional
information in the 5-fold cross-validation, positional
information improved prediction accuracy significantly.
The actual CCC for the model using both sequence and
positional information was 0.101 (see Table 2), well
within the 90% confidence interval from cross-validation.
The different types of known sites have quite diverse dis-
tributions (see Fig. 2), so we expect occasional misspecifi-
cation of hyperparameters 1 in our model (see Methods).
The 5-fold cross-validation shows, however, that classifi-
cation accuracy is not excessively sensitive to the hyperpa-
rameter estimation or, by extension, to the locations of
the known sites.

Truncation effect on sequences of test datasets

Figures 2 and 3 suggest that a truncated input sequence
interval of, say, [-500, 0] or [-250, 0] might incorporate
positional information as well as a Bayesian positional
model applied to the full interval [-2000, 0]. Accordingly,
in addition to the full interval [-2000, 0], we tested 3 trun-
cated intervals [-1000, 0], [-500, 0], and [-250, 0]. (See
Supplementary Table 7 and 8 for details.) The predictive
accuracy, as represented by the CCCs in Table 3, indicate

that truncation on its own, without any Bayesian posi-
tional modeling, improved the motif predictions. Moreo-
ver, predictive improvements due to modeling position
gradually disappeared as the truncation reduced the inter-
val to [-250, 0]. Note, however, that positional modeling
never significantly hurt the predictive accuracy, even with
truncated input sequences.

Discussion

The new version of the A-GLAM program ('anchored gap-
less local alignment of multiple sequences', written in
C++) [9,21] can incorporate positional information by
implementing the model from the Methods section in a
Gibbs sampler. A-GLAM already has several desirable fea-
tures when predicting transcription factor binding sites
(TFBSs). First, it optimizes motif width automatically,
without user input. Second, it reports theoretically accu-
rate E-values for candidate TFBSs. Finally, it implements a
theoretically sound context-dependent Markov back-
ground model, which yielded better predictions than dif-
ferent, ad hoc Markov background models or the
conventional background model of independent bases
[22]. With its Markov background model, a rigorous sta-
tistical evaluation showed that even before the addition of
positional information, A-GLAM's predictive accuracy was
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Figure 2

Distribution of known locations of binding site in TSS
Tompa dataset. The x-axis is anchored on the TSS,
denoted as location 0. All sequences in each test subset are
collapsed into a single line; hence the 23 data subsets are
shown as 23 different horizontal lines. Each data subset con-
tains TFBSs corresponding to a single specific transcription
factor.

competitive with any state-of-the-art motif-finding tool
[22].

At the outset, we point out that all motif-finding tools
have had notorious difficultly with the original Tompa
dataset [2]. Our TSS Tompa test dataset is even more diffi-
cult than the original Tompa dataset. Its data subsets often
contained fewer sequences than the corresponding origi-

Table 3: The effect of truncating the sequence upstream of the TSS
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Distribution of known locations of binding site in
TRANSFAC dataset. The x-axis is anchored on the TSS,
denoted as location 0. All sequences in each test subset are
collapsed into a single line; hence the 82 data subsets are
shown as 82 different horizontal lines. Each data subset con-
tains TFBSs corresponding to a single specific transcription
factor.

nal Tompa subset. Moreover, our sequences were on aver-
age longer than the corresponding original Tompa
sequence. Thus, conventional motif-finding tools should
perform more weakly on our TSS Tompa test dataset than
on the original Tompa dataset.

The Bayesian model in this paper combines sequence and
positional information to predict putative TFBSs. Its
implementation in A-GLAM permits users either to accept

Sequence range TSS Tompa Dataset

TRANSFAC Dataset

Without positional info With positional info  p-value Without positional info With positional info  p-value
[-2000, 0] -0.008 o.101 0.002 -0.009 0.027 108
[-1000, 0] 0.086 0.098 0.583 0.050 0.066 0.112
[-500, 0] 0.125 0.133 0.338 0.077 0.078 0.070
[-250, 0] 0.139 0.139 0.054 0.094 0.076 0.603

The first column shows the sequence range upstream of the TSS given as input to A-GLAM. The change of CCC from modes with and without
positional information for the TSS Tompa and TRANSFAC datasets is displayed in the corresponding groups of three columns. The third column of
each group shows a Wilcoxon p-value, which evaluates the difference between the CCCs in the previous two columns. Because not all TFBSs in
our datasets are known, small improvements in the CCC correspond to true improvements of unknown magnitude. In particular, e.g., in the Table,
two CCC values rounded to 0.139 have unseen decimals different enough to have a p-value of 0.054. To view results for individual sites in the

Tompa dataset, see Supplementary Table 7 [see Additional file I].
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our default hyperparameters 1 for the prior distribution or
to select their own. Although complete flexibility in the
selection of hyperparameters can permit inappropriate or
excessively aggressive choices, extensive cross-validation
showed that the usual priors place mild restrictions on the
predictions, so the model is very robust against misspeci-
fication of its hyperparameters or, by extension, to the
locations of known sites. In other words, the prior does
not dictate the alignment; instead, it loosely guides the
alignment and permits the data to "speak for themselves".
If motifs do not cluster by position, A-GLAM might there-
fore still find motifs sharing sequence but not position.
We therefore make the following recommendation to
users: in the absence of a strong reason to the contrary,
they should accept A-GLAM's default hyperparameters.

To use positional information to find biologically active
sites, A-GLAM's positional model requires the input
sequences to be anchored on a genomic landmark, e.g., to
find TFBSs, the model might be anchored to TSSs. Because
a single gene might correspond to several alternative TSSs
[23], however, TSS multiplicity might initially appear to
cause problems. Moreover, the TSS itself can have either
"sharp" or "broad" positional preference within a pro-
moter [24]. Variability of the TSS position within a pro-
moter reduces the positional information available to A-
GLAM, possibly explaining the uneven improvement in
prediction across our data subsets. A-GLAM's statistical
model examines sequence as well as positional informa-
tion, however, so it retains robustness against a mild mis-
specification of the TSS, say, within a few hundred bases
of the true position, so alternative TSSs or TSSs with a typ-
ical broad positional distribution are unlikely to degrade
predictions seriously when positional information is
used. A-GLAM's users should note, however, if a TSS is
specified, e.g., a kilobase away from the relevant position,
positional information might severely distract A-GLAM
from finding the desired TFBSs. On the other hand, how-
ever, different positions relative to the TSS containing
exactly the same sequence have long been known to be
associated with different TFBS biological functions [25];
in other cases, they might also be associated with alterna-
tive TSSs or TSSs with a broad positional distribution. Up
to now, because computational studies of positional con-
trol of transcription have had to rely on ad hoc methods,
A-GLAM now has a unique potential among general
motif-prediction tools. Even if two functionally different
sets of TFBSs have similar motifs, A-GLAM can differenti-
ate them by position alone and report the two sets sepa-
rately. It would be very interesting if someone using A-
GLAM identified two sets of TFBSs of similar sequence
corresponding to two different functionalities or TSSs.

The sequences in our study used the upstream positions
from -2000 to O bp relative to the TSS to evaluate A-
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GLAM's accuracy in predicting TSSs. Because our purpose
in this article was to evaluate A-GLAM's ability to find bio-
logically active sequence motifs in general, there is no sci-
entific reason not to use the 3' UTR region as a "genomic
anchor" to identify nearby regulatory elements. A similar
statement applies to any set of regulatory elements (e.g.,
TFBSs, miRNA binding sites, etc.) around any genomic
landmark (e.g., the TSS, the 3' UTR, etc.).

Indeed, if its main purpose was not evaluation of the pre-
dictive accuracy of A-GLAM's positional model, this article
could have restricted its input sequences to intervals
downstream of the TSS, e.g., [0, 1000] bp instead. With
the TSS still providing the genomic anchor, A-GLAM
could have searched for motifs associated with, e.g., 5'
UTRs or translation start sites, which are usually within a
few hundred base pairs downstream of a TSS. Thus, posi-
tional restrictions on the input sequence could focus A-
GLAM's search on sequence motifs with different biologi-
cal functions.

In practice, however, restricting the input interval requires
great care. Unlike the TFBSs in our test datasets, many
sequence motifs have poorly characterized distributions.
On one hand, excessively stringent truncation of the input
interval to, say, [-125, 0] would probably have removed
many TFBSs from consideration in our study. On the
other hand, positional modeling generally improved the
accuracy of motif prediction, never hurting it significantly,
even when input sequences were truncated. In the search
for novel sequence motifs, therefore, we recommend that
the use of Bayesian positional modeling on an input
sequence whose length is generous (but not too generous)
relative to the locations of known motifs.

Since the previous study showed that A-GLAM is one of
the top performers among existing tools for de novo TFBS
discovery [22], we believe that A-GLAM now easily out-
performs its competitors whenever positional informa-
tion is available and relevant. "Positional genomics"
exploits the information provided by genomic landmarks
(like the TSS), yielding a "poor man's alignment", even
when the precise sequence alignments are unavailable.
Given the power of comparative genomics, which
depends on accurate alignments, positional genomics
presents many interesting possibilities.

Conclusion

We proposed a Bayesian model for incorporating posi-
tional preference of TFBS with respect to a genomic land-
mark, e.g., a TSS. The results on our test datasets show that
a positional model can produce statistically significant
improvements in the accuracy of motif prediction. Our
cross-validation study shows that the prior distribution of
our positional model is robust against mild misspecifica-
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tion of its parameters. Our study of truncated input
sequences indicates that the positional model provides a
superior and more robust strategy than sequence trunca-
tion, especially when the positional preferences of
sequence motifs are not well characterized.

Availability
The A-GLAM program and all datasets relevant to this arti-
cle can be found online [26].

Project name: A-GLAM 2.1

Project home page: ftp://ftp.ncbi.nih.gov/pub/spouge/
papers/archive/AGLAM/2008-02-20/

Operating system: Linux
Programming language: C++
Licence: No license required.

Methods

The two test datasets

Our first test dataset was a subset of the "real" human
sequences in the "original Tompa dataset", from [2]. The
original Tompa dataset does not annotate any experimen-
tally verified TSS positions, which were supplied from the
Database of Transcription Start Sites (DBTSS) [27], as fol-
lows. BLAT [28] searched the DBTSS for hits to sequences
in the original Tompa dataset. The DBTSS is incomplete,
so when BLAT returned no hits in a sequence, the corre-
sponding sequence was discarded. After the BLAT search,
the dataset contained 26 data subsets, each composed of
human sequences with a known TSS, and each corre-
sponding to a single type of TFBS, like the original Tompa
data subsets. We then discarded data subsets with 0 or 1
sequences, resulting in our "TSS Tompa dataset", which
contained 23 data subsets. Each data subset contained
from 2 to 26 sequences, and each sequence contained any
number of known TFBSs, including 0. To encompass sys-
tematically all known TFBSs in the sequences, each
sequence was expanded to contain proximal promoter
regions from -2000 to 0 bp (upstream) relative to the cor-
responding TSS.

Our second test dataset was constructed from: (1) the lat-
est human genome build (NCBI Build 36, ftp://
ftp.ncbi.nih.gov/genomes/H sapiens/); (2) transcrip-
tional start sites (TSS) from the database of transcription
start sites (DBTSS) [27]; and (3) experimentally character-
ized TFBSs from the TRANSFAC database (professional
version 11.2) [29]. Briefly, TSS and TRANSFAC sites were
mapped to the human genome using MegaBLAST [30],
yielding a set of proximal promoter DNA sequences
[15,31] annotated with experimentally characterized TSSs

http://www.biomedcentral.com/1471-2105/9/262

and TFBSs. In this paper, the resulting sequences are called
our "TRANSFAC dataset". The TRANSFAC dataset con-
tains 82 data subsets, each subset containing 2 to 101
sequences, and each sequence containing at least one
instance of known TFBSs. Like the TSS Tompa data sub-
sets, each data subset corresponded to a single type of
TFBS. Like our TSS Tompa dataset, the range of TRANS-
FAC dataset is from -2000 to 0 bp (upstream) relative to
the corresponding TSS.

A standard measure of prediction accuracy, the correlation
coefficient, described elsewhere [22], evaluated TFBS pre-
dictions within our test dataset.

A Bayesian model for positional preferences

Our model for TFBSs uses two sources of information:
sequence and position. We discuss sequence later, to focus
on the novelties of position first.

Figure 2 displays the positions of all known TFBSs within
the data subsets of the TSS Tompa dataset. Figure 2 col-
lapses all sequences in each test subset into a single line
anchored at the TSS. Thus, the 23 lines represent the 23
data subsets. Figure 2 shows that the TFBSs in several data
subsets display positional preferences with respect to the
TSS. Many TFBSs are upstream of the TSS, possibly clus-
tered around certain positions. Accordingly, we search for
TFBS positions that are normally distributed, with
unknown center and dispersion, near the TSS. (Mathe-
matical convenience facilitates the choice of the normal
distribution.) Analogous to Figure 2, Figure 3 contains the
positions of all known TFBSs in the TRANSFAC dataset.
The TRANSFAC dataset displays the same basic distribu-
tional characteristics as the TSS Tompa dataset in Figure 2.

Fix a data subset in Figure 2 or 3, and assume it contains
some number n of unknown TFBSs with locations x,...,x,

relative to the TSS. For later reference, let X, =n~" zln: | Xi

and ;= n_lz; (x; —%,)* be the sample mean and
sample standard deviation. Assume x = (x;,...,x,) consti-
tute independent samples from a Normal (z, A) distribu-
tion, with mean x and reciprocal variance (also known as
"precision") A = 1/02. Given the normal parameters 6 = (g,
1), the positions x have the likelihood function

~ in/2 _l n B 5
peclO)=( 2o | et -2 (v - (1)
i=1

Parenthetically, to avoid confusion, the sequence loca-
tions x;,,...,x, are integers, but the use of continuous distri-
butions (e.g., the normal) as approximations simplifies
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the algebra enormously. Similarly, the locations x;,...,x,
might be confined to a finite interval (e.g., they might be
within a finite piece of DNA). The seemingly unrestricted
normal distribution remains appropriate, however,
because its rapidly vanishing squared exponential form
(as in Eq) effectively confines its samples to a finite inter-
val.

Now, let the normal parameters 6 = (x, 1) have a uniform-
gamma prior distribution, in which # and A have inde-
pendent prior distributions. The prior for x is the contin-
uous Uniform [a, b] distribution on some closed interval
[a, b] (a <b), with constant density p(u) = (b - a) for u €
[a, b]. The prior for 4 is a Gamma( e, £) distribution with
parameters ¢, > 0, with density

)= B 3 exp(-pp)
[(a)
for 1 > 0. The uniform-gamma prior distribution for 6 =
(1, A) therefore has the joint density function

_ -1 ﬁa a-1
p(8) =(b-a) ~mi exp(=pA),

for 4 € [a, bl and 2> 0.

Practical suggestions for the numerical values of & and S
are given below.

Our aim is to provide a figure of merit for Gibbs sampling
based on the predictive distribution p(x) = [p(x|0)p(8)d] of
the locations x. Gibbs sampling conditions on the loca-
tions x = (x,...,x,) to determine the conditional predictive
distribution of the location x,,,, = x of another TFBS (see
Eq (2) below). After extensive algebraic manipulation of
the relevant integrals, the conditional predictive distribu-
tion is

L) = Pxx)
p(x | x) (%)

1 1
- —(v+1)
) rl J(v+1) l(vﬂ)—1/2g-1{1+(x_’_c")2} 2
1
F(2v )

a Student
v=2|:oc+%(n—1):|, X,, and

(2)

t-distribution whose parameters are

http://www.biomedcentral.com/1471-2105/9/262

1 2
. n+l ﬁ+5nsn
G +717.
n
a+—(n-1
S (=D

The t-distribution has mean x, for v> 1 and variance v(v

-2)1o2forv > 2.

The result in Eq (2) ignores the restriction u € [a, b]. If [a,
b] covers most of the range [a', b'] of the locations x (e.g.,
a-30<a' <b' <b+30), then analysis will confirm that under
appropriate mathematical hypotheses, Eq (2) approxi-
mates the desired conditional predictive distribution
accurately.

The prior distribution is fully specified by a list of the
hyperparameters a, b, &, and . As indicated above, any
sufficiently generous interval [a, b] containing the loca-
tions x suffices for present purposes. The input sequence
range (e.g., in the case of TSS Tompa's dataset as well as
TRANSFAC dataset, from -2000 to O bp relative to the cor-
responding TSS) is a practical choice for [a, b]. In contrast,
the selection of « and £ can be delicate. On one hand, a
user can provide subjective preferences for « and g, yield-
ing a precision A with mean ¢f!and variance 2. On the
other hand, & and S can be estimated from the distribu-
tions of experimentally verified TFBSs, as follows.

Suppose we have k data subsets, where the i-th data subset
(i = 1,...,k) yields a known vector x; of locations for a par-
ticular TFBS. Each data subset x; corresponds to a different
common uniform-gamma prior with unknown parame-
ters | = (&, f). The predictive distribution of the data is

Pl | ) ={ [ s 01000, | mido, |

A e 00000, 1m0, |

Maximization of the predictive distribution yields the so-
called type-II maximum likelihood estimate forn = (¢, f)
[32].

In this study, based on our two datasets, the type-II maxi-
mum likelihood estimate of « and S were selected. The
value of @ was 0.8424; of 5, 25790 for TSS Tompa dataset;
a, 0.5825, 3, 12818, for TRANSFAC dataset. Thus, the dis-
tribution of the precision 4 had mean 3.27 x 105 (4.54 x
10-5, for TRANSFAC dataset), giving the scale parameter o
= 412 an approximate mean 175 (148, for TRANSFAC
dataset). (The lengths of typical input sequences are sev-
eral hundreds to a couple of thousand, e.g., in our dataset,
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the lengths are all 2000.) Now, 95% of the realizations
from a Normal (x4, A) distribution fall into the interval (u-
20, u+20) of length 4 0. Because 40 = 4(175) = 700 (592,
for TRANSFAC dataset), the above selection of « and g
makes the prior distribution quite broad, permitting the
data "to speak for themselves".

Some comments on the distributional choices for the prior
and likelihood

The normal distribution might be challenged as an inap-
propriate form for the likelihood. In most of the data sub-
sets in Figure 2 or3, it is completely justifiable, but does
appear untenable for a few. Although mathematical con-
venience facilitates the choice of a normal distribution,
one could propose alternative distributional forms, usu-
ally at the expense of greater complexity. The normal dis-
tribution is quite adequate, however, when modeling any
cluster lacking distant "orphan" locations.

Similarly, a uniform prior for the normal mean x might be
challenged. In fact, we implemented the same model with
a normal-chi-square prior for 6 = ( A). In our hands,
both models produced comparable results on our test
dataset (data not shown).

Gibbs sampling using both sequence and position

As noted above, Gibbs sampling requires only conditional
predictive distributions. Because of the uniform prior for
4, multiplying the conditional predictive distribution in
Eq (2) by (an ultimately irrelevant factor of) (b - a) yields
an approximation for the conditional predictive odds
ratio with respect to the uniform background model. Tak-
ing logarithms and adding subscripts for "location",
yields a log-odds score As ;; (x ;| x|) for location.

Now, consider the sequence information. Let the n loca-
tions x ;) initiate subsequences x ;; of length w (for "win-
dow"). Let the count of nucleotide j in the i-th column of
the window be ¢; ;, so the total count in each position is ¢
= 2.(jCij = n- As in the conditional predictive distribution
above, add another subsequence x | of length w to the
data. Let d]i, j|] equal 1 if the new subsequence contains
nucleotide j in its i-th position, and 0 otherwise. Our pre-
vious work [9] postulated a familiar model [7,8], that the
TFBS sequences follow a multinomial motif model with a
Dirichlet prior. In the prior, the nucleotide pseudo-counts
were {a;} (a = X;a;). The background model was the so-
called "independent letters model" with probabilities
{p;}. Effectively, our previous work gave the conditional
log-odds ratio of the subsequence x |}, given the subse-
quences X [, as

http://www.biomedcentral.com/1471-2105/9/262

Aspg () | %45 = 2 25[1', jllog HCZ::] J/Pj }

i=1 j=1
(3)

If sequence and position are independent in both the
motif and background models, the corresponding condi-
tional predictive log-odds ratio is As(x | x) = As (= (x [ |
X 1)) + As gy (x | X [1))- Conditional predictive log-odds
ratios can be added to generate the log-odds ratios for any
dataset x step by step. Thus, Eqs (2) and (3) completely
specify a predictive log-odds ratios for use as the figure of
merit in Gibbs sampling. The present article actually
replaces the independent letters model for the sequence
background with a Markov model of order 3 [22], but the
principles are the same.

Having established the separate roles of sequence and
location, we drop the subscripts [s] and [!] below, particu-
larly in x;, which now represents the sequence and loca-
tion of the i-th candidate TFBS.

A p-value for each candidate TFBS

For consistency with other computer programs (and
because it makes little practical difference), to calculate a
p-value for the i-th candidate TFBS x;, we consider the self-
predictive score As(x; | x), where x = (x;, ..., x; x,,) includes
x;. Because sequence and location are independent vari-
ates in both the motif and background models, the distri-
bution of As(x; |x) is a convolution, i.e.,

P{As(x; [x) >t} = Z]P{AS[S](xi,[s] | x5) = T}
(r)

P{ Aspy(xigy | ) 2t =7}

Existing methods [33,34] determine the distribution of As
s and the distribution of As ;; is known. Thus, a p-value
can be assigned to each candidate site.

k-fold cross-validation for sensitivity of hyperparameter
selection

The k-fold cross-validation method estimates error rates in
classification problems accurately [35]. The k-fold cross-
validation splits the available data containing known clas-
sification labels into k mutually exclusive "partitions", so
that each partition contains about the same amount of
data. It then sets aside one of k partitions as the test set,
and uses remaining k - 1 partitions as a training set to esti-
mate the statistical parameters underlying the classifica-
tion rule. After repeating the estimation process k times,
leaving out each partition in turn, the average of the
resulting classification errors estimates the error rate of the
rule. The choice of 5 or 10 for k generally overcomes the

Page 9 of 11

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:262

effects of replicated data, which would otherwise render
the test and training data unduly similar [35]. In the
present context, known sites provide estimates of the
hyperparameters 77 = (¢, £). In our study, cross-validation
with k = 5 partitions was most appropriate to address
over-fitting, because we have only 23 different datasets in
TSS Tompa dataset. To illustrate the 5-fold cross-valida-
tion, consider the partition 23 =5 + 5 + 5 + 4 + 4. First, set
aside the first "5" of the 23 data subsets as the test set x;,
and estimate the hyperparameters n by maximizing the
value of p(x,,....Xs|1), where x,,....x;are the 18 =5 + 5 + 4
+ 4 training sets. With the estimated hyperparameters 1,
A-GLAM then makes predictions on the test set x,. The 5-
fold cross-validation then repeats the procedure, taking
each of the partitions x,,..., x5 in turn as the test set.

To eliminate the results' dependence on the partition, the
partition was chosen randomly 100 times, and the results
averaged.

A-GLAM Settings for the Test Predictions

To compare the model with positional information and
the model without positional information (i.e., using
sequence alone), we ran A-GLAM in the ZOOPS (Zero or
One Occurrence Per Sequence) mode, where A-GLAM
reports zero or one instance of the motif element for each
sequence. Somewhat arbitrarily, we restricted the search
space to the strands in the test dataset, without the com-
plementary strands.
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