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Abstract
Background: Analysis of complex samples with tandem mass spectrometry (MS/MS) has become
routine in proteomic research. However, validation of database search results creates a bottleneck
in MS/MS data processing. Recently, methods based on a randomized database have become
popular for quality control of database search results. However, a consequent problem is the
ignorance of how to combine different database search scores to improve the sensitivity of
randomized database methods.

Results: In this paper, a multivariate nonlinear discriminate function (DF) based on the multivariate
nonparametric density estimation technique was used to filter out false-positive database search
results with a predictable false positive rate (FPR). Application of this method to control datasets
of different instruments (LCQ, LTQ, and LTQ/FT) yielded an estimated FPR close to the actual FPR.
As expected, the method was more sensitive when more features were used. Furthermore, the
new method was shown to be more sensitive than two commonly used methods on 3 complex
sample datasets and 3 control datasets.

Conclusion: Using the nonparametric model, a more flexible DF can be obtained, resulting in
improved sensitivity and good FPR estimation. This nonparametric statistical technique is a
powerful tool for tackling the complexity and diversity of datasets in shotgun proteomics.

Background
The objective of proteomics is to investigate proteins on a
global scale [1,2]. The high-throughput and sensitive tan-
dem mass spectrometry (MS/MS) platform is now a sup-
porting technology for protein identification in proteomic
research [3,4]. Using the shotgun strategy, a large number
of MS/MS spectra can be gathered in a few hours [5]. The
MS/MS data is generally processed by the so-called data-

base searching method [5]. Automated software such as
SEQUEST [6] and MASCOT [7] can rapidly assign tryptic
peptides to MS/MS spectra by searching a protein
sequence database and then identify proteins by utilizing
the identified peptides. A notable problem in the MS/MS
data processing is the high false positive rate (FPR) of the
database search results [8]. Thus, validation of database
search results is unavoidable and necessary work, particu-

Published: 21 January 2008

BMC Bioinformatics 2008, 9:29 doi:10.1186/1471-2105-9-29

Received: 5 June 2007
Accepted: 21 January 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/29

© 2008 Zhang et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 18
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/29
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18205957
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:29 http://www.biomedcentral.com/1471-2105/9/29
larly when processing the large amount low accuracy MS/
MS spectra with SEQUEST [10].

There are many proposed parameters and algorithms for
evaluating SEQUEST database search results [11-32]. Such
approaches must confront two main problems: First, the
complex physical and chemical mechanisms of the shot-
gun experiment make it difficult to model the matches
between MS/MS spectra and peptides with a one-size-fits-
all algorithm [9]. Thus, database search software provides
multiple scores, and many empirical and intuitive param-
eters are used in the validation of database search results.
These parameters describe different aspects of the quality
of the match and provide complementary information to
the validation of the database search results. Combining
these parameters while considering their relationships is
difficult. Second, many factors can affect the distributions
of quality control parameters, including the sample, the
database, the experimental conditions, and other random
factors [24,27]. Avoiding the effects of such factors during
the validation of database search results is difficult. In
addition, large-scale proteomics always uses multiple,
complementary MS/MS platforms and multiple database
search software tools to acquire more results with a high
confidence level. Thus, a universal framework for quality
control of results is needed [8].

Recently, the randomized database method has become
an attractive framework for quality control of MS/MS
database search results. By constructing a negative control
dataset for each experiment MS/MS dataset and the given
database, the randomized database method can provide a
universal foundation for the result quality control for dif-
ferent types of database search software and minimize the
effects of differences in samples, experiment conditions,
and databases [27]. In the randomized database method,
the negative control dataset is generated by searching the
constructed randomized database and used to simulate
random matches from the normal database. The false pos-
itive rate can be estimated using the numbers of matches
from the normal and randomized database given a set of
filter criteria.

Moore et al. used the reverse database (a special kind of
randomized database) for their Qscore model in 2002
[20]. Subsequently, Qian et al. [25] and Peng et al. [26]
used the reverse database method to investigate the prob-
lem of optimizing the cutoff value of Xcorr and ΔCn in
yeast and human proteome research, respectively.
Recently, Higdon et al. [28] investigated some problems
encountered in the application of the reshuffled database.
As they noted, searching a combined database can yield
more accurate FPR estimation than individually searching
normal and reshuffled databases. Based on the binomial
distribution, Huttlin et al. investigated the minimum

error associated with the estimated FPR [33]. They
pointed out that the estimated FPR for a large dataset
could be quite accurate. Randomized database methods
have been widely used in many research projects [34-40].
However, different groups use different criteria; there is no
standard statistical framework that can easily integrate
commonly used parameters for the quality control of
database search results.

There are two primary problems with the randomized
database method: how to determine the filter criteria and
how to estimate the FPR in succession. Based on the
hypothesis that random matches are randomly drawn
from normal and randomized databases, formula 1 can
be used to estimate the actual FPR [25,26]; Elias et al [27]
recommended formula 2 for reliable data quality control:

where NR and NN are the preserved number of peptide

matches that pass certain filter criteria and derive from the
randomized and normal databases, respectively. Huttlin
et al [33] have given a statistical interpretation of formula
2 by using the binomial distribution. So, in this paper, we
used formula 2 to estimate FPR. Generally, the filter crite-
ria are discriminant functions (DFs) of database search
scores. Determining the acceptance boundaries for data-

base search scores (such as Xcorr and ΔCn) is a simple and
commonly used method [25,26]. Lopez-Ferrer et al
sought to introduce a statistical model that would provide
a more complex DF and thus improve the sensitivity of fil-
ter criteria [16]. In their model, XCc(=ln(Xcorr)) and

 of random matches were considered to

follow normal distributions, and the distributions of XCc
and DCc were assumed to be independent. The contour
line of the estimated joint distribution of XCc and DCc
was used as the filter boundary. However, we found that
normal distributions do not fit well the distributions of
XCc and DCc of the random matches in the LCQ control
dataset used in this paper(see "Datasets and database

search" section); the χ2 goodness of fit test shows that we
can reject the null hypothesis H0 (the distribution is nor-

mal) at a significance level of 0.05. Furthermore, the cor-
relation between XCc and DCc is significant (correlation
coefficient = 0.1, p-value = 1.8 × 10-24; random matches in
the LCQ control dataset, see section "Datasets and data-

FPR
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base search") which is inconsistent with the independ-
ence assumption made by Lopez-Ferrer et al. Another
problem with their model is that it cannot be generalized
to the situations involving more parameters.

Multivariate nonparametric models can describe data
with complex and variable statistical structures. The term
nonparametric is not meant to imply that such models do
not use any parameters but rather denotes that the
number and nature of the parameters are not fixed in
advance but flexible. This advantage makes nonparamet-
ric models a powerful tool for addressing the problem of
multiple parameters with variable distributions in the val-
idation of database search results. Using a set of kernel
functions (such as a Gaussian kernel function); the non-
parametric model can fit the distribution of multiple
parameters directly with considerable accuracy [41,42].
Generally, parameter estimation for a nonparametric
model is an iterative optimization procedure. The fully
nonparametric probability density function estimate
(FnPDFe) procedure proposed by Archambeau et al. [42]
and David et al. [43], which is based on a maximum like-
lihood estimate (MLE) and expectation-maximization
(EM) algorithm, is easily implemented with computer
programs. In this paper, based on the randomized data-
base searching, FnPDFe was used to estimate the multivar-
iate PDF of the commonly used database scores, the
contour lines of the estimated PDF were taken as the can-
didate DFs. We demonstrated that the FPR estimation
errors of the newly introduced method were acceptable on
the control datasets from different instruments (LCQ,
LTQ and LTQ/FT), its sensitivity was also proved to be
improved on the control datasets and the real sample
datasets.

Results
In this section, the DFs of the nonparametric model were
discussed at first, and then we show that the sensitivity of
the model could be improved by incorporating more fea-
tures. The accuracy of the FPR estimation of the nonpara-
metric model was investigated and the performance of the
nonparametric model was proved superior by comparing
with other commonly used methods in proteomics.

Nonparametric model and the DF
In order to illustrate the shape of the DFs derived from the
nonparametric model, a two dimension model which
used Xcorr and ΔCn was investigated at first. Because Xcorr
significantly correlate with the charge state (+1, +2, and
+3) [15], the matches with different charge states were
processed individually. Since a large percentage of correct
matches have a double charge, the matches in the control
dataset with a double charge are discussed here. Using a
trial and error approach, a model with 3 Gaussian func-
tions (18 variables, Table 1) fit the distribution well (χ2

goodness of fit test; significance level = 0.05). Figure 1A
and Figure 1B show the histogram and density function,
respectively. The estimated error for each bin is shown in
Figure 1C. The small error (≤ 3.6 × 10-3) also demonstrates
that the fit is accurate.

DFs that can simultaneously reject as many false positives
as possible and accept as many true positives as possible
are preferred. Thus, the region in the feature space with
fewer random matches is more preferred, and the contour
lines of the PDF of the random matches are good candi-
date DFs (Figure 1D). Generally, random matches have a
small ΔCn and Xcorr, while correct matches have a large
ΔCn and Xcorr. Correct matches with the peptide isoform
[44] have a small ΔCn and a large Xcorr. Matches with a
small Xcorr and a large ΔCn may be due to the limited
search space of the database searching. These matches are
rare and more likely to be random matches; they may be

Table 1: The model with 3 Gaussian functions for +2 charge observations in the LCQ control dataset

μi Σi Pi

(1.528008,0.156465) 0.138577

(1.615925,0.079976) 0.476640

(1.369449,0.023879) 0.384784

0.147405 0.007248

0.007248 0.004207

⎡

⎣
⎢

⎤

⎦
⎥

0.236614 -0.001756

-0.001756 0.001686

⎡

⎣
⎢

⎤

⎦
⎥

0.078369 -0.000077

-0.000077 0.000250

⎡

⎣
⎢

⎤

⎦
⎥
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localized to the accepted region of the contour line DFs
because these results are also rare random events. A new
DF of Xcorr was added to exclude such matches: Xcorr >
mXcorr, where mXcorr is the mean of Xcorr of randomized
database matches (bold red vertical line in Figure 1D).
Given an expected FPRα, a target value fα can be searched
to ensure the calculated FPR (FPRcal) is less than or equal

to α. When searching for fα, NN and NR were counted
according to the rules:

P i f X i fG

i

N

( ) ( | )
=
∑ ≤

1

α (3)

Identified nonparametric model for observations in the control dataset with a +2 charge stateFigure 1
Identified nonparametric model for observations in the control dataset with a +2 charge state. (A) The 2-dimensional histo-
gram. (B) The density function curve of the mixed model with 3 Gaussian functions. (C) The error of the density function in 
each bin. (D) Contour lines of the density function serve as the filter boundaries.
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and

Xcorr > mXcorr (4)

where X = (Xcorr, ΔCn) is the observation, and N = 3 is the
number of Gaussian functions. Many fα satisfied formula
3 and formula 4. The one with the largest NN was used in
the final DF. Figure 2 shows the DFs for different expected
FPRs and different charge states. The shapes of the bound-
aries were significantly different, which indicates that it is
difficult to fit all the distributions of different charge states
with a simple distribution. The nonparametric model can
provide feasible solutions to this complex problem. Since
the resulting DFs are smooth, this method is more robust
than the K nearest neighbor method [41].

Incorporating more features
One obvious advantage of the nonparametric model is
that it can easily integrate more scores for validating pep-
tide identifications. By taking into account more features
and performing the classification in a high-dimension fea-
ture space, a more reasonable DF can be found, and thus,
higher sensitivity can be achieved. Here, another powerful
parameter called Sim introduced by Zhang [45] in 2004
and discussed by Sun et al. [31] recently was added to the
nonparametric model. Sim measures the similarity
between the experiment and the predicted MS/MS spec-
trum which was generated by the kinetic model intro-
duced by Zhang [45] and the mass error tolerance for
aligning the ions was specified as 0.5.

Inferred filter boundaries for different charge state observations in the control datasetFigure 2
Inferred filter boundaries for different charge state observations in the control dataset. The pink vertical lines in the +1, +2, 
and +3 panels are the smallest accepted Xcorr. The red curves are the filter boundaries for FPR = 0.01, and the green curves 
are the filter boundaries for FPR = 0.05. The blue points on the Xcorr-ΔCn plane represent the randomized database matches, 
and the red points represent the normal database matches. The shape of the boundaries is greatly different for different charge 
states.
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For the LCQ control dataset, by trial and error, we found
a nonparametric model with 5 component GDFs can
work well (65 parameters). We also tried a model with 7
component GDFs, but its performance was not improved
and two of the component GDFs had a coefficient Pi near
0 [see Additional file 1]. Thus, we selected 5 component
GDFs to build the model. When the expected FPR was
0.05 and 0.01, the actual FPR was 0.044 and 0.012,
respectively. The number of peptide matches after filtering
was 765 and 699, which were 104 (approximately 15.6%)
and 121 (approximately 20.9%) respectively higher than
the results of the nonparametric model using Xcorr and
ΔCn, respectively. The sensitivity increased to 0.879 and
0.822 respectively, and the specificity did not change.
Thus, by incorporating more features, the nonparametric
model can provide greater discriminating power. In the
following part of this paper, we discussed the nonpara-
metric model with three features: Xcorr, ΔCn and Sim only.
All the model parameters used in this paper were provided
in Additional file 1.

The accuracy of the FPR estimation
The control datasets were generated by analyzing a set of
known proteins and peptides with MS/MS platforms,
which were commonly used to validate the performance
of mathematical models for peptide identification [46].
Table 2 reports the actual FPR and the number of vali-
dated matches at two commonly expected FPRs of 0.05
and 0.01. From Table 2, the following propositions can be
made:

(1) In most cases, the FPRs estimated by formula 2 were
close to but larger than the actual FPRs. Thus, the quality
of the resulting datasets was better than claimed. It facili-
tates the strict result quality control but some sensitivity is
lost.

(2) For little datasets, such as +1 charge state matches of
different instruments, the actual FPR was larger than the
corresponding estimated FPR. The error of the FPR estima-
tion was also a bit larger. This result agrees with the con-
clusions of Huttlin et al [33].

(3) The estimated FPRs were not equal but close to the
expected FPR. The smaller the resulting datasets, the larger
the difference between estimated FPR and expected FPR.
This arises from the rounding error in formula 2. For
example, with an expected FPR of 0.01, the allowable
number of random matches was less than 1 for the +1
charge dataset of LCQ, because only 62 matches were left
after filtering. Thus, it is impossible to have an estimated
FPR exactly equal to 0.01. A preferred alternative is round-
ing the estimated FPR to 0 (Table 2).

(4) The error of the FPR estimation at the expected FPR of
0.01 is larger that of 0.05. This result means that some
unexpected contaminants exist. For example, in the LCQ
control dataset, peptide "HVGDLGNVTADK" was identi-
fied with high database scores Xcorr = 4.5837, ΔCn =
0.542204) and the matched percentage of predicted ions
reached 91% (Figure 3). This peptide comes from protein
sp|P00441| SODC_HUMAN, which is not a protein in the
control sample. But this peptide also belongs to protein
sp|P00442|SODC_BOVIN, which may be contaminants
in the sample because 4 proteins (ALBU_BOVIN,
LACB_BOVIN, LCA_BOVIN and CYC_BOVIN) of bovine
were added to the control sample.

(5) Manually checking the confirmed matches by the non-
parametric model, we found that some results with large
Xcorr but very small ΔCn were confirmed. In some cases,
the peptide in the second rank was correct. For example,
in the LTQ dataset (D2), a peptide "LEAELEK" was identi-
fied with Xcorr = 2.4273 and ΔCn = 0.0533 (+1 charge

Table 2: Actual FPRs and the corresponding estimated FPRs

Instrument type Charge state Expected FPR = 0.05 Expected FPR = 0.01

Total matches/false 
positive matches

Actual FPR Estimated FPR Total matches/false 
positive matches

Actual FPR Estimated FPR

LCQ +1 62/3 0.048 0.030 57/2 0.035 0.000
+2 521/23 0.044 0.049 464/6 0.012 0.009
+3 181/2 0.011 0.043 178/2 0.011 0.000

LTQ +1 447/43 0.096 0.048 242/9 0.037 0.008
+2 4,623/169 0.037 0.050 3,961/26 0.007 0.010
+3 1,611/59 0.037 0.050 1,449/26 0.018 0.010

LTQ/FT +1 168/18 0.107 0.047 124/12 0.097 0.000
+2 1,861/43 0.023 0.049 1,543/14 0.009 0.009
+3 565/6 0.011 0.048 543/7 0.007 0.007
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state). The peptide at the second rank was "LEALEEK", a
peptide from control protein P62937|PPIA_HUMAN,
because of the theoretic mass spectrum similarity between
these peptides, which will result in some FPR estimation
error.

Compare the performance of nonparametric model with 
other methods
Two other methods were also be widely used in the pro-
teomic research. The first one (named M1) searches for

the optimized cut-off values of Xcorr and ΔCn simultane-
ously while making the number of confirmed matches
reached its maximum given an expected FPR. The result-
ing accepted region on the Xcorr-ΔCn plane is a rectangle.
The second one (named M2) is Peptideprophet (V1.9),
which is an empirical statistic model, introduced by Keller
et al [15]. PeptideProphet provided the estimated error
rates (EER) at different probability score cut-offs. EER has
similar meaning with FPR, so we used it as the measure of
the quality of the resulting dataset and only the probabil-

Table 3: Comparison of different methods on the control datasets

Instrument type Methods Expected FPR = 0.05 Expected FPR = 0.01

Validated matches/false positives Actual FPR Sensitivity (%) Validated matches/false positives Actual FPR Sensitivity (%)

LCQ M1 652/30 0.046 74.3 581/15 0.026 69.1
M2 735/34 0.046 84.1 587/9 0.015 69.3
M3 765/28 0.037 87.9 699/10 0.014 82.2

LTQ M1 5507/156 0.028 71.0 4761/48 0.010 62.6
M2 5818/197 0.034 74.6 4640/20 0.004 61.6
M3 6681/271 0.041 85.1 5652/61 0.011 74.2

LTQ/FT M1 2554/69 0.027 83.7 2135/30 0.014 70.9
M2 2111/46 0.022 69.6 1411/15 0.011 46.8
M3 2594/67 0.026 87.5 2210/33 0.015 74.5

The mass spectrum matched with peptide "HVGDLGNVTADK "Figure 3
The mass spectrum matched with peptide "HVGDLGNVTADK ".
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ity score cut-offs without additional criterion were used to
filter the matches. In order to name it easily, we denote the
nonparametric model as M3 in the following part of this
paper. For the control datasets, the confirmed matches,
the actual FPR and the sensitivity were listed in Table 3
(The filter criteria can be found in Additional file 1). Some
conclusions can be drawn:

(1) In each case, the sensitivity of M3 is the highest. The
difference in sensitivity of different methods ranges from
3.8% to 27.7%.

(2) For the LCQ and LTQ dataset, the performance of M1
and M2 differs little and Peptideprophet (M2) which was
trained by a LCQ control dataset [15] does not seem to
work well on the LTQ/FT dataset.

(3) The performance of the nonparametric model differs
little on the dataset of different instruments. When the
expected FPR is 0.05, the sensitivity is above 0.85 and it is
above 0.74 when the expected FPR is 0.01.

(4) FPR estimation errors exist for different methods. In
some cases, the error is large. This may be caused by the
calculation errors because of unexpected contaminants
and random errors.

Application to large datasets
Shotgun experiments always generate large datasets [8].
Thus, the nonparametric model demonstrated to be effec-
tive with the control dataset should be validated using
large datasets. At first, we investigated the quality of the
confirmed matches by the nonparametric model (The fil-
ter criteria can be found in Additional file 7). Another 6
parameters which were commonly used to validate the
peptide identifications of SEQUEST database search
results were calculated for each match. They are maximal
continuous b or y ion series length (CSL) [11], the
matched percentage of the predicted ions by SEQUEST
(Ions) [44], ranked preliminary score (RSp) [44], the con-
tinuity of b or y ion series (Cont) [13], the matched per-

centage of ion intensities in the experiment mass
spectrum (iIons) [13] and the matched percentage of the
peak number in the experiment mass spectrum (nIons)
[23]. The percentages of the confirmed results which
passed the empirical rules (Table 4) convinced us that
most of these matches had a high confidence level. It must
be noted that RSp = 1 is a strict rule [44] and some correct
matches may be lost if we require RSp = 1. For instance,
only 76% correct matches are with RSp = 1 in the LTQ con-
trol dataset.

As a case study, we investigated the overlaps of the three
methods on the LTQ dataset. More than 90% of the
matches confirmed by M1 or M2 were covered by M3 (Fig-
ure 4), and 89.1 (FPR = 0.05) and 83.6 (FPR = 0.01) of the
matches confirmed by the nonparametric model were
covered by M1 ∪ M2. Each method of the three can all
provide some matches that are not covered by the other
two because they utilize different filter boundaries and
different parameters.

Figure 5A shows the mesh grids of a DF of M3 (+2 charge
state matches in D5, FPR = 0.01). As it appears, the
matches with the smaller Xcorr, ΔCn or Sim were discarded

Comparison of the confirmed matches among M1, M2 and M3Figure 4
Comparison of the confirmed matches among M1, M2 and 
M3.

Table 4: Validate the confirmed matches by empirical rules (%).

Empirical rules

Instrument FPR CSL ≥ 4 Ions ≥ 0.2 RSp = 1 Conts ≥ 0.2 iIons ≥ 0.25 nIons ≥ 0.2

LCQ 0.05 92.1 99.5 77.6 86.5 98.0 96.4
0.01 94.5 99.8 85.9 86.5 98.6 97.6

LTQ 0.05 91.5 90.5 68.6 93.4 89.9 92.7
0.01 96.9 99.8 75.6 95.6 96.7 97.1

LTQ/FT 0.05 99.1 100.0 67.7 98.6 97.0 99.9
0.01 99.5 100.0 75.9 99.0 98.0 100.0
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The mesh grids of the DF of M3 and the score distribution of the matches uniquely validated by M1~M3Figure 5
The mesh grids of the DF of M3 and the score distribution of the matches uniquely validated by M1~M3. The blue points in 
B~E represent the matches uniquely validated by M3, the red points are those of M2 and the green points are those of M1.



BMC Bioinformatics 2008, 9:29 http://www.biomedcentral.com/1471-2105/9/29
by M3, which agrees with the experience that the matches
with large scores (Xcorr, ΔCn or Sim) are more possibly
correct. Figure 5B~Figure 5E illustrate the score distribu-
tions of the matches uniquely confirmed by M1~M3. It is
clear that some matches with small Xcorr, ΔCn and Sim
were confirmed by PeptideProphet (red points), which
integrated some other parameters, such as preliminary
score (Sp). M2 confirmed some matches with middle
Xcorr and ΔCn but small Sim (green points). M3 con-
firmed many matches (4714) with relative smaller Xcorr
and ΔCn but large Sim, which were discarded by M1 and
M3. These results demonstrated that different filter
boundaries with different parameters would generate dif-
ferent results with different sensitivity and integrating
more complementary parameters by appropriate methods
could improve the sensitivity of database search result val-
idation.

In Table 5, we gave the numbers of confirmed matches,
non-redundant peptides, identified proteins (Minimal
protein list assembled by DBParser algorithm [47]) and
the percentage of proteins with at least 2 or 3 peptide hits
(The filter criteria can be found in Additional file 7). The
nonparametric model can confirm up to 14.5% more pro-
teins than the other two kinds of methods, which indi-
cated that our model has a higher sensitivity. For the same
kind of instrument, three methods gave about the same
percentage of proteins with at least 2 or 3 peptide hits at
different confidence levels. The percentage of proteins
with at least 2 peptide hits reaches above 50% for the LCQ
or LTQ dataset, but it is about 40% for the LTQ/FT dataset.
It is interesting that the percentage of proteins with at least
2 or 3 peptide hits can not be improved by improving the
confidence level of the peptide identifications when one
method is used.

Discussion
Due to the complexity of the peptide identification prob-
lem, many parameters have been proposed for use in
modeling the quality of matches between MS/MS spectra
and peptides. For example, Xcorr and Sim assess the simi-
larity between theoretical and experimental spectra, and
ΔCn assesses the effect of database size. There are two
main reasons for the simultaneous existence of multiple
parameters. First, the complex physical and chemical
process of the MS/MS platform makes it difficult to model
the peptide identification problem universally [48]). Sec-
ond, the huge computational burden of the database
search makes it difficult to implement complex models.
Thus, most MS/MS data processing approaches currently
used include two steps: 1) find candidate peptides quickly
and thus reduce the search space; 2) validate the results
carefully by taking into account more information. As in
this paper, a popular way for quality control of data in
shotgun proteomics is to generate a set of easily calculated
scores measuring the quality of the matches in different
ways and then to combine these parameters to validate
the results [23]. The randomized database method pro-
vides a feasible framework for constructing a negative con-
trol dataset and controlling the FPR of the acquired
dataset. The nonparametric model introduced in this
paper provides a framework for feature integration and
determination of nonlinear DFs. However, if too many
parameters are used, the nonparametric model will
encounter a computational problem. With too many var-
iable parameters in the model, there may be many solu-
tions to the MLE equations. Thus, the iterative process of
the EM algorithm may reach a local minimum, and good
performance of the model cannot be guaranteed. Thus,
when many features are used, it is recommended that the
features be partitioned into different groups by hierarchi-

Table 5: Comparison of different methods on the complex datasets

Instrument 
type

Methods Expected FPR = 0.05 Expected FPR = 0.01

Confirmed 
matches

Non-redundant 
peptides

Proteins* Proteins with at 
least 2/3 peptide 

hits (%)

Confirmed 
matches

Non-redundant 
peptides

Proteins* Proteins with at 
least 2/3 peptide 

hits (%)

LCQ M1 13,636 5,268 1,922 51.1/35.2 11,512 4,496 1,630 54.0/36.0
M2 14,128 5,333 1,860 53.7/36.4 10,436 4,219 1,586 53.3/34.4
M3 15,923 5,872 2,077 52.6/36.2 13,549 5,084 1,729 55.9/38.3

LTQ M1 45,153 10,359 3,363 54.6/37.6 36,857 8,601 2,733 58.3/39.3
M2 40,791 10,053 3,166 55.2/39.1 30,696 7,875 2,488 58.7/40.3
M3 52,569 11,451 3,421 57.9/40.9 44,576 9,756 2,801 61.6/43.1

LTQ/FT M1 25,672 4,602 2,723 42.0/23.0 22,750 3,869 2,193 42.5/22.8
M2 23,571 3,947 2,462 45.2/25.4 19,930 3,366 2,083 45.4/24.9
M3 27,565 4,855 2,820 43.7/24.8 25,185 4,196 2,291 45.6/25.7

Note * It was the count of minimal protein list assembled by DBParser algorithm [47].
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cal clustering [49] and the nonparametric model be
applied to each cluster. Other feature-space reduction
methods such as principal component analysis (PCA) and
partial least squares (PLS) can also be used [50].

The EM algorithm is guaranteed to converge [51]. How-
ever, if there are too many variables, it may reach a local
minimum. For double-charged matches in the LCQ con-
trol dataset (here, we only used two variables: Xcorr and
ΔCn), we also tried a Gaussian mixed model with 15 com-
ponents (5 fold of the model we used). The values of the
ML function calculated in the iterative process of the EM
algorithm increased monotonically for the Gaussian
mixed model with 3 components, whereas for the Gaus-
sian mixed model with 15 components they initially
increased and then decreased along the iterative step (Fig-
ure 6). The performance (χ2 statistic; smaller = better) of
the 15-mixed models demonstrated the same pattern. It
was confirmed that too many variables (90 variables) do
not lead to better performance. It is fortunate that the
Gaussian model with 3 mixed functions fit the data satis-
factorily. For the large dataset and the model with more
features, the number of component functions did not
exceed 7. If a more complex mixed model is needed, we
recommend the following strategies: 1) optimize the ML
function directly using more robust nonlinear optimiza-

tion techniques such as the conjugate gradient and quasi-
Newton methods [52]; 2) directly fit the histogram with
an optimized binned method (such as Scott's rule [53])
using a RBF neural network; or 3) use another nonpara-
metric model such as the adaptive kernel density estima-
tion proposed by Silverman [54].

The computational burden of the nonparametric model
may be doubted, especially for the huge LTQ dataset. It is
lucky that it does not need so many observations to build
the nonparametric model. If the dataset is too large, we
can resample the observations and use fewer observations
to build the model. We tried this approach on the LTQ
complex dataset. The results achieved by the model built
with randomly selected 30,000 observations differed little
from that of the model built with all the 432,338 observa-
tions. Thus, in the model building procedure, if the
number of the observations exceeds 30,000, we resample
the dataset and randomly select 30,000 observations to
build the model and if the number of the observations is
less than 30,000, all the observations are used. Therefore,
the consumed time of the model building was less than 2
min on a PC with Intel Pentium 4 2.8G CPU and 512 MB
memory.

ML function values and χ2 statistic with iterative step and different numbers of mixed Gaussian functionsFigure 6
ML function values and χ2 statistic with iterative step and different numbers of mixed Gaussian functions. n, the iterative step of 
the EM algorithm; L, the ML function value; chi-square, χ2 statistic; N, number of mixed Gaussian functions. It is clear that the 
EM algorithm will confront the local minimum problem when the number of variables is too many.
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The nonparametric model proposed in this paper is easy
to use. First, a combined database is prepared containing
the normal and randomized protein sequence. Then data-
base search is performed on the combined database and
the results are collected; the normal and randomized data-
base matches are labeled with the assistance of references
provided by the database search software. The rand-
omized database matches are then used to build the non-
parametric model. In this step, a parameter set different
from that described here can be used. To obtain the final
results, a search for the DF described in the "Nonparamet-
ric model and filter boundary" section given an expected
FPR is performed. The workflow shown in figure 7 (Meth-
ods section) has been implemented by several Matlab
(MathWorks, Natick, MA) scripts and in-house C++ pro-
grams. The database search results were collected using an
in-house program called OutSum.exe, which were stored
in the *.out files given by SEQUEST. The resulting data,
stored in a plain-text file, were loaded into a Matlab work-
space. A script called NoParQ.m was used to build the
nonparametric model. The programs used in this paper
were provided in a compressed archive [see Additional file
2].

Conclusion
In this paper, we provide a framework for validation of
peptide identification in shotgun proteomics that is based
on the randomized database method and a nonparamet-
ric model. The practical problems in implementing the
nonparametric model were investigated, and its perform-
ance was found to be better than that of traditional meth-
ods. The nonparametric model can provide a more
flexible and accurate solution for DF determination for
quality control of large datasets in shotgun proteomics
research. All the programs used in this work are available
by request from the authors.

Methods
Datasets and database search
Six datasets generated by three kinds of mass spectrometry
platforms (LCQ, LTQ and LTQ/FT) were used to demon-
strate the performance of the nonparametric model. Three
control datasets were used to validate the accuracy of the
FPR estimation and the improvement of the sensitivity.
Since the MS/MS datasets generated by the shotgun tech-
nique are always large, we also verified the generality of
the nonparametric model on the large real sample data-
sets. The basic information about the six datasets is listed
in Table 6.

The two unpublished LTQ/FT datasets were provided by
Beijing Proteome Research Center (BPRC). The samples
were digested with trypsin and then analyzed by a 7-Tesla
LTQ/FT mass spectrometer (Thermo Electron, San Jose,
CA) coupled with an Agilent 1100 nano-flow liquid chro-

matography system. The reverse phase C18 trap columns
(300 μm internal diameter × 5 mm long column) were
connected with the 6-port column-switching valve for the
on-line desalting. A PicoFritTM tip column (BioBasic C18,
5 μm particle size, 75 μm internal diameter × 10 cm long
column, 15 μm internal diameter at spray tip, New Objec-
tive, Woburn, MA, USA) was used for the following sepa-
ration. Elution was solvent A (Milli-Q water, 2 %
acetonitrile and 0.1%FA, v/v/v) and solvent B (Milli-Q
water, 80% acetonitrile and 0.1%FA, v/v/v). The gradient
was 15–40% B in 40 min, 40–100% B in 10 min. One FT
full MS scan was followed by 5 data-dependent LTQ MS/
MS scans on the five most intense ions. The dynamical
excluding time was 45 seconds. Ions were accumulated in
linear ion trap controlled by AGC. The AGC values were 5
× 105 charges for FT full MS scan and 1 × 104 charges for
LTQ MS/MS scan. The resolution was 10,000 for FT full
MS scan at m/z 400. The temperature of the ion transfer
tube was set at 200°C and the spray voltage was 1.8 KV.
The isolation width was 4Da and normalized collision
energy was 35% for MS/MS scan. Mass spectra were
acquired over the m/z range from 400 to 2000.

All the MS/MS spectra were extracted from the *.raw files
by Extract_MSn.exe which is a console program in Biow-
orks 3.2 (Thermo Finnigan, San Jose, CA). For the LCQ
datasets, the minimal total ion intensity is 10,000. For the
LTQ or LTQ/FT datasets, the total ion intensity of each
MS/MS spectrum is required to exceed 100. For all the
datasets, the spectra must have at least 20 ions. Then the
database search was performed on a local TurboSEQUEST
(version 2.7) server. The fixed modification of oxidation
(15.99Da) on the Met residue and the variable modifica-
tion of carboxyamidomethylation (57.02Da) on the Cys
residue were set. The enzyme was trypsin and the maximal
allowed missed cleavage sites was 2. Only the b and y ions
were taken into account. For the LCQ or LTQ datasets, the
precursor mass error tolerance was 3.0Da, and for the
LFQ/FT datasets, it was 15ppm.

For all the datasets except D2, which was searched against
the database published by sPRG [55], the searched data-
bases were derived from IPI Human 3.19 [60]. For the
control datasets, the control sequences for dataset D1 and
D3 [see Additional file 3, 4 and 5] including the sequences
of purified proteins or peptides plus the typical sample
contaminants such as keratin and trypsin were added into
the IPI Human 3.19. The control sequences for D2 were
determined according to the report of sPRG (see Addi-
tional file 4) [55]. The databases were constructed using
the method proposed in one of our previous paper [58]
and could be described as: the protein sequences in the
normal database were digested in silico (trypsin), and then
the amino acid residues (AAR) (except the one on the C-
terminal) of the resulting peptides were reshuffled by
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Illustration of the workflowFigure 7
Illustration of the workflow. The workflow is based on the nonparametric model and the randomized database method. First, 
the randomized database is constructed and merged with the normal database. Then a database search is performed using 
SEQUEST. Peptide matches from the randomized database are used to build the mixed Gaussian model. Filter boundaries are 
determined based on the mixed Gaussian model and the expected FPR, and the normal database matches are filtered. During 
construction of the nonparametric model, k-means clustering is used to initialize the parameters of the EM algorithm. The red 
points in the left rectangle are the cluster center on the Xcorr-ΔCn plane. The red pints on the right rectangle denote the 
matches from the normal database and the blue points are matches from the randomized database.
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using a random number generator. Then the reshuffled
peptides were spliced to form new protein sequences in
the randomized database. Finally, the normal database
and the randomized database were merged to form the
searched database.

After database searching, the matches with +1, +2 and +3
charge state were extracted (Table 7). For each spectrum,
only the first rank match with an assigned peptide with
more than 5 AAR was taken into account for further anal-
ysis. For the control datasets, the matches which were
assigned peptides of control sequences were validated by
the following criteria: 1) the b-ion or y-ion series should
confirm at least 3 consecutive amino acids of the assigned
peptide sequence [12], 2) ranked preliminary score (RSp)
≤ 50. The confirmed matches of control datasets were pro-
vided in the supplementary materials [see Additional file
6, 7 and 8).

The workflow of the nonparametric model based method
The workflow of the nonparametric model based method
is shown in Figure 7. Firstly, a randomized database was
constructed by randomizing the tryptic peptide sequence.
Then the MS/MS spectra were searched against the com-
bined database using SEQUEST. Then, matches with an
assigned peptide from the randomized database (we call
them randomized database matches, RDM) were used to
build the nonparametric model. The joint distribution of
selected parameters (such as Xcorr, ΔCn and Sim [31,45])
of random matches was fit with the nonparametric model
using the FnPDFe method and the contour lines of the
estimated PDF, which are complex nonlinear functions,
were used as candidate DFs. The actually used DFs were

determined according to the expected FPR and formula 2
for different charge states. Finally, the resulting DFs were
used to filter the matches from the normal database. In
the model-building step, k-means clustering was used to
initialize the EM algorithm procedure.

Initial the nonparametric model with k-means clustering
K-means clustering [59] is commonly used to partition
observations into different groups according to defined
distance (such as Euclidean distance). The optimization
goal of k-means clustering is to find a partition in which
objects within each cluster are as close as possible to each
other and as far as possible from objects in other clusters.
However, in practice, the scale of each feature will signifi-
cantly affect the clustering results when Euclidean dis-
tance is used. In our application, Xcorr and ΔCn were two
main features. Xcorr is a float point value whose typical
value is 2.5 but may be larger than 10; ΔCn is in the range
[0, 1]. When directly using the observed values in the k-
means clustering, Xcorr will dominate the partition results
(Figure 8) because the distance (formula 5) between two
observations (Xcorri, ΔCni), i = 1, 2, is mainly determined
by Xcorr, which has a larger scale.

Thus, a normalization step, which calculated the z-score
of the observed values of each feature, was used to elimi-
nate the scale difference, and thus achieve a more reason-
able partition (Figure 8).

d Xcorr Xcorr Cn Cn= − + −( ) ( )1 2
2

1 2
2Δ Δ (5)

Table 7: Database search results of the 6 datasets

Datasets D1 D2 D3 D4 D5 D6

Database search results +1 467 3,039 1,544 24,875 61,574 36,610
+2 3,687 28,130 6,028 63,272 754,401 557,994
+3 3,654 28,943 2,579 63,027 776,794 492,950

Table 6: The 6 datasets used in this paper.

Dataset type Control dataset Real sample dataset

Dataset Name D1 D2 D3 D4 D5 D6
Instrument LCQ LTQ LTQ/FT LCQ LTQ LTQ/FT

Reference or 
notes

[46] [55] unpublished [44] [56] unpublished

Sample 12 purified proteins 
+ 23 peptides

49 purified human 
proteins

8 purified proteins Human K562 cell 
line

Human liver Human Liver

Data source the BIATECH 
Institute (Bothell, 
WA 98011, USA)

Proteomics 
Standards Research 
Group (sPRG) [55]

Beijing proteome 
Research Center 
(Beijing 102206, 

China)

Open Proteomics 
Database 

(OPD)[57]

Beijing proteome 
Research Center 
(Beijing 102206, 

China)

Beijing proteome 
Research Center 
(Beijing 102206, 

China)
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Nonparametric model and the EM algorithm
The basic objective of nonparametric density estimation is
to approximate the distribution of observations using the
weighted sum of a series of simple functions, which does
not emphasize the physical meaning of the parameters
but the accuracy of the approximation. This idea can be
implemented using smoothing splines or radial basis
function (RBF) neural network to fit the histogram
directly [41]. Another way to implement the nonparamet-
ric model is to fit the distribution with kernel density
functions. The optimization goal of the nonparametric
model is to minimize the mean integrated squared error
of the fit or to maximize the maximum likelihood func-
tion of the observations. Many kinds of nonparametric
models have been proposed by different researchers [41].
The FnPDFe procedure [42] is attractive because it is easy
to implement and has a clear statistical explanation. Let X
be a d dimension random vector X ∈ Rd. Its PDF can be
approximated by a Gaussian mixed model that is defined
as the linear combination of N multivariate Gaussian den-
sity functions (MGDFs):

where:

and P(i),i = 1,...N satisfies: (1) 0 <P(i) ≤ 1; (2) .

μi, Σi is the mean vector and covariance matrix of the i-th

MGDF.

Consider independent and identically distributed obser-
vations set{x1, x2,......xn}; the log-likelihood function of
the mixed model is:

Generally, MLE can be used to infer the parameters θ in
the mixed model. However, the resulting MLE equations
cannot be solved analytically. The FnPDFe method uses
the EM algorithm to provide iterative solutions for these
parameters [43], which can be read as:

(1) Initial step: Initialize the objective parameters μi, Σi,
and P(i) with heuristic knowledge or random values.
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The partitions of k-means clustering before (A) and after (B) normalization (z-score) of the featuresFigure 8
The partitions of k-means clustering before (A) and after (B) normalization (z-score) of the features. Blue and red points rep-
resent different clusters. The observations derive from the control dataset. Records with larger Xcorr and ΔCn are more likely 
to be positive results. The partition given by k-means clustering using the observed values is based on Xcorr; ΔCn has no effect. 
After normalization, the partition is more consistent with the empirical knowledge.
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(2) E-step: update the posterior distributions:

(3) M-step: estimate the current parameters:

(4) Repeat steps 2–3 until the change of parameters is very
little.

One problem with implementation of the EM algorithm
is how to initialize the parameters. Use of an improper
starting point may prolong the converging time of the EM
algorithm or cause it to reach a local minimum. In this
work, k-means clustering was used to partition the obser-
vations into subclasses, and the means and covariance
matrixes of the component Gaussian distributions were
initialized using the means and covariance matrixes of the
subclasses.

Another difficulty in implementing the EM algorithm is
the selection of the number of component density func-
tions. Generally speaking, inclusion of more functions
will approximate the distributions of the observations
more accurately, while allowing more parameters to be
determined. However, overly complex models may cause
the EM algorithm to reach a local minimum and worsen
the performance of the resulting model. In this work, a
trial and error procedure was used to select the minimum
number of component density functions: try numbers
from 2 until the change of the likelihood function value is
very little (such as less than 1%).
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MS/MS: tandem mass spectrometry; DF: discriminate
function; FPR: false positive rate; LCQ: 3D quadrupole

ion trap; LTQ: linear trap quadrupole; FT: Fourier trans-
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nonparametric probability density function estimate;
MLE: maximum likelihood estimate; EM: expectation-
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mate; EM: expectation-maximization.
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Additional file 1
The parameters of the nonparametric models for different datasets. This 
file collected the parameters of the nonparametric models and filter crite-
ria for different datasets. The file was compressed as RAR archive to 
reduce the size.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-29-S1.RAR]

Additional file 2
Program package. This file packaged all the programs used in this work, 
which include the Microsoft Windows executable EXE files and the Mat-
lab script M files. A readme file is provided in this package to illustrate 
how to use these programs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-29-S2.RAR]

Additional file 3
The control sequences of the LCQ control dataset. This file includes the 
control sequences for the LCQ control dataset, which include the 
sequences of control proteins and the common contaminants. The file was 
compressed as RAR archive to reduce the size.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-29-S3.RAR]

Additional file 4
The control sequences of the LTQ control dataset. This file includes the 
control sequences for the LTQ control dataset, which include the sequences 
of control proteins and the common contaminants. The file was com-
pressed as RAR archive to reduce the size.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-29-S4.RAR]
Page 16 of 18
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-29-S1.RAR
http://www.biomedcentral.com/content/supplementary/1471-2105-9-29-S2.RAR
http://www.biomedcentral.com/content/supplementary/1471-2105-9-29-S3.RAR
http://www.biomedcentral.com/content/supplementary/1471-2105-9-29-S4.RAR


BMC Bioinformatics 2008, 9:29 http://www.biomedcentral.com/1471-2105/9/29
Acknowledgements
We thank Dr.Songfeng Wu of the Beijing Proteome Research Centre for 
his thoughtful discussion. We also thank Master's candidate JieMa of the 
Beijing Proteome Research Centre for assistance with the database search. 
The LCQ control dataset was provided by the BIATECH institute and 
Dr.Zhongqi Zhang kindly provided the program MassAnalyzer, we thank 
them here. This work was funded by the Chinese Ministry of Science and 
Technology (2006AA02A312, 2006AA02Z334, 2006CB910803, 
2006CB910700), the National Natural Science Foundation of China 
(30621063, 342123), and the Beijing Municipal Science and Technology 
Project (H030230280590), Chinese National Key Program of Basic 
Research (2006CB910700).

References
1. Pandey A, Mann M: Proteomics to study genes and genomes.

Nature 2000, 405(6788):837-46.
2. Patterson SD, Aebersold RH: Proteomics: the first decade and

beyond.  Nat Genet 2003, 33(Suppl):311-23.
3. Aebersold R, Mann M: Mass spectrometry-based proteomics.

Nature 2003, 422(6928):198-207.
4. Domon B, Aebersold R: Mass spectrometry and protein analy-

sis.  Science 2006, 312(5771):212-7.
5. Nesvizhskii AI, Aebersold R: Analysis, statistical validation and

dissemination of large-scale proteomics datasets generated
by tandem MS.  Drug Discov Today 2004, 9(4):173-81.

6. Eng JK, McCormack AL, Yates JR 3rd: An approach to correlate
tandem mass spectral data of peptides with amino acid
sequences in a protein database.  J Am Soc Mass Spectrom 1994,
5(11):976-89.

7. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based
protein identification by searching sequence databases using
mass spectrometry data.  Electrophoresis 1999, 20(18):3551-67.

8. Domon B, Aebersold R: Challenges and opportunities in pro-
teomics data analysis.  Mol Cell Proteomics 2006, 5(10):1921-6.

9. Sadygov RG, Cociorva D, Yates JR 3rd: Large-scale database
searching using tandem mass spectra: looking up the answer
in the back of the book.  Nat Methods 2004, 1(3):195-202.

10. Chamrad D, Meyer HE: Valid data from large-scale proteomics
studies.  Nat Methods 2005, 2(9):667-75.

11. Chen Y, Kwon SW, Kim SC, Zhao Y: Integrated Approach for
Manual Evaluation of Peptides Identified by Searching Pro-
tein Sequence Databases with Tandem Mass Spectra.  J Pro-
teome Res 2005, 4(3):998-1005.

12. Tabb DL, McDonald WH, Yates JR 3rd: DTASelect and Contrast:
Tools for Assembling and Comparing Protein Identifications
from Shotgun Proteomics.  J Proteome Res 2002, 1(1):21-6.

13. Sun W, Li F, Wang J, Zheng D, Gao Y: AMASS: Software for
Automatically Validating the Quality of MS/MS Spectrum
from SEQUEST Results.  Mol Cell Proteomics 2004,
3(12):1194-1199.

14. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik
BM, Yates JR 3rd: Direct analysis of protein complexes using
mass spectrometry.  Nat Biotechnol 1999, 17(7):676-82.

15. Keller A, Nesvizhskii AI, Kolker E, Aebersold R: Empirical Statisti-
cal Model To Estimate the Accuracy of Peptide Identifica-
tions Made by MS/MS and Database Search.  Anal Chem 2002,
74(20):5383-5392.

16. Lopez-Ferrer D, Martinez-Bartolome S, Villar M, Campillos M, Mar-
tin-Maroto F, Vazquez J: Statistical model for large-scale pep-
tide identification in databases from tandem mass spectra
using SEQUEST.  Anal Chem 2004, 76(23):6853-6860.

17. Eriksson J, Fenyo D: A model of random mass-matching and its
use for automated significance testing in mass spectrometric
proteome analysis.  Proteomics 2002, 2(3):262-270.

18. Sadygov RG, Yates JR 3rd: A hypergeometric probability model
for protein identification and validation using tandem mass
spectral data and protein sequence databases.  Anal Chem
2003, 75(15):3792-3798.

19. Sadygov RG, Liu H, Yates JR 3rd: Statistical Models for Protein
Validation Using Tandem Mass Spectral Data and Protein
Amino Acid Sequence Databases.  Anal Chem 2004,
76(6):1664-1671.

20. Moore RE, Young MK, Lee TD: Qscore: An Algorithm for Eval-
uating SEQUEST Database Search Results.  J Am Soc Mass
Spectrom 2002, 13(4):378-386.

21. Baüczek T, Bucinski A, Ivanov Ar, Kaliszan R: Artificial Neural Net-
work Analysis for Evaluation of Peptide MS/MS Spectra in
Proteomics.  Anal Chem 2004, 76(6):1726-1732.

22. Razumovskaya J, Olman V, Xu D, Uberbacher EC, VerBerkmoes NC,
Hettich RL, Xu Y: A computational method for assessing pep-
tide identification Reliability in tandem mass spectrometry
analysis with SEQUEST.  Proteomics 2004, 4(4):961-969.

23. Anderson DC, Li W, Payan DG, Noble WS: A New Algorithm for
the Evaluation of Shotgun Peptide Sequencing in Proteom-
ics: Support Vector Machine Classification of Peptide MS/MS
Spectra and SEQUEST Scores.  J Proteome Res 2003,
2(2):137-146.

24. Ulintz PJ, Zhu J, Qin ZS, Andrews PC: Improved classification of
mass spectrometry database search results using newer
machine learning approaches.  Mol Cell Proteomics 2006,
5(3):497-509.

25. Qian WJ, Liu T, Monroe ME, Strittmatter EF, Jacobs JM, Kangas LJ,
Petritis K, Camp DG 2nd, Smith RD: Probability-Based Evalua-
tion of Peptide and Protein identifications from Tandem
Mass Spectrometry and SEQUEST Analysis: The Human
Proteome.  J Proteome Res 2005, 4(1):53-62.

26. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP: Evaluation of
multidimensional chromatography coupled with tandem
mass spectrometry (LC/LC-MS/MS) for large-scale protein
analysis: the yeast proteome.  J Proteome Res 2003, 2(1):43-50.

27. Elias JE, Haas W, Faherty BK, Gygi SP: Comparative evaluation of
mass spectrometry platforms used in large-scale proteomics
investigations.  Nat Methods 2005, 2(9):667-75.

Additional file 5
The control sequences of the LTQ/FT control dataset. This file includes the 
control sequences for the LTQ/FT control dataset, which include the 
sequences of control proteins and the common contaminants.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-29-S5.RAR]

Additional file 6
Validated matches in the LCQ control dataset. This file contains the val-
idated correct matches for the LCQ control dataset. The file was com-
pressed as RAR archive to reduce the size.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-29-S6.RAR]

Additional file 7
Validated matches in the LTQ control dataset. This file contains the vali-
dated correct matches for the LTQ control dataset. The file was compressed 
as RAR archive to reduce the size.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-29-S7.RAR]

Additional file 8
Validated matches in the LTQ/FT control dataset. This file contains the 
validated correct matches for the LTQ/FT control dataset. The file was 
compressed as RAR archive to reduce the size.
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