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Abstract
Background: The problem of accurate prediction of protein secondary structure continues to be
one of the challenging problems in Bioinformatics. It has been previously suggested that amino acid
relative solvent accessibility (RSA) might be an effective factor for increasing the accuracy of protein
secondary structure prediction. Previous studies have either used a single constant threshold to
classify residues into discrete classes (buries vs. exposed), or used the real-value predicted RSAs in
their prediction method.

Results: We studied the effect of applying different RSA threshold types (namely, fixed thresholds
vs. residue-dependent thresholds) on a variety of secondary structure prediction methods. With
the consideration of DSSP-assigned RSA values we realized that improvement in the accuracy of
prediction strictly depends on the selected threshold(s). Furthermore, we showed that choosing a
single threshold for all amino acids is not the best possible parameter. We therefore used residue-
dependent thresholds and most of residues showed improvement in prediction. Next, we tried to
consider predicted RSA values, since in the real-world problem, protein sequence is the only
available information. We first predicted the RSA classes by RVP-net program and then used these
data in our method. Using this approach, improvement in prediction was also obtained.

Conclusion: The success of applying the RSA information on different secondary structure
prediction methods suggest that prediction accuracy can be improved independent of prediction
approaches. Thus, solvent accessibility can be considered as a rich source of information to help
the improvement of these methods.
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Background
The problem of accurate prediction of protein three-
dimensional structure continues to be one of the challeng-
ing problems in Bioinformatics. The large-scale genome
sequencing efforts have made this problem even more sig-
nificant. Roughly 50% of the proteins in a genome have at
least one homolog in protein structure databases and their
structure can be predicted efficiently by homology mode-
ling [1,2]. However, for the other half of the sequences no
structural template is currently known. To date, the per-
formance of ab initio three dimensional prediction meth-
ods are still far from being perfect [3-5]. Therefore, in
order to obtain information about the structure of a novel
protein, one may consider simpler tasks, like one dimen-
sional prediction of protein characteristics [6]. Acquiring
such information is a key step in understanding the rela-
tionship between the protein folding and protein primary
structure. The goal of protein secondary structure (SS) pre-
diction methods is to predict whether each residue is in a
helical structure (H), a strand (E), or in other structures
(traditionally referred to as coil, C).

In the past decades, many prediction methods based on
the database of known protein structures have been devel-
oped. Historically, the first generation of the SS prediction
algorithms was developed by Chou and Fasman. [7,8]
This algorithm, which is usually referred to as the Chou-
Fasman method, tries to find structures based on the dif-
ference in the probability of observing each of the twenty
residues in helices, sheets and other structures. This
method has an accuracy of about 50–60% [7,8], although
it has been shown that this method can be improved
greatly with the application of several amendments [9]. It
should be noted that other statistical methods (mainly
based on hidden Markov models) have been also applied
for protein SS prediction [10,11] and it seems that their
prediction accuracies are comparable to current methods.

The second generation of SS prediction methods started
by the method of Garnier, Osguthorpe and Robson (GOR
method) [12] and improved in several steps [13]. This
method, with an information theory approach, relates
sequence to SS type and evaluates the state of each residue
with a sliding window approach. Using this approach,
better prediction accuracies, up to 64%, can be obtained
[14].

The third generation methods use multiple sequence
alignment and machine learning techniques like nearest
neighbors and neural networks to predict the secondary
structure. APSSP [15], JPred [16], SSpro [17], PHD [18],
PSIpred [19], PMSVM [20], and other methods based on
support vector machines [21-23] can be considered as the
representatives of this generation. These methods gener-
ally achieve very good prediction accuracy, of up to 76%.

It should be noted that recently, achievement of 80%
accuracy is reported using a large-scale training [24].

Some years ago, it was thought that improvement of the
methods will steadily result in the improvement of the SS
prediction accuracy in the future [25], but now it seems
that there is some kind of "barrier" that prevents all the
above mentioned approaches to leave the 80% accuracy
behind, and approach the theoretical prediction limit,
which is estimated to be about 88% [26] or maybe up to
90–95% [27]. One possible barrier for SS prediction
might lie in the neglect of other factors that may influence
the tendencies of amino acids for being in different sec-
ondary structures. For example, it has been reported that
amino acid propensities for secondary structures are influ-
enced by the protein structural class [28,29], and by the
organism from which the proteins are obtained [30].

It has been previously suggested that more accurate SS
predictions can be achieved by taking relative solvent
accessibility (RSA) into account [31-33]. The logic for the
usefulness of such information lies in the fact that the
environments around the protein residues can affect their
propensities for different structures [34], and therefore,
amino acids may behave differently when they are in the
protein interior vs. surface of protein [35-39]. This effect
is extensively studied in case of internal and surface beta-
strands [40].

Based on these observations, one may ask why RSA is not
routinely used today in the prediction of protein second-
ary structures. The answer lies in the fact that RSA predic-
tion is not an easy task itself. The two original reports
simply used DSSP [41] assignments to extract RSA infor-
mation [32,33]. However, in the real-world version of the
problem, protein sequence is almost always the only
available information. For that reason, it was later tried to
predict real-value RSAs [42,43] and to apply it for the
improvement of protein SS prediction, in a method called
SABLE [31]. While the performance of SABLE seems to be
very good (i.e. 79.6% accuracy in CASP 6; see http://
sable.cchmc.org/sable_doc.html), there seems to be much
room for improvement of the method, as SABLE relies on
an RSA prediction method with a correlation coefficient
of 0.66 [31].

In the present work, we investigate the effect of the altera-
tion of the RSA threshold on prediction accuracy. Our
results imply that significant improvements in the predic-
tion of SS can be obtained if the RSA cutoffs are selected
according to the residues. We also discuss why predicted
real-value RSAs might not be suitable for the improve-
ment of SS prediction at this moment. Finally, we suggest
that RSA prediction should be combined with the present
SS prediction techniques, since the addition of RSA infor-
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mation improves the prediction, independent of the pre-
diction approach.

Results and discussion
The effect of application of different RSA thresholds on 
the prediction of secondary structures
It was previously reported that when a 25% threshold for
predicted RSA values is used to classify residues into {B,
Ex} classes (i.e. Buried vs. Exposed; see Materials and
Methods), this additional information increases the accu-
racy of SS prediction [31]. We decided to try other thresh-
olds to see how they affect the predictions.

In our analysis, we first investigated the effect of adding
the actual RSA values (obtained from DSSP files), for dif-
ferent RSA thresholds using GOR, Chou-Fasman and
HMM (Hidden Markov Method). Accuracies of SS predic-
tion for GOR, Chou-Fasman and HMM methods, without
consideration of RSA information are summarized in
Additional file 1. Figure 1 depicts the level of improve-
ment of SS prediction, compared to the prediction accu-
racy of classical method [see also Additional file 2, 3, 4].
For all selected thresholds, some improvements are
obtained which is consistent with the results obtained by
other investigators [32,33]. Our results suggest that the
best threshold for the improvement of SS prediction in
GOR and Chou-Fasman methods is about 16%, while
HMM performs best with a 4% RSA threshold. Therefore,
the 7% cutoff used by Zhu and Blundell [33], and also the
50% cutoff used by Macdonald and Johnson [32] might
not be optimal.

As an additional test, we also divided amino acids into
three discrete groups, i.e. we classified the residues to bur-

ied, intermediate and exposed, [35]. For each classifica-
tion, therefore, a fixed threshold pair is used. The results
for these methods are presented in the Additional file 5.
The results generally show that classification into three
groups yields a better result compared to a two-group clas-
sification. Among the tested classifications, namely
[4%,16%], [9%,16%], [9%,36%] and [16%,36%], the
first pair was the best choice for all methods.

Then we decided to find out whether different amino
acids show similar improvement trends. The results for
the GOR method are presented in Figure 2. It has not
shown a promising picture for the prediction improve-
ment, because the behaviors of some amino acids are
opposite. For example, Lys (K) is best predicted with the
16% RSA threshold, while the prediction of Tyr (Y) is the
worst by this threshold. In addition, the prediction of
some amino acids as Ile (I) always becomes considerably
worse with the addition of RSA information, independent
of the selected threshold for RSA. The results for Chou-
Fasman and HMM methods were generally the same.

While these results prove that the addition of RSA infor-
mation with a fixed cutoff is not a good recipe for
improvement of SS prediction, it clearly shows that one
should choose different thresholds for different amino
acids (see below).

Application of residue-specific RSA thresholds for the 
improvement of secondary structure prediction
In the previous section, we have shown that with the
application of a fixed threshold one cannot obtain
improvement for all residues. This is something previ-
ously observed by Macdonald and Johnson [32], who
reported that proline (P) is always considered "buried" in
their analysis (they used a fixed threshold of 50% for
RSA). Since with the selection of a fixed RSA threshold the
predictions of all residues are not improved, we decided
to consider "residue-specific" RSA thresholds.

We tested the usefulness of "mean RSA" and "median
RSA", i.e. to assume them as the thresholds for each resi-
due X. We first obtained the actual distribution of RSA val-
ues for each of the twenty amino acids, and then
calculated the mean and the median of each of these dis-
tributions (see Additional file 6). Then, in two separate
tests, the mean and the median were used as residue-spe-
cific RSA thresholds.

Table 1 shows the percentage of improvement obtained
with the consideration of mean RSA and median RSA as
the thresholds for the SS prediction using GOR method.
The results are also compared with the fixed 16% thresh-
old, which appeared to be the best cutoffs for the
improvement of predictions (Section 3.1.). Obviously,

Percentage of improvement in secondary structure predic-tion accuracy by addition of RSA information for the GOR (A), Chou-Fasman (B) and HMM(C) methods using leave-one-out cross-validation and different thresholds in two-state classification of RSAFigure 1
Percentage of improvement in secondary structure predic-
tion accuracy by addition of RSA information for the GOR 
(A), Chou-Fasman (B) and HMM(C) methods using leave-
one-out cross-validation and different thresholds in two-
state classification of RSA.
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better prediction accuracies are obtained with the consid-
eration of mean RSA and median RSA as the RSA thresh-
olds. However, the amino acids whose predictions are
improved are (generally) the same as the amino acids that
show prediction improvements with the fixed threshold
of 16%. Especially, for Cys, Glu, Ile, Met, Gln, Val and Trp,
no improvement is obtained. This means that, the second-
ary structure propensity for some amino acids is not
directly related to their position in surface or core of pro-
teins and two-state surface accessibility classification
might not be the best possible way to incorporate RSA
information for prediction of secondary structures.

We then studied the effect of consideration of three-state
residue specific RSA information in SS prediction prob-
lem. We tested two types of thresholds again. For the first
analysis we chose (mean + SD) and (mean - SD) of the
RSA distributions as the selected pair of thresholds. For
the second analysis, in case of each amino acid RSA distri-

bution, two RSA values, t1 and t2 were selected so that one-
third and two-third of the observations were smaller than
t1 and t2, respectively. We will refer to t1 and t2 as the first
tertile and the second tertile, respectively. These values are
summarized in Additional file 6.

Table 2 shows the percentage of improvement obtained
with the consideration of mean RSA and median RSA as
the thresholds for the SS prediction compared with [4%,
16%] RSA threshold. While SS prediction shows signifi-
cant improvements (by more than 7–8%), prediction of
the SS of 13 and 15 residues are also improved, while this
number had been 11 or 12 in case of two-state RSA classi-
fications. Altogether, all residues except Met and Ile show
some level of improvement at least for one of the 6 above
classifications (see Tables 1 and 2). This is a very promis-
ing result, which suggests that consideration of RSA infor-
mation can be effectively used for the prediction of SS in
proteins. No improvement was obtained in case of Met

Percentage of improvement in secondary structure prediction accuracy by addition of RSA information for each amino acid compared with the regular (RSA-free) GOR method using leave-one-out cross-validation and different thresholds in two state classification of RSAFigure 2
Percentage of improvement in secondary structure prediction accuracy by addition of RSA information for each amino acid 
compared with the regular (RSA-free) GOR method using leave-one-out cross-validation and different thresholds in two state 
classification of RSA.
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and Ile, which have highly biased RSA distributions (data
not shown). However, there might be some RSA classifica-
tion assumptions by which SS prediction of these two
amino acids are also improved.

In the next step, we tried to see if the effect of adding the
RSA information is dependent on the SS prediction
method. Table 3 summarizes the results. Clearly, great
improvements are also obtained when Chou-Fasman and
HMM are used for SS prediction. Interestingly, prediction
of the two challenging residues, Met and Ile, shows some
improvement here.

Our results clearly suggest that considerable improve-
ments are obtained in SS prediction independent of the
applied method. It is also important to test the validity of
this observation for more popular methods like
PSIpred[19] and PHD[18], which work based on finding
conserved sequences that form regular structures. How-
ever, this is not an easy task. Our approach works by
changing the twenty-letter alphabet of amino acids; there-
fore it is not possible to do the BLAST search with BLO-
SUM, PAM, or any other classical 20 × 20 matrix, as we

need mutation matrices in which RSA information is also
considered.

Finally, to assess the usefulness of our suggested residue-
specific thresholds, we tried to test the effect of consider-
ing random thresholds for classification of RSA data. In
each simulation, we randomly assigned one or two
thresholds to each amino acid and classified the residues
into two or three classes respectively. Then, with the addi-
tion of RSA information we computed the prediction
accuracy. This procedure was repeated 100 times. The
results of the simulation are summarized in Additional
file 7. It can be observed that in almost all cases the
improvement of the accuracy of prediction is not as high
as the suggested residue specific thresholds.

Application of predicted RSA values for the improvement 
of secondary structure prediction: can we use real-value 
RSAs?
We demonstrated that RSA information can positively
influence the protein SS prediction. However, in practice,
we only know the sequence of the protein, and we may
only rely on the predicted RSA values for the improve-
ment, not on the actual values.

Adamczak et al. have previously shown that the predicted
real-value RSA information can be used to enhance SS pre-
diction [31]. We used predicted values to test the validity
of our approach for this case.

For obtaining predicted RSAs we used RVP-net program
[44] to predict RSAs for a given protein sequence in our
dataset, and then implemented these predicted RSAs into
our method.

For fixed thresholds, the prediction accuracy dropped by
0.17% to 8.26% (data not shown). When we used means
or medians as the residue-specific thresholds, the predic-
tion accuracy was more than original method in all cases.
However, when we used tertiles or mean ± standard devi-
ation as the thresholds, the resulting accuracies were more
than original method in GOR and HMM methods, but
surprisingly, not in Chou-Fasman method (Figure 3).

The reason for such a difference lies presumably in the
nature of Chou-Fasman algorithm. In this algorithm one
must first calculate helix and strand residues and then pre-
dict the coil residues. The RSA for strand residues are gen-
erally less than 50%. We used RVP-net program to predict
the required RSAs. Correlations between observed and
predicted values of RSA for different ranges of solvent
exposure are shown in Figure 4. This Figure suggests that
residues with RSA less than 50% are generally significantly
underestimated. Thus when we used these data for SS pre-
diction, residues in strand conformation might be inaccu-

Table 1: Improvement of protein secondary structure prediction 
with the addition of a "residue-specific" RSA threshold using 
leave-one-out cross-validation, compared with this improvement 
using a fixed 16% RSA threshold. 

Applied Threshold

Fixed (16%) Mean Median

A 0.67 3.93 2.25
C -5.02 -0.05 -0.42
D -1.5 -1.26 -0.94
E -2.77 1.33 -3.71
F 0.18 5.99 7.15
G 0.90 5.98 5.53
H 0.04 -4.23 -4.80
I -19.00 -16.19 -16.17
K 9.53 9.91 11.63
L 0.54 4.20 2.24
M -6.82 -7.71 -8.29
N 1.21 1.71 1.63
P 1.15 1.70 1.47
Q -0.61 -1.49 -3.38
R 1.84 0.87 1.15
S 1.29 6.44 4.85
T 0.20 3.12 2.53
V -2.57 -5.80 -8.33
W -6.18 -1.66 -2.22
Y -0.19 10.04 9.78

Total Improvement 3.46 5.79 5.13

The values show percentage of improvement. The bold-underlined 
values are those values that show improvements when they are 
compared with the original GOR method. See the text for more 
details.
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rately predicted. In Chou-Fasman algorithm this will also
result in incorrect prediction of coils. For two-state RSA
assumption, this problem is not a major one, since many
residues in each class are still predicted correctly. How-
ever, when we classified the RSA data into three groups
(using residue specific thresholds, which are typically less
than 50%) this problem was intensified, since for the res-
idues with the intermediate RSA, only a small ratio of
them are correctly classified as intermediate, and most of
them were wrongly categorized as buried.

Conclusion
In this study we have shown that, combination of actual
and predicted RSA greatly improves the prediction of pro-
tein secondary structure. In practice, one cannot take
advantage of the actual RSA information and it is neces-
sary to use predicted RSA values for this purpose. How-
ever, one should notice that RSA prediction methods are
still far from being faultless. Therefore, it is critically
important to consider the weak points of RSA prediction
methods when incorporating their results into SS predic-
tion methods.

Methods
Dataset
We used WHATIF [45] PDB selection list, released in Jan-
uary 13, 2007. This dataset contained 6970 chains that
have R-factor < 0.25 and resolution < 2.5 Å. The procedure
used to generate this dataset was comparable to the PDB-
select [46] algorithm, but instead of focusing on maximi-
zation of size of the subsets, WHATIF focuses on getting
representative structures of the highest available quality.
For the WHATIF selection an empirical quality value is
defined. This is a composite score depending on the Res-
olution and the R-factor.

The above dataset was used for training and testing tasks
in both the leave-one-out cross-validation and five-fold
cross-validation procedure (see below).

Chou-Fasman method
This method uses a conformational propensity table to
predict SS from an input sequence. For each amino acid,
this table gives a value describing the given amino acid's
propensity to be found in helical structure (H), a strand
(E), or in other structures (coil, C). These propensities are
calculated by measuring the frequencies of each amino
acid associated with a given structure. Then the frequen-

Table 2: Improvement of protein secondary structure prediction with the addition of two "residue-specific" RSA thresholds, compared 
with this improvement using a fixed [4%, 16%] RSA threshold. 

Applied Threshold

Fixed([4%,16%]) Mean ± standard deviation Tertiles

A -3.03 -0.83 -0.93
C 2.63 1.92 0.74
D -0.95 1.70 1.50
E -2.54 -1.02 3.98
F 0.71 10.14 9.44
G 0.90 9.28 7.94
H -4.30 -2.14 -3.30
I -7.49 -14.49 -15.16
K 10.37 26.73 13.31
L 3.04 4.14 2.87
M -3.58 -5.45 -5.57
N -1.21 2.46 -0.10
P 1.14 2.47 1.84
Q 0.53 0.07 -0.76
R 2.80 5.10 3.04
S 4.36 13.13 12.32
T 3.27 8.84 5.81
V 1.57 0.13 -5.72
W -2.30 0.40 0.25
Y 4.17 9.73 10.30

Total Improvement 5.44 8.24 7.17

The values show percentage of improvement using leave-one-out cross-validation. The bold-underlined values are those values that show 
improvements when they are compared with the original GOR method. See the text for more details.
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Table 3: Improvement of protein secondary structure prediction with the addition of a "residue-specific" RSA threshold for Chou-
Fasman and HMM method. 

Applied Threshold

Chou-Fasman HMM

Mean Median Mean Median

A 11.89 10.43 -5.29 -5.41
C 3.33 1.27 4.26 4.93
D 11.73 10.77 5.81 6.66
E 9.16 8.56 -3.55 -3.76
F -0.32 -0.39 1.12 1.55
G 9.11 6.72 12.79 14.25
H 10.92 12.61 2.83 3.28
I -0.01 -1.45 0.08 0.41
K 8.31 5.76 0.25 0.35
L 1.08 1.21 -3.53 -3.49
M 0.17 -0.40 -3.60 -3.62
N 8.38 8.71 7.20 8.12
P 12.32 10.08 11.97 13.56
Q 10.35 9.07 -2.55 -2.53
R 9.67 8.32 -1.21 -1.10
S 11.61 7.89 5.07 5.79
T 1.68 0.16 5.22 6.10
V -0.23 -0.61 2.20 2.50
W -0.57 -0.71 -0.78 -0.84
Y 0.74 0.68 0.87 1.04

Total Improvement 9.99 8.69 3.37 3.92

Applied Threshold

Chou-Fasman HMM

Tertile Mean ± standard deviation Tertile Mean ± standard deviation

A 12.15 12.50 -4.31 -2.69
C 2.64 1.76 3.85 2.93
D 13.61 13.17 8.94 6.01
E 10.35 9.48 -1.97 -1.04
F -0.23 -1.88 -0.17 1.37
G 9.29 8.80 18.48 13.14
H 12.23 11.60 4.48 3.76
I -0.51 0.09 -0.41 0.21
K 8.20 8.57 1.17 1.34
L 0.72 0.49 -3.35 -1.79
M 1.76 -0.81 -1.42 -1.64
N 8.40 8.46 10.72 7.05
P 12.72 14.91 17.33 11.05
Q 10.40 10.65 -0.73 -0.66
R 9.57 9.99 0.28 0.37
S 10.10 13.09 7.41 5.28
T 0.52 0.60 6.44 5.30
V -0.28 -0.20 0.97 2.02
W -0.87 -0.63 -0.50 0.44
Y 0.75 0.92 1.15 1.25

Total Improvement 10.23 10.34 4.32 3.62

The bold-underlined values are those values that show improvements using leave-one-out cross-validation when they are compared with the 
original method. See the text for more details.
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cies were normalized by the prevalence of the amino acid
in the dataset.

Using these values, the algorithm looks for "nucleation
sites" where either 4 of 6 residues are helix formers or 3 of
5 residues are strand formers. These nucleation sites were
then extended as long as the propensity for the given
structure remained.

The algorithm also contained additional heuristics for
strands, exceptional cases, and others. In this work, these
small heuristic amendments are neglected.

In order to add RSA information in this method we classi-
fied amino acids into either two or three (i.e. {B(uried),
Ex(posed)} or {B(uried), I(ntermediate), Ex(posed)})
discrete groups according to their RSAs. Then, we calcu-
lated the propensities of the twenty amino acids, each
classified in one of the two or three groups defined based
on RSA, and predicted the SS of a given sequence accord-
ing to this newly built table.

GOR method
The GOR algorithm [3] and later its newer versions [47],
have always been of the most popular methods for SS pre-
diction. The earliest version of GOR had been based on
information theory [48], that was introduced by Shannon
[49,50] and Fano [51].

In GOR method, for each residue to be predicted, sum of
directional information of eight flanking residues on each
side is calculated. To obtain the information values from

the dataset, the frequency of each of the twenty amino
acids at different positions, up to eight residues on the N-
terminal and C-terminal sides, should be calculated.

We used GOR IV [13] algorithm, which takes into account
another approximation. In this version of GOR, the
assumption is made that certain pair-wise combinations
of amino acids in the flanking region, influence the con-
formation of the central amino acid. Hence the informa-
tion contents calculation formula somewhat changes.

In order to add RSA in these quantities one must further
classify residues. This means that instead of 20 residues in
three SS conformation, we have 20 residues in 6 combina-
tion of SS conformation and RSA states (for two-state clas-
sification i.e. {H, E, C} × {B(uried), Ex(posed)}). For three-
state classification we have 9 combinations of SS confor-
mation and RSA states, i.e. {H, E, C} × {B(uried), I(nterme-
diate), Ex(posed)}.

HMM method
In Hidden Markov Models a stochastic model is trained by
several sequences, to estimate the probabilities of emis-
sions and transitions. If stochastic models are trained by
sequences that have known structures or known func-
tions, the structures and functions for a new sequence can
be determined in a stochastic manner, by calculating the
probability of the sequence being generated by the model.

Here we first trained three HMMs of Helix, Strand and
Coil by training dataset. In order to train the HMMs we
calculated the emission probabilities, the transition prob-
abilities and the initial probabilities by measuring the fre-
quencies of amino acids in each structure and each
transition. Then we determined the most probable path of
a given sequence using Viterbi algorithm[52]. We tested
this system by considering the 20 amino acids as the dis-
crete output symbol of HMMs.

In order to implement RSA in this algorithm we divided
amino acids into either two or three discrete groups
according to their RSAs and trained our models with the
resulting either 40 or 60 states.

RSA and secondary structure assignment
The secondary structure was assigned using DSSP software
[41]. In addition, we used the ASA (Accessible Surface
Area) from DSSP to determine RSA of each residue by
dividing the corresponding ASA value by the maximum
possible ASA for each amino acid.

RSA prediction
We used RVP-net [44] for predicting RSA values. The out-
put of this program is an RSA value between 0% and
100%. We used this value for classifying residues into

Percentage of improvement in secondary structure predic-tion accuracy by addition of RSA information for the GOR (A), Chou-Fasman (B) and HMM(C) methods using leave-one-out cross-validation and tertile, Mean ± SD, mean and median as RSA thresholdsFigure 3
Percentage of improvement in secondary structure predic-
tion accuracy by addition of RSA information for the GOR 
(A), Chou-Fasman (B) and HMM(C) methods using leave-
one-out cross-validation and tertile, Mean ± SD, mean and 
median as RSA thresholds.
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either two (Buried, Exposed), or three (Buried, Intermedi-
ate, Exposed) classes.

Cross-validation
Leave-one-out cross-validation (LOOCV)
This procedure involves removing one chain from the
original training set (which contain 6970 chains), using
the remaining chains as the training set and then predict-
ing the SS of the removed chain. This process was repeated
until all chains have been left out. The final reported val-
ues in this work are actually average values over these
6970 experiments.

Five-fold cross-validation
We divide randomly the training set into 5 parts, four of
which are used for training and the rest for testing. This
process is repeated 10 times to ensure that the order of the
chains that are used, do not affect the prediction.

Accuracy measures for evaluation of prediction
Q3: Prediction accuracy has been assessed by the percent-
age of correctly predicted residues (Q3) for a three-state
description of secondary structure (Helix, Strand and
Coil), where Q3 is the percentage of amino acids correctly
predicted as helix, sheet, or coil if all amino acids are clas-
sified in one of the three groups.

The value of Q3 is calculated using the following formula:

Standard deviation
The standard deviation is defined by:

Q3 =

Number of correctly predicted amino acids in structure XX
X H,S,C

Total number of amino acids
=

∑
×100

(1)

SD
Xi X
n

= ∑ −
−

( )2

1
(2)

Correlations between observed and predicted values of RSA for different ranges of solvent exposure, scaled to [0,1] intervalFigure 4
Correlations between observed and predicted values of RSA for different ranges of solvent exposure, scaled to [0,1] interval. 
The density of vectors is normalized in each column independently. Boxes with maximum density are marked in black, while 
boxes with minimum density are shown in white. Other colors are selected proportionally to the densities.
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where Xi is our variable,  is the mean and n is the total

number of observations. In this study we calculate two
different standard deviations. The first one that is used in
LOOCV is the standard deviation of Q3 of 6961 chains

and the second one which is used in Five-fold cross-vali-
dation is the standard deviation of Q3 in 10-time repeated

cross-validation.
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