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Abstract
Background: The variety of DNA microarray formats and datasets presently available offers an
unprecedented opportunity to perform insightful comparisons of heterogeneous data. Cross-species
studies, in particular, have the power of identifying conserved, functionally important molecular processes.
Validation of discoveries can now often be performed in readily available public data which frequently
requires cross-platform studies.

Cross-platform and cross-species analyses require matching probes on different microarray formats. This
can be achieved using the information in microarray annotations and additional molecular biology
databases, such as orthology databases. Although annotations and other biological information are stored
using modern database models (e.g. relational), they are very often distributed and shared as tables in text
files, i.e. flat file databases. This common flat database format thus provides a simple and robust solution
to flexibly integrate various sources of information and a basis for the combined analysis of heterogeneous
gene expression profiles.

Results: We provide annotationTools, a Bioconductor-compliant R package to annotate microarray
experiments and integrate heterogeneous gene expression profiles using annotation and other molecular
biology information available as flat file databases. First, annotationTools contains a specialized set of
functions for mining this widely used database format in a systematic manner. It thus offers a
straightforward solution for annotating microarray experiments. Second, building on these basic functions
and relying on the combination of information from several databases, it provides tools to easily perform
cross-species analyses of gene expression data.

Here, we present two example applications of annotationTools that are of direct relevance for the analysis
of heterogeneous gene expression profiles, namely a cross-platform mapping of probes and a cross-species
mapping of orthologous probes using different orthology databases. We also show how to perform an
explorative comparison of disease-related transcriptional changes in human patients and in a genetic
mouse model.

Conclusion: The R package annotationTools provides a simple solution to handle microarray annotation
and orthology tables, as well as other flat molecular biology databases. Thereby, it allows easy integration
and analysis of heterogeneous microarray experiments across different technological platforms or species.
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Background
DNA microarrays allows reliable measures of the levels of
several tens of thousands of different mRNAs simultane-
ously [1]. The microarray 'annotation' contains informa-
tion specifying the mRNAs and genes assayed by the
probes present on a particular microarray. A good annota-
tion not only lists the probed transcripts but also contains
biological information about the corresponding genes
and information about the reliability of each probe-tran-
script association for instance. The information needed to
define an annotation is extracted from molecular biology
databases, such as Entrez Gene [2].

In the case of commercial microarrays supported by a ded-
icated analysis software (e.g. GCOS for Affymetrix arrays
[3]), an annotation is provided by the manufacturer and
integrated in the analysis environment. On the other
hand, if custom analyses are performed with the help of a
versatile computing environment like R [4], an annota-
tion for the microarray format of interest can be chosen
explicitly. Here, we present an R package to support the
use of annotations and other molecular biology databases
provided as flat file databases (i.e. tables in plain text
files). Flat annotation databases may be provided by
microarray manufacturers or generated anew on the basis
of microarray probe sequences by researchers who aim at
a better definition of targeted transcripts (in particular for
short oligonucleotide arrays, see e.g. [5]).

Some functions in annotationTools are tailored to mine
flat file databases containing gene homology/orthology
information. DNA microarrays are available for numer-
ous different species allowing for the comparison of gene
expression levels across different organisms. This oppor-
tunity is promising [6-8], in particular for the better
understanding of human diseases, where the comparison
of disease-related expression profiles in humans and in
animal models might yield important insights into path-
ological molecular mechanisms (see e.g. [9]). Further-
more, comparing a disease condition in humans and in
animal models, we can assess whether experimental mod-
els recapitulate aspects of the human disease [10], a criti-
cal step in validating disease models with regard to their
use in preclinical therapeutical trials for instance. The
comparison of transcriptional profiles across different
species can make use of orthologous genes (i.e. two genes
that derive from a single gene in the last common ancestor
of the two species), assuming that they have retained the
same function and are thus involved in similar processes
in the two species. Whole-genome sequences have
allowed extensive mapping of orthologs across many spe-
cies, and several databases store clusters of homologous/
orthologous genes (e.g. HomoloGene [11]).

Annotations and orthology information are sufficient to
perform cross-species analyses but combining heteroge-
neous sources of information is often arduous (e.g. [12]).
Based on a set of functions with common input and out-
put formats and mining flat databases, annotationTools
implements a robust solution for integrating heterogene-
ous data. To illustrate the use and functionality of our
software, we will present the following example analyses
that are directly relevant to cross-species mRNA profiling
studies. We mapped probes across two widely used micro-
array platforms (Affymetrix and Illumina) and also
mapped probes on a mouse microarray to their orthologs
on a human microarray using information supplied by
HomoloGene. We further show how the latter mapping
differed from mappings obtained using 3 alternative
sources of orthology information (i.e. Affymetrix,
Ensembl [13] or EGO [14]). Building on this example and
using data from human patients and from a murine dis-
ease model, we then demonstrate how annotationTools
can be used to easily perform cross-species comparisons
of gene expression profiles.

Implementation
Functions in annotationTools are coded in pure R and do
not depend on other R packages. They are therefore easily
usable on any R installation. The annotation functions
accept a vector of identifiers to be annotated (e.g. probe
identifiers) and an annotation table, created by loading a
flat annotation file in a data.frame object (see also
Results). In the annotation table, each column contains a
piece of annotation information (like e.g. probe identi-
fier, gene symbol or chromosomal location) and each row
contains a probe record. The identifiers to be annotated
are looked up in the annotation table. Since a single iden-
tifier can be annotated with multiple items (like a probe
hybridizing to several transcripts and therefore annotated
with several different gene symbols), the annotation
retrieved for the whole vector of identifiers is output as a
list where the i-th element is a vector containing all anno-
tation items found for the i-th input identifier. Options
can be set to output the cause of an annotation failure:
empty or invalid input identifier, input identifier not
found in the annotation table, input identifier with no
annotation information provided in the annotation table.

The annotation functions can be grouped according to
their look-up behavior. First, functions that find a single
match in the annotation table for each input identifier
(i.e. the first occurrence of the identifier in the table):
getANNOTATION, getGENEID, getGENESYMBOL, get-
GENETITLE, getGO. Note that getANNOTATION is a flex-
ible function that can be set to look up any fields
(column) in an arbitrary annotation table. The four other
functions are tailored to accept annotation tables pro-
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vided by Affymetrix but they can be easily customized to
other formats by setting options.

A second group of annotation functions find multiple
matches (i.e. multiple records) for each input identifier:
getMULTIANNOTATION, getPROBESET and getHO-
MOLOG. getMULTIANNOTATION is a flexible annota-
tion function that can work with arbitrary annotation
tables whereas getPROBESET works with Affymetrix
annotation tables by default. getHOMOLOG is designed
to look up homologs or orthologs and accepts an homol-
ogy/orthology table and two inputs: a vector of gene iden-
tifiers and a target species identifier.

Finally, a third group of functions making use of the pre-
vious two groups allows to perform higher-level opera-
tions (like e.g. generating mapping tables of orthologous
probes). In conclusion, our package provides the user
with a set of customizable functions with consistent input
and output formats that can be easily chained to perform
more complex operations.

Results
Examples of basic annotation operations
Let us consider a typical Affymetrix GeneChip experiment
and assume that we chose to use the annotation provided
by Affymetrix. After downloading the annotation from
Affymetrix website (e.g. for array format HG-U133 Plus
2.0, the file 'HG-U133_Plus_2_.naXX.annot.csv', where
'XX' indicates the version number, see [15]), the user loads
it into R as a data.frame with

> annotation <- read.csv("HG-
U133_Plus_2.naXX.annot.csv", colClasses="character")

Genes associated with particular probe sets can then be
retrieved with the function getGENESYMBOL. To retrieve
genes whose transcripts are probed by probe sets '117_at'
and '1007_s_at', type

> getGENESYMBOL(c('117_at','1007_s_at'), annotation)

where the variable 'annotation' is the data.frame contain-
ing Affymetrix annotation. Being interested in human
gene RFC2 (Entrez geneID 5982), we can find its mouse
ortholog using the information in HomoloGene. Having
downloaded the flat database [11] to a file called 'homol-
ogene.data' for instance, we first load it into R and then
mine it using the function getHOMOLOG

> homologene <- read.delim('homologene.data', header =
FALSE)

> getHOMOLOG(5982, 10090, homologene)

where the variable 'homologene' is the data.frame con-
taining the HomoloGene database and 10090 is the tax-
onomy ID of Mus musculus [16]. Detailed function
descriptions and further examples are given in help files
and in the package's vignette.

Cross-platform probe mapping
As an illustration of the use and application of functions
in annotationTools, we next outline how to perform a
cross-platform mapping of probes. Suppose that we
would like to compare the outcome of two gene expres-
sion profiling experiments, one performed with the
Affymetrix Mouse 430 2.0 array and the other with the
Illumina Mouse-6 array. We thus need to find pairs of
probes measuring the same transcript on both platforms.
Affymetrix and Illumina provide annotation information
including the transcript measured by each probe, desig-
nated by its RefSeq accession number [17]. This identifier
can thus be used to find matching probes across plat-
forms, as illustrated in Figure 1A: we first use the multi-
purpose function getANNOTATION on Affymetrix anno-
tation to retrieve RefSeq accession numbers correspond-
ing to Affymetrix probe sets and second, use those to
retrieve Illumina probes (also called targets) annotated
with the same corresponding RefSeq accession numbers,
mining Illumina annotation with the help of getMULTI-
ANNOTATION. Since several probes can measure the
same transcript and are thus annotated with the same Ref-
Seq accession number, in this case this function is to be
preferred over getANNOTATION that will return the first
match only (see Implementation).

Using this strategy to map all 45'101 probe sets present on
Affymetrix Mouse 430 2.0 to Illumina Mouse-6v10, we
found 31'830 (71%) probe sets with at least one matching
probe on Illumina array (corresponding annotation file
was obtained from Illumina, see [18]). The first 10 probe
sets in Affymetrix annotation and their matching Illumina
probes are shown in Table 1. Gene symbols (derived from
Affymetrix and Illumina annotations, column 3 and 6
respectively) are for illustration purpose and were not
used for finding probe pairs. The first Affymetrix probe set
(1415670_at) was annotated with two RefSeq identifiers
but only one of those (NM_017477) was found to match
an Illumina probe. Conversely, the second and ninth
Affymetrix probe sets, each annotated to a single RefSeq
identifier, matched to three, respectively two different
Illumina probes annotated with the same RefSeq identi-
fier.

The use of gene symbols was not always consistent across
both annotations, as illustrated by the last probe set pair
annotated to Psenen (official symbol) by Affymetrix and
to 1700023M09Rik (synonym) by Illumina. This suggests
that, in this example, matching probes via gene symbols
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instead of RefSeq identifiers would have yielded an
incomplete mapping, which highlights the importance of
the matching identifier when setting up a mapping strat-
egy. Note that if annotations do not contain any suitable
identifier to be used as matcher, an intermediate mapping
step can be introduced that makes use of a molecular biol-
ogy database providing a link between several identifiers
(e.g. Entrez Gene, Unigene). In the mapping presented
above, imagine for instance that one of two microarray
annotations would have listed gene IDs and not RefSeq
IDs, we could have used the database gene2accession
(provided by Entrez Gene via FTP [19]) to link these two
identifier types through an additional, intermediate
matching step.

Mapping of orthologous Affymetrix probe sets
To illustrate how annotationTools allows to combine var-
ious sources of information, we now consider the map-
ping of orthologous probe sets (i.e. probe sets probing
transcripts from orthologous genes) across two Affymetrix
GeneChip formats, namely from Mouse 430 2.0 to HG-
U133 Plus 2.0. We used the following procedure, illus-
trated in Figure 1B: annotate probe sets on Mouse 430 2.0
with their gene IDs using the corresponding Affymetrix
annotation and use the gene IDs to mine HomoloGene
and find orthologous gene IDs in the target species
(Homo sapiens). Finally, use the Affymetrix annotation
for HG-U133 Plus 2.0 to retrieve the corresponding
(orthologous) probe sets. This method is easily imple-

Strategies to perform an Affymetrix to Illumina cross-platform mapping and an Affymetrix to Affymetrix cross-species mapping (A and B respectively, see text for details)Figure 1
Strategies to perform an Affymetrix to Illumina cross-platform mapping and an Affymetrix to Affymetrix cross-species mapping 
(A and B respectively, see text for details). Probe, RefSeq and gene identifiers (upright characters) are mapped using various 
functions in annotationTools (italic characters) that mine different databases (boxed text).

Table 1: Mapping of the first 10 probe sets on Affymetrix Mouse 430 2.0 to probes (also called targets) annotated with the same 
RefSeq IDs on Illumina Mouse-6v10. Gene symbols (GS) for Affymetrix and Illumina (column 3 and 6 respectively) are indicative and 
were not used to perform the mapping. In this example, we disregarded the version number of RefSeq identifiers (i.e. the suffix of 
RefSeq accession number) and considered accession number with the same prefix (i.e. NM_123456.1 and NM_123456.2 for instance) 
to be equivalent.

Affy probe set RefSeq (Affy) GS (Afffy) Illumina target RefSeq (Illumina) GS (Illumina)

1415670_at NM_017477, NM_201244 Copg scl29780.26_164-S NM_017477 Copg
1415671_at NM_013477 Atp6v0d1 scl011972.1_247-S, scl000737.1_18-S, 

scl000708.1_100-S
NM_013477 Atp6v0d1

1415672_at NM_020585 Golga7 scl057437.1_41-S NM_020585 Golga7
1415673_at NM_133900 Psph scl25996.9.1_198-S NM_133900 Psph
1415674_a_at NM_021789 Trappc4 scl35956.2.1_28-S NM_021789 Trappc4
1415675_at NM_010073 Dpm2 scl013481.4_295-S NM_010073 Dpm2
1415676_a_at NM_011186 Psmb5 scl019173.2_9-S NM_011186 Psmb5
1415677_at NM_026819 Dhrs1 scl45528.8.1_39-S NM_026819 Dhrs1
1415678_at NM_008910 Ppm1a scl0019042.1_40-S, scl019042.1_95-S NM_008910 Ppm1a
1415679_at NM_025498 Psenen scl066340.3_30-S NM_025498 1700023M09Rik
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mented using getGENEID, getHOMOLOG and get-
PROBESET sequentially (see Figure 1B and the example
code in the package's vignette) or, alternatively through a
single call to the wrapper function ps2ps

> ps2ps(annotation_HGU133Plus2,
annotation_Mouse4302, homologene, 10090)

assuming that 'annotation_HGU133Plus2',
'annotation_Mouse4302' and 'homologene' are
data.frame objects containing the corresponding annota-
tions and the HomoloGene database. 10090 is the taxon-
omy ID of Mus musculus. The function ps2ps returns a
complete mapping table as a data.frame. This operation
lasts on the order of ten minutes on a desktop computer.
We compared the result of this procedure to 3 alternative
sources of orthologous Affymetrix probe sets: Resourcerer
(an interface to the Eukaryotic Gene Ortholog database),
Ensembl, and Affymetrix orthology file
('Mouse430_2_ortholog.csv'). The 3 corresponding map-
ping tables (obtained as text files) can be easily mined for
orthologous probe sets with getHOMOLOG.

31'879 mouse probe sets (from a total of 45'101 on
Mouse 430 2.0 array) were mapped to 1 or more ortholo-
gous human probe sets on HG-U133 Plus 2.0 array using
our HomoloGene-based procedure, 31'589 were mapped
using Affymetrix ortholog file, 23'257 using Ensembl and
8'433 using EGO. Figure 2 shows the number of mouse
probe sets mapped to at least one human probe set by the
different methods (excluding Affymetrix for its similarity
to the HomoloGene-based method, see below). 9406
mouse probe sets could be mapped to at least 1 ortholog
using HomoloGene only (i.e. neither Ensembl nor EGO
provided any ortholog probe sets for these). The opposite
was true for 1875 and 583 mouse probe sets, for which
Ensembl and EGO respectively, but no other methods,
found at least one orthologous probe set. Overall, 10'333
mouse probe sets could not be mapped using any of the
three methods. Figure 3A displays the distribution of the
number of orthologous human probe sets found
(between 1 and 10) for each mouse probe set using our
HomologGene-based procedure. For comparison, Figure
3B–D represent the same distribution but using Affyme-
trix ortholog file, EGO and Ensembl, respectively. Affyme-
trix ortholog file returned the exact same set of human
orthologous probe sets as the HomoloGene-based
method for most of the mouse probe sets (97%, colored
black on Figure 3B). Affymetrix actually uses the informa-
tion in HomoloGene to build its orthology files (Salo-
mone J-Y, Affymetrix, personal communication), such
that the small differences between both methods can be
assumed to be due to the use of different HomoloGene
versions. Furthermore, using Ensembl and EGO, and for
mouse probe sets with at least one ortholog in human, on

average less orthologs were found than with the Homolo-
Gene-based method (as shown by the longer green and
shorter red bars in every stacks in Figure 3C–D).

Cross-species analysis of gene expression changes
We now present a practical example of cross-species anal-
ysis using gene expression data from Huntington's disease
patients and from a genetic mouse model of the disease.
Huntington's disease (HD) is a neurological disorder
caused by a trinucleotide (CAG) expansion in the HD
gene. Animal models of HD have allowed the demonstra-
tion that mutant protein expression results in transcrip-
tional dysregulation of many genes [20]. More recently,
many mRNA changes have also been detected in the
brains of HD patients [21]. How do these changes com-
pare with those identified in mouse models?

Here we will consider the CHL2 mouse model of HD [22]
and investigate whether the most robust mRNA changes
detected in striatal samples of these mutant mice parallel
those measured in the corresponding brain region of HD
patients. Thereby, we aim at assessing the faithfulness of
the animal model with regard to transcriptional dysregu-
lations in human. We used public data from a study that
profiled striata of CHL2 and control mice and assessed

Venn diagram showing the number of Affymetrix Mouse 430 2.0 probe sets mapped to at least one probe set on Affyme-trix HG-U133 Plus 2.0 using the HomoloGene-based method, EGO or EnsemblFigure 2
Venn diagram showing the number of Affymetrix Mouse 430 
2.0 probe sets mapped to at least one probe set on Affyme-
trix HG-U133 Plus 2.0 using the HomoloGene-based 
method, EGO or Ensembl.
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differential expression between both genotypes [23]. In
short, Strand et al. extracted RNA from 3 transgenic and 3
control animals and hybridized it to Affymetrix MG-
U74Av2 arrays. These were normalized using RMA [24]
and differential expression analysis was performed with
the R package limma [25]. The list of Affymetrix probe sets
along with measures of expression change and associated
statistics for differential expression is publicly available
[26]. In addition, we used data from a large transcriptomic
study of human HD using Affymetrix HG-U133A arrays
[21]. Human striatal gene expression profiles from 44 HD
patients and 36 controls were analyzed similarly as
described for the mice and the list of probe sets with asso-
ciated measures of expression change and differential

expression statistics is available from the same source
[26].

To perform this mouse-human comparison, we first
needed to find orthologous probe sets on the two micro-
arrays used in the aforementioned studies (namely MG-
U74Av2 for the mouse and HG-U133A for humans). As
presented above, a table of orthologous probe sets can
easily be generated with the function ps2ps in annotation-
Tools. This mapping table and results from differential
gene expression analyses of the mouse and human data
could then be used to look up the probe sets present in the
human data that are orthologous to the selected top
mouse probe sets (i.e. those detecting differential gene

Number of orthologous probe sets found on Affymetrix array HG-U133 Plus 2.0 for each probe set on Affymetrix array Mouse 430 2.0, using various orthology databasesFigure 3
Number of orthologous probe sets found on Affymetrix array HG-U133 Plus 2.0 for each probe set on Affymetrix array 
Mouse 430 2.0, using various orthology databases. (A) We mapped all probe sets on array Mouse 430 2.0 (annotation file ver-
sion 12/19/2005) to their orthologs on HG-U133 Plus 2.0 (annotation file version 11/10/2004), using HomoloGene (version 08/
11/2006) and compared with the corresponding orthologous probe sets given by (B) Affymetrix ortholog file 
'Mouse430_2_ortholog.csv' (version 07/12/2006) (C) EGO (release 9.0) and (D) Ensembl (as of 08/15/2006). In panels B-D, 
stacked color bars in each class indicate, for each mouse probe set, if more (red), less (green), the same number (white), or the 
exact same orthologous probe sets (black) were found as with HomoloGene. The distributions in panels A-D are displayed 
between 1 and 10. Note that all database versions used in this example are not current versions anymore, EGO in particular 
having undergone a major rebuild.
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expression in the CHL2 model). This is implemented by
the function getOrthologousProbesets

> getOrthologousProbesets(mouse_ps, human_diffExpr,
mapping)

that takes a vector of probes to be matched ('mouse_ps'),
a data.frame object containing the target probe sets and
associated log2 fold changes or statistics of interest
('human_diffExpr'), and the mapping table ('mapping').
This returns a list of target probe sets and associated values
(log2 fold changes, respectively statistics). In case of mul-
tiple human orthologous probe sets found to match a
given mouse probe set, the function can be configured to
either output a summary value (e.g. median log2 fold
change) or a single value corresponding to a selected
probe set (e.g. the value associated with the most signifi-
cant probe set, see the corresponding help file for a com-
plete description of the function and its options). This
information allowed us to readily compare gene expres-
sion changes in the CHL2 mouse model with those meas-
ured in HD patients.

Figure 4A presents the result of this analysis and shows the
log2 fold change in expression for the top 100 gene expres-

sion changes in CHL2 mice against orthologous regula-
tions measured in HD patients. In case of multiple
orthologous human probe sets, we selected the probe set
measuring the most significant expression change. 88
human orthologous probe sets were found in the human
data (out of 100 mouse probe sets) and the overall corre-
lation measured by Kendall's tau was 0.2. To summarize
this comparison, we considered the direction of regula-
tion detected in patients and disregarded its magnitude.
Thereby we could sort each of the 88 mouse-human probe
set pairs to one of three categories: first, 'concordant' pairs
were defined as showing a significant expression change
in human (i.e. Bonferroni corrected p-value < 0.05) and in
the same direction as for the mouse model. Second, 'dis-
cordant' pairs described those with a significant expres-
sion change in human (i.e. Bonferroni corrected p-value <
0.05) but in the opposite direction compared to mice.
Third, 'no change' pairs in which the human orthologous
gene did not show a significant expression change (i.e.
Bonferroni corrected p-value >= 0.05). A large fraction of
'concordant' pairs thus indicates recapitulation of the
human HD signature by the murine model. We observed
about five times more 'concordant' than 'discordant' pairs
among the 88 mouse-human orthologs (Figure 4B). The
majority (56) of ortholog pairs, however, did not detect a

A. Gene expression regulations (log2 fold changes) measured by the top 100 mouse probe sets in the CHL2 mouse model of Huntington's disease and their orthologous regulations measured in the brain of human HD patientsFigure 4
A. Gene expression regulations (log2 fold changes) measured by the top 100 mouse probe sets in the CHL2 mouse model of 
Huntington's disease and their orthologous regulations measured in the brain of human HD patients. The red line is the plot 
diagonal. In case multiple human probe sets were found for a given mouse probe set, we selected the probe set with the small-
est p-value (i.e. detecting the most robust change in HD patients versus controls). Note that the probe set selection method 
can be specified by the user (see package's vignette). Green and red dots indicate the 5 most significant changes in CHL2 mice 
showing concordant, respectively discordant regulations in HD patients. B. 88 ortholog pairs (out of the 100 mouse probe sets 
showing the most significant changes) were classified according to the concordance of HD-related differential expression 
measures in mice and humans. 'No change' indicate ortholog pairs for which the human gene did not show significant differen-
tial expression between HD patients and controls.
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significant expression change in humans, although they
were ranked among the 100 most significant expression
changes in mouse. The five most significant changes in
mouse showing 'concordant' or 'discordant' regulations in
humans are listed in Table 2 and displayed as green,
respectively red dots in Figure 4A. Note that these genes
did not consistently display the largest (absolute) change
in expression, reflecting variable expression within exper-
imental groups in the mouse data.

Discussion
As shown in a recent study, different microarray technol-
ogies can reliably and concordantly measure gene expres-
sion profiles [1]. The combination of heterogeneous
microarray datasets can subserve different purposes. On
the one hand, one might want to combine several inde-
pendent profiling experiments aimed at answering the
same question but performed with different technologies.
We have shown here how to use annotationTools to
quickly map probes across different microarray platforms
and thus 'align' datasets. Such parallel experiments can
then be considered in the framework of meta-analysis and
analyzed so as to reach robust conclusions that would
have been difficult to obtain based on any single study
(see e.g. [27,28]). Note that different statistical methods
have been proposed for combining multiple independent
studies, based on the use of parameter estimates (e.g. dif-
ferential expression), effect sizes (e.g. standardized differ-
ential expression), p-values, statistic ranks or test
decisions (e.g. via Venn diagrams). Their extension and
application in the field of microarray studies is an area of
current active research.

Alternatively, heterogeneous datasets can be considered
sequentially: a first study is considered as a reference and
is used to derive a particular transcriptional signature (e.g.
for a given cellular pathway, cell population or disease)
whose presence is then tested for in a second dataset. In
this context, we showed how to use annotationTools to
map orthologous probes across species and explore the
recapitulation of a human disease signature in a particular
mouse model. Our example suggested that such compari-
sons can be made at various resolution levels (e.g. correla-
tion of differential expression measures, concordance of
regulation direction, see Figure 4). Our package does not
address the issue of significance testing in such compari-
sons. Over the last years, several groups have proposed
solutions to this issue (e.g [29,30]) and a general frame-
work for statistical testing of global similarity is now
emerging [31,32]. We have recently proposed the con-
cordance coefficient as a new measure of similarity
between datasets (based on the concordance of gene
expression, see Results and Figure 4B), that is amenable to
formal statistical testing and that we used to assess the
extent to which transcriptomic changes in Huntington's
disease were recapitulated by different genetic mouse
models [10]. In particular, we could show that the CHL2
model significantly recapitulated aspects of gene expres-
sion changes detected in HD patients.

An alternative Bioconductor [33] solution for annotation
and ortholog finding makes use of specialized data pack-
ages, which are compilations of biological information
obtained from various databases for probe sets of particu-
lar microarray formats. These meta-data packages are pre-

Table 2: Probe sets associated with the 5 most significant mRNA changes in mice and whose human ortholog showed significant same-
sign regulation (i.e. concordant, A) or significant different-sign regulation (i.e. discordant, B). PS, GS, logFC and P stand for probe set, 
gene symbol, log2 fold change and p-value respectively. P-values in the human dataset (last column) are Bonferroni-corrected to adjust 
for multiple testing (44'928 human probe sets in total).

A: concordant

mouse PS mouse GS mouse logFC mouse P human PS human GS human logFC human corrected P

93273_at Snca -0.53 6.8E-04 204467_s_at SNCA -0.42 6.8E-05
96497_s_at Myt1l -1.03 8.0E-04 210016_at MYT1L -1.53 1.8E-04
99511_at Prkcb -1.02 8.6E-04 209685_s_at PRKCB1 -1.27 2.7E-05
102711_at Rgs14 -0.76 1.0E-03 211021_s_at RGS14 -1.07 1.7E-08
104678_at Gas7 -0.35 1.9E-03 202192_s_at GAS7 -0.58 8.1E-05

B: discordant

mouse PS mouse GS mouse logFC mouse P human PS human GS human logFC human corrected P

102704_at Aqp4 -0.99 3.3E-03 210068_s_at AQP4 0.84 4.9E-02
102299_at Prkca -0.38 6.8E-03 213093_at PRKCA 0.34 3.2E-02
100003_at Ryr1 -0.63 6.8E-03 205485_at RYR1 0.59 9.6E-04
100888_at Sorl1 -0.37 9.5E-03 203509_at SORL1 0.50 3.0E-04
99367_at 5530600P05Rik -0.29 1.2E-02 200713_s_at MAPRE1 0.43 1.6E-03
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pared with the package annBuilder and can be obtained
from the Bioconductor website [34]. They can be subse-
quently queried with special functions available through
the package annotate. Another Bioconductor solution is
provided by the package biomaRt which allows the
(online) query of biomart databases (like e.g. Ensembl).
Annotation and homology/orthology information can
thus be retrieved from the newest built of available data-
bases without downloading the database. Many annota-
tions and molecular biology databases, however, are
readily (and sometimes exclusively) available as flat file
databases. These include annotations provided by com-
mercial microarray manufacturers, by academic facilities
producing and annotating their own spotted arrays, as
well as re-annotation efforts aimed at providing more
faithful representation of the transcript species measured
by a given microarray platform (e.g. [5]). Moreover, most
information present in very large databases such as Entrez
Gene for instance is distributed as various flat file data-
bases. The package annotationTools provides the R user
with a simple solution to mine and combine data from
flat file databases in a systematic way. In particular, the
functions handling orthology databases allow for a
straightforward use of publicly available orthology infor-
mation (e.g. HomoloGene). As cross-species studies will
become more frequent in the near future, it is of particular
importance to develop user-friendly, flexible analysis
tools that ease the comparison of gene expression profiles
across microarray platforms.

Conclusion
The Bioconductor-compliant package annotationTools
allows analysts to perform microarray annotation tasks,
match orthologous probes across microarrays and, more
generally, use and combine information from flat data-
bases within R. In particular, it offers an easy solution for
implementing cross-species analysis of gene expression,
which is of timely relevance.

Availability & requirements
The R package annotationTools is freely available under
the GPL license and can be downloaded from Bioconduc-
tor. The details for this package are provided below.

Project name: annotationTools

Project home page: http://www.bioconductor.org/pack
ages/2.1/bioc/html/annotationTools.html

Operating systems: Linux, Windows

Programming language: R

Other requirements: none

License: GNU GPL

Restriction to use by non-academics: none
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