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Abstract
Background: The functional characterization of newly discovered proteins has been a challenge
in the post-genomic era. Protein-protein interactions provide insights into the functional analysis
because the function of unknown proteins can be postulated on the basis of their interaction
evidence with known proteins. The protein-protein interaction data sets have been enriched by
high-throughput experimental methods. However, the functional analysis using the interaction data
has a limitation in accuracy because of the presence of the false positive data experimentally
generated and the interactions that are a lack of functional linkage.

Results: Protein-protein interaction data can be integrated with the functional knowledge existing
in the Gene Ontology (GO) database. We apply similarity measures to assess the functional
similarity between interacting proteins. We present a probabilistic framework for predicting
functions of unknown proteins based on the functional similarity. We use the leave-one-out cross
validation to compare the performance. The experimental results demonstrate that our algorithm
performs better than other competing methods in terms of prediction accuracy. In particular, it
handles the high false positive rates of current interaction data well.

Conclusion: The experimentally determined protein-protein interactions are erroneous to
uncover the functional associations among proteins. The performance of function prediction for
uncharacterized proteins can be enhanced by the integration of multiple data sources available.

Background
Since the completion of sequencing the human genome
[1], discovering the underlying principles of interactions
and the functional roles of proteins has been in the spot-
light in the post-genomic era. The functional characteriza-
tion of newly determined proteins has become one of the
most crucial challenges. The initial efforts have been car-
ried out by sequential or structural homology searches
using computational algorithms such as FASTA [2] and

BLAST [3], and the tasks of predicting protein function are
still progressing with a massive amount of data [4,5].

The availability of complete genomes in a wide variety of
organisms has shifted the single-gene-based function pre-
diction problem to a genome-level. Several approaches
have been introduced on the basis of correlated evolution
mechanisms of genes. The conserved gene neighborhood
across different, distantly related genomes reveals the
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potential functional linkages [6]. The domain fusion anal-
ysis infers a pair of proteins that interact with each other
and thus perform a related function [7]. The phylogenetic
profiles represent the pattern of presence or absence of a
protein in a set of organisms. Two proteins are considered
to be functionally linked if they have the same phyloge-
netic profiles [8].

In recent years, the data generated by high-throughput
techniques have facilitated the functional classification.
For example, microarrays monitor the expression levels of
thousands of genes, and the correlated expression profiles
of the genes can be interpreted as their functional related-
ness [9]. Protein-protein interaction data, enriched by
high-throughput experiments including yeast two-hybrid
systems [10] and mass spectrometry [11], have provided
the important clues of functional associations between
proteins. The integrated protein interaction networks have
been built from the heterogeneous interaction data
sources. Accordingly, numerous computational methods
have been supplemented for uncovering the functional
information of uncharacterized proteins in the networks.

In this study, we explore an effective methodology for pre-
dicting functions of unknown proteins using the connec-
tivity of protein interaction networks. Previously, a
number of approaches have been proposed to predict pro-
tein function from protein interaction networks. The
neighbor counting method [12], which is also called the
majority-rule based method, searches the most common
function among the neighbors, i.e., interacting partners,
of an unknown protein. The commonality of the func-
tions of neighbors can be statistically evaluated. Hishigaki
et al. [13] used a chi-square formula to calculate the statis-
tical significance of the functions of neighbors. Because
the neighbor counting and related methods focus on the
direct neighborhood, they are problematic if an unknown
protein has a small number of interacting partners anno-
tated or a large number of false positive interactions.

Several graph theoretic approaches took into account the
global topology of protein interaction networks. Vazquez
et al. [14] and Karaoz et al. [15] attempted to maximize
the functional consistency through neighboring in the
whole network. Nabieva et al. [16] applied the concept of
functional flow that is propagated from an annotated pro-
tein to unannotated proteins. Probabilistic approaches
have also been suggested for function prediction. Deng et
al. [17] introduced a statistical framework using the
Markov Random Field (MRF) model in a Gibbs distribu-
tion. They used a quasi-likelihood approach to estimate
the parameters in the MRF model. Lee et al. [18] devel-
oped a kernel logistic regression (KLR) method based on
diffusion kernels and incorporated all indirect neighbor-
hoods in the networks. Chua et al. [19] also considered

the indirect neighbors with length-2. They computed the
functional similarity score between two proteins, which
was derived from the symmetric difference of neighbors
and the reliability of the data sources used. Kirac et al. [20]
used the annotation patterns in the neighborhood for the
function prediction. They calculated the similarity
between the annotation pattern of an unknown protein
and the set of annotation patterns for each function.

Most of the previous approaches to predict protein func-
tion from protein interaction networks are based on the
assumption that two interacting proteins have a similar
function or share functions. However, these tasks overes-
timate the tendency of functional links between the pro-
teins that interact with each other. In addition, it is
recognized that current interaction data include a substan-
tial number of false positives and false negatives although
they have been curated using various computational tech-
niques. It signifies that the high-throughput experimental
methods frequently generate spurious data, and the set of
interactions accumulated in a large scale is still incom-
plete. Because of the inappropriateness of direct use of
current interaction data for function prediction, the inte-
gration of functional knowledge elicited from other bio-
logical resources is necessary.

In this article, we propose a novel probabilistic approach
for function prediction from protein interaction net-
works. We integrate the connectivity of protein interaction
networks with the semantic knowledge in the Gene
Ontology (GO) database for the purpose of improving the
accuracy of function prediction. First, we measure the
functional similarity between interacting proteins using
GO. Next, we present a probabilistic framework to com-
pute the confidence in function prediction for each
unknown protein. Our experimental results show that this
approach is robust to current erroneous data and thus pre-
dicts function more accurately than previous methods.

Integration of interactions with semantic knowledge
Semantic knowledge, which is also called ontology, is the
representation in which concepts are described by their
meanings and their relationships to each other [21]. It is
typically represented as a hierarchical tree structure or a
directed acyclic graph (DAG). The Gene Ontology (GO)
[22] is currently one of the most widely used databases
that provide the semantic knowledge related to biological
processes and molecular functions. Because the GO terms
and their annotations are continually updated as research
progresses, they might include errors. However, we
employ the GO for the integration with protein-protein
interactions because of its comprehensiveness. The rela-
tionships between GO terms and the annotations can be
exploited to measure the functional similarity between
interacting proteins.
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Recently, various measurements of functional similarity
between proteins using GO have been proposed [23-28].
Such measures can be classified into two distinct catego-
ries: structure-based approaches and annotation-based
approaches. Suppose each protein is annotated on the
most specific GO terms on the paths from the root term.
Structure-based approaches utilize the path length or the
common parent terms between two GO terms, on which
each interacting protein is annotated. Two interacting pro-
teins are functionally more similar if two GO terms whose
annotations include each of them are closer each other, or
the GO terms have a larger number of common parent
terms in the GO structure. As a combination of the two
factors, the path length from the root to the most specific
common parent term can be taken into consideration.
(See Methods for details of structure-based approaches.)
However, as a weakness, they depend on the critical
assumption that all the edges in the structure represent the
same specificity.

Annotation-based approaches focus on the number of
proteins annotated on GO terms. They suppose the GO
annotations follow the transitivity property, i.e., if a pro-
tein is annotated on a term T, then it is also annotated on
more general terms on the paths from T to the root in the
GO structure. The set of proteins annotated on the root
term becomes transitive. Under this property, the number
of annotated proteins on a term T is capable of quantify-
ing the specificity of T. The functional similarity between
interacting proteins is then measured based on the com-
monality of the annotations of two terms on which they
are annotated. The more annotations two terms share, the
more similar they are. The measured similarity can be also
normalized by the number of annotated proteins on the
most specific individual terms whose annotations include
each interacting protein. (See Methods for details of anno-
tation-based approaches.) Annotation-based approaches
generally perform better than structure-based approaches
when the annotations in GO are fairly complete.

Function prediction algorithm

Our approach predicts multiple functions for each pro-
tein, which is functionally uncharacterized but has the
evidence of interactions. It is based on the Bayesian for-
mula using the functional similarity measured by the met-
rics described above. Suppose protein-protein interaction
data contain a set of n distinct proteins,  = {p1,...,pn}. In

, p1,...,pk (k <n) are functionally annotated and pk+1,...,pn

are unannotated. We predict functions of an unannotated

protein pi where k <i ≤ n. Let  be the set

of proteins annotated on a function f, and  be

the functional similarity between interacting proteins, pi

and  where 1 ≤ j ≤ m. If there is no interaction evidence

between pi and , then the functional similarity 

becomes 0. According to the Bayes theorem, the condi-
tional probability that pi has the function f given

 is defined as:

where P(f = 1) is the prior probability that pi has the func-

tion f, P ( ) is the probability that pi interacts

with  having the functional similarity of

, and P( |f = 1) is the conditional

probability that pi interacts with  having the

functional similarity of  given that pihas the

function f. Based on the assumption that the events of the

interactions between pi and  independently

occur,

Equation 1 is then transformed into

where P(f = 0) is the probability that pi does not have the
function f.

Let Mf be the maximum functional similarity. The allowa-

ble amount in functional similarity for pi and  to have

the same function f can be Rf = Mf - . We assume

P( |f = 1) follows a binomial distribution.

where Pf is the probability that two proteins have the same
function f. We can approximate the binomial distribution
to a normal distribution with the mean μ and variance σ2.
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In the same way,

Then, Equation 3 can be re-written as

where

μf+ and  are calculated by the functional similarity

between pi and the proteins annotated on f. Similarly, μf-

and  are calculated by the functional similarity

between pi and the proteins that are not in the annotation

of f. P(f = 1) becomes the ratio of the number of proteins
having f to the total number of known proteins, and P(f =
0) is 1 - P(f = 1). As an alternative to Formula 7, we com-

pute log(λf), which can be the prediction conifdence for pi

to the function f.

Results
Functional linkage of protein-protein interactions
We assessed the tendency of functional linkage between
interacting proteins in current interaction databases. We
extracted the interaction data of Saccharomyces cerevisiae
from three databases: 12352 interactions from MIPS [29],
17186 from DIP [30] and 56860 from BioGRID [31]. We
then computed the functional similarity between interact-
ing proteins using two selected similarity measures: a
structure-based method and an annotation-based
method. The functional hierarchy and annotations from
FunCat [32] in MIPS were used for the similarity meas-
ures. We also calculated the functional consistency using
the Jaccard index.

First, we measured the functional similarity of each inter-
acting protein pair using the structure-based method in
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Distribution of interacting proteins with respect to the (a) structure-based functional similarity, (b) annotation-based functional similarity and (c) functional consistencyFigure 1
Distribution of interacting proteins with respect to the (a) structure-based functional similarity, (b) annota-
tion-based functional similarity and (c) functional consistency. The interaction data from the MIPS, DIP and BioGRID 
databases were used. The functional categories and annotations were obtained from FunCat in MIPS. (a) The functional similar-
ity of each interacting protein pair was measured by the maximum structure-based similarity of the pair-wise functions they 
have in a hierarchy. More than 60% of interacting pairs have the functional similarity less than 0.4. (b) The functional similarity 
of each interacting protein pair was also measured by the maximum annotation-based similarity of the pair-wise functions they 
have. Around 60% of interacting pairs have the functional similarity less than 0.2. (c) The functional consistency of each inter-
acting protein pair was finally measured by the proportion of the common functions they share. As similar to the distribution in 
(b), more than 60% of interacting pairs have the functional consistency less than 0.2.
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Formula 13. Figure 1(a) shows the distribution of inter-
acting protein pairs with respect to their structure-based
functional similarity. Importantly, only 38% of the inter-
acting pairs in MIPS, 37% in DIP and 35% in BioGRID
have the functional similarity of greater than 0.8. The
other interacting pairs in the databases have very low rates
of similarity which are less than 0.4. Moreover, more than
30% of the interacting pairs have the functional similarity
of 0, i.e., they do not have any common functions. It is
interesting that there are no interacting pairs with the
functional similarity in the range between 0.4 and 0.8.
The result indicates that more than 60% of the interac-
tions in the databases do not perform any similar func-
tions.

Next, we measured the functional similarity of each inter-
acting protein pair using the annotation-based method in
Formula 14. Figure 1(b) shows the distribution of inter-
acting protein pairs with respect to their annotation-based
functional similarity. A very few interacting pairs in the
three databases are co-annotated on specific functional
categories. Furthermore, a large fraction of the interacting
pairs, 56% in MIPS and 58% in DIP and BioGRID, have
the similarity less than 0.2, i.e., they rarely have common
annotations. It indicates that around 60% of the interact-
ing proteins in the databases are not co-annotated on any
specific functions.

Finally, we observed the functional consistency of each
interacting protein pair using the Jaccard index. According
to the transitivity property of functional annotations, if a
protein is annotated on a function, then it also has more
general functions on the paths towards the root in the
hierarchical structure. We calculated the number of com-
mon functions among the number of all distinct func-
tions of an interacting protein pair. Figure 1(c) shows the
distribution of interacting protein pairs with respect to
their functional consistency. The overall distributing pat-
tern is similar to that in Figure 1(b). Only 18% of the
interacting pairs in MIPS, 21% in DIP and 16% in BioG-
RID have the consistency of greater than or equal to 0.4.
On the other hand, 63% in MIPS and DIP and 65% in
BioGRID have the consistency of less than 0.2, and their
common functions are likely to be very general ones,
which are located on the upper levels in the functional
hierarchy. This result thus implies that more than 60% of
the interacting proteins in the databases do not share any
specific functions.

Comparison of functional similarity measurements
We evaluated the effectiveness of the functional similarity
measurements to choose the best one for our function
prediction approach. We used the full version of protein-
protein interaction data of Saccharomyces cerevisiae from
DIP [30], which includes 4928 distinct proteins and

17186 interactions. The GO terms and their annotations
were downloaded from the Gene Ontology database [22].
Upon selecting the GO terms that have the annotation of
two or more proteins in biological process and molecular
function categories, we obtained total 2456 GO terms. In
both categories, the root terms have the annotations of
5871 proteins. As a structure-based similarity measure-
ment, we chose Formula 13, which is the most advanced
metric in the category. As an annotation-based similarity
measurement, we used Formula 14 because a previous
study [24] has shown that it has the best performance. We
compared the functional similarity of interacting proteins
to their interaction reliability that is measured based on
connectivity [33].

We first evaluated interacting pairs by functional co-occur-
rence in the categories from FunCat [32] in MIPS. We
sorted the pairs in a descending order by similarity. We
then grouped every 500 interacting pairs in the order and
calculated the fraction of the pairs, which are co-occurred
in the same functional categories, for each group. Figure 2
shows the alteration of the functional co-occurrence rates.
The first several groups have very high co-occurrence rates,
but the rates substantially decrease after the 8th group. As
expected from Figure 1, the interacting pairs after the
7000th, which correspond to around 60% of total pairs,
remain in low co-occurrence rates. When we consider the
first eight groups, the annotation-based similarity showed
better performance than the structure-based similarity.
Using the structure-based similarity, the 5th, 6th and 7th
groups have higher co-occurrence rates rather than the
first four groups. The structure-based and annotation-
based functional similarity outperformed the connectiv-
ity-based interaction reliability. The interacting protein
pairs with high similarity have higher functional co-occur-
rence rates, and those with low similarity have lower rates.

Next, we evaluated the ordered interacting pairs by func-
tional consistency. Similar to the calculation in the previ-
ous section, the functional consistency was computed by
the ratio of the number of common functions to the
number of all distinct functions of an interacting protein
pair. Figure 3 shows the alteration of the average func-
tional consistency of every 500 pairs. The pattern of func-
tional consistency with respect to similarity is comparable
to that of functional co-occurrence in Figure 2. For the first
four groups, the annotation-based similarity measure
showed the higher consistency than the structure-based
similarity and the connectivity-based interaction reliabil-
ity. For the groups after the 7000th pair, the functional
consistency is lower than 0.1. As a result from Figure 2 and
3, the annotation-based method in Formula 14 performs
better than the others for measuring the functional simi-
larity between interacting proteins.
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We additionally investigated the appropriateness of func-
tional similarity, which is scored as a real number
between 0 and 1. We measured the functional similarity
using Formula 13 and 14, and divided the interacting

pairs into ten groups by the range of 0.1 of similarity. We
then calculated the average functional co-occurrence and
functional consistency for each group. The results are
shown in Figure 4(a) and 4(b). Both functional co-occur-

Functional co-occurrence rates of interacting protein pairs sorted by their similarity in a descending orderFigure 2
Functional co-occurrence rates of interacting protein pairs sorted by their similarity in a descending order. We 
compared three similarity measurements by functional co-occurrence. The interaction data from DIP were used. For each 
interacting protein pair, we measured the structure-based similarity in Formula 13, the annotation-based similarity in Formula 
14 and connectivity-based interaction reliability in [33]. For the structure-based and annotation-based similarity, we used the 
GO terms and annotations in Biological Process and Molecular Function categories. We then sorted the pairs by their similar-
ity in a descending order, and calculated the average functional co-occurrence rates for every 500 pairs. That is, we inspected 
how many pairs among 500 pairs co-occurred in the same functional categories from FunCat in MIPS. The interacting pairs 
with high structure-based and annotation-based similarity have higher rates of functional co-occurrence than those with high 
connectivity-based reliability. Moreover, in the range of top 4000 pairs, the annotation-based similarity performs better than 
the structure-based similarity.
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rence and functional consistency monotonically increase
as functional similarity becomes higher. In Figure 4(a), a
small variation of functional co-occurrence is shown up to
0.7 of similarity by the structure-based method. However,
when we used the annotation-based method, low co-
occurrence rates are shown with below 0.3 of similarity
and a rapid growth is appeared between 0.3 and 0.5 of

similarity. The interacting protein pairs, whose similarity
is greater than 0.7, have the co-occurrence rates that is
higher than 0.94. However, according to the observation
in Figure 1(b), the amount of them corresponds to less
than 0.04% of the total number of interactions. In Figure
4(b), the growing patterns of functional consistency are
similar to those of the functional co-occurrence. However,

Functional consistency of interacting protein pairs sorted by their similarity in a descending orderFigure 3
Functional consistency of interacting protein pairs sorted by their similarity in a descending order. We com-
pared the same similarity measurements to those in Figure 2 by functional consistency. Using the sorted interacting pairs by 
their similarity in a descending order, we calculated the average functional consistency for every 500 pairs. The functional con-
sistency of a pair is computed by the ratio of the number of common functions to the number of all distinct functions that the 
two proteins have. The general pattern of functional consistency is similar to that of functional co-occurrence in Figure 2. 
When we use the annotation-based similarity, the functional consistency monotonically decreases as the similarity of interact-
ing pairs declines.
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when we use the annotation-based method, functional
consistency gradually increases across all the range of sim-
ilarity. As a result from Figure 4, the annotation-based
method can correctly quantify the functional similarity
between interacting proteins.

Cross-validation of function prediction
We assessed the performance of our function prediction
approach by the leave-one-out cross-validation method.
For each distinct protein in the actual annotations from
FunCat in MIPS, we assumed it was un-annotated and pre-
dicted its functions. The prediction performance was eval-
uated using precision and recall (also called true positive
rate). We transformed the format of the actual annota-
tions, from the set of proteins annotated on each func-
tional category to the set of functions for each protein. Let
Mi be the set of functions from the actual annotation in
MIPS for a protein pi, Ni be the set of functions predicted
by our algorithm for pi, and Ki be the set of common func-
tions of Mi and Ni. Precision and recall are then described
as:

and

where |Ki| is the size of the set Ki and n is the total number
of distinct proteins that are annotated on at least one func-
tional category and have the interaction evidence.

Figure 5 shows the precision and recall plots with respect
to the threshold of prediction confidence, which is a user-
dependent parameter in our algorithm. When we use 200
as the threshold of prediction confidence, our algorithm
predicts no or a very few functions for each protein, but
most of the functions are correctly predicted comparing to
the actual annotations. It results in the precision of greater
than 0.9. As a lower threshold is used, recall increases
while precision decreases monotonically. Approximately,
when the recall is 0.2 and 0.4, we had the precision of 0.8
and 0.5, respectively.

Comparison of prediction performance
We compared the prediction performance with two previ-
ous methods, which are currently the most competing.
One is the approach weighting the functional similarity of
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(a) Functional co-occurrence and (b) functional consistency of interacting protein pairs with respect to their functional similar-ityFigure 4
(a) Functional co-occurrence and (b) functional consistency of interacting protein pairs with respect to their 
functional similarity. We investigated the functional co-occurrence and functional consistency of the interacting protein 
pairs from DIP with respect to their functional similarity rates in the range between 0 and 1. The similarity was measured by 
Formula 13 and 14. As the similarity by both measurements becomes higher, the functional co-occurrence and consistency 
monotonically increase. However, the annotation-based similarity performs better than the structure-based similarity because 
there are not enough variations of functional co-occurrence and consistency up to 0.7 of the structure-based similarity. It indi-
cates that the annotation-based method correctly quantified the functional similarity of interacting proteins.
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direct and indirect neighbors (level-2 neighborhood)
[19], and the other is the prediction method based on the
annotation patterns in the neighborhood [20]. The first
method computes the likelihood that an unknown pro-
tein p has a function using the functional similarity
weights between p and level-1 or level-2 neighbors. The
functional similarity weight of two proteins is calculated
by the commonality of their neighbors in the protein
interaction network. Since we used the same interaction
data from DIP as inputs for all the methods, we did not
consider the reliability of the data source. We used a
threshold of the likelihood to generate the output set of
predicted functions for each protein. We then obtained
different output sets by various thresholds. The sets of pre-
dicted functions become larger as the threshold lowers.

The second method constructs the set of annotation
neighborhood patterns for each function, and computes
the similarity between the annotation neighborhood pat-
tern of an unknown protein and the set of annotation
neighborhood patterns of each function. We used the
annotations from the functional categories in MIPS since
they are used as a ground truth in our experiment. We set
the parameter d = 1 and did not consider the edge weights,

i.e., assigned 1 to each edge weight. We used the similarity
of annotation neighborhood patterns as a threshold.

Figure 6 shows the relationships of precision and recall
resulted from the three methods. Our functional similar-
ity-based probabilistic approach remarkably outperforms
the annotation pattern-based method. Because the anno-
tation pattern-based method did not distinguish between
general and specific functions, it could not predict general
functions with higher confidence than specific functions.
Thus, even though it precisely predicted the specific func-
tions, the overall accuracy of the annotation pattern-based
method was much lower than those of the other methods.
Our probabilistic approach also has higher precision than
the FS weighted method when the recall is greater than
0.07. When the recall is greater than 0.2, our approach has
the precision of more than 0.05 points higher than the FS
weighted method. This result indicates that integrating of
protein interaction data with the annotations in GO
explicitly improves the function prediction accuracy.
Because the other two methods directly use the binary rep-
resentation of connectivity from current interaction data,
they are unable to overcome the critical problem of the
interactions that are false positive or not related to func-

Precision and recall plots by cross-validation for protein function predictionFigure 5
Precision and recall plots by cross-validation for protein function prediction. The performance of our function pre-
diction algorithm was assessed by the leave-one-out cross-validation using the proteins that appear in the interaction data from 
DIP and are annotated on the functional categories in MIPS. As a higher threshold of prediction confidence is used, precision 
increases whereas recall decreases.
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tional connections, even though the FS weighted method
may partly solve the false negative interaction problem.

In the experiment above, we implemented the function
prediction algorithms using a threshold of prediction con-
fidence. If a protein has low rates of prediction confidence
for any function, the prediction result for the protein is
not generated. For the comprehensive comparison of the
prediction accuracy for all proteins, we implemented the
algorithms again using a threshold of the number of pre-
dicted functions, δ. That is, for each protein, δ best pre-
dicted functions are generated as an output. As a set of
functions to be predicted, we used the ones on the same
level in a hierarchy. The previous experiment used all the
functions in the hierarchical structure. However, predict-
ing very general functions is meaningless when a small
number of functions are predicted for each protein. We
thus selected only the functional categories and their
annotations on the third level from the top in the func-
tional hierarchy. We then evaluated the prediction accu-
racy using precision, but if a protein had the functions less
than δ in the actual annotations from MIPS, the number
of annotated functions, Mi, was used instead of the

number of predicted functions, Ni (equivalent to δ), in
Formula 9. Table 1 shows the prediction accuracy of our
functional similarity-based probabilistic approach com-
paring to the FS weighted averaging method, annotation
pattern-based method and neighborhood-based chi-
square method. Overall, our approach outperforms the
others across any δ value up to 6. It means our approach
predicts the specific functions of any protein with higher
accuracy than the previous methods.

Function prediction for unknown proteins
According to the most recent version of functional anno-
tations in MIPS, a significant number of uncharacterized
proteins in Saccharomyces cerevisiae still exist. We imple-
mented our algorithm to predict their functions. Among
the unknown proteins in MIPS, we selected only the pro-
teins that have more than three interacting partners in DIP
to additionally avoid the effect of false positive interac-
tions. For each selected protein, our algorithm generated
a list of functions with prediction confidence, which is the
value of log(λf) where λf is calculated by Formula 8. A pro-
tein can thus correspond to more than one predicted func-
tion with different confidence rates. Table 2 shows the list

Performance comparison of three function prediction methodsFigure 6
Performance comparison of three function prediction methods. The prediction performance by precision-recall of 
our functional similarity-based probabilistic approach was compared to that of two competing methods: the FS weighted aver-
aging method and the pattern-based prediction method. The methods could predict the different number of functions for each 
protein with a selected threshold. Each method then generated several different output sets by varying the threshold. We cal-
culated the precision and recall of each output set. Our approach remarkably outperforms the annotation pattern-based 
method and has higher precision than the FS weighted averaging method when the recall is greater than 0.07.
Page 10 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:382 http://www.biomedcentral.com/1471-2105/9/382
of predicted functions when we use 32 as the threshold of
prediction confidence and filter out excessively general
functions, e.g., the categories on the first or second level in
the functional hierarchy from MIPS. The functions of
YJL058C and YGR163W were predicted with high confi-
dence, greater than 100. These results suggest new func-
tional annotations for currently unknown proteins. The
whole prediction results with 10 as the threshold of pre-
diction confidence are provided in the supplementary
material [see Additional file 1].

Prediction of subcellular localization
Our probabilistic framework can be also applied to the
prediction of subcellular localization. All implementation
was the same to the function prediction process except the

calculation of functional similarity. The functional simi-
larity was measured with the GO terms from cellular com-
ponent category in the GO database. We used total 556
GO terms and their annotations. Each interaction thus has
different similarity from previous experiments. Compar-
ing to the distribution of interacting pairs with respect to
the functional similarity in Figure 1, much larger portion
of them have low rates of similarity, which are less than
0.2. For each unknown protein, our algorithm generated
a list of subcellular components with prediction confi-
dence. A protein can thus correspond to more than one
predicted subcellular component with different confi-
dence rates. The localization prediction results are listed
in Table 3 when we use 40 as the threshold of prediction
confidence. The localization of YJR033C, YJR091C and

Table 1: Function prediction accuracy comparison

δ 1 2 3 4 5 6

functional similarity-based method 0.446 0.432 0.434 0.451 0.472 0.490
FS weighted averaging method 0.417 0.406 0.415 0.437 0.458 0.479

annotation pattern-based method 0.306 0.311 0.321 0.340 0.362 0.386
neighborhood-based chi-square method 0.294 0.302 0.319 0.343 0.370 0.398

The prediction accuracy (precision) of our functional similarity-based probabilistic approach was compared to three previous methods, the FS 
weighted averaging method, the annotation pattern-based method and the neighborhood-based chi-square method. The methods predicted the 
fixed number δ of functions for each protein. Our approach outperforms the others across any δ up to 6.

Table 2: Function prediction results for unknown proteins

unknown predicted function confidence

ID in MIPS description

YAL027W 02.16.01 alcohol fermentation 95.1
YAL053W 01.05 C-compound and carbohydrate metabolism 34.3
YAR027W 20.01.27 drug/toxin transport 66.0
YBL046W 01.02 nitrogen, sulfur or selenium metabolism 34.2
YBL046W 14.07.03 modification by phosphorylation/dephosphorylation 37.0
YCL028W 01.03.07 deoxyribonucleotide metabolism 62.7
YFL042C 02.16.01 alcohol fermentation 46.3
YGL230C 20.01.11 amine/polyamine transport 32.7
YGR163W 14.13.04 lysosomal and vacuolar protein degradation 59.9
YGR163W 20.01.01 ion transport 64.1
YGR163W 34.01.01 homeostasis of cations 115.2
YHL042W 14.07.02.01 glycosylation/deglycosylation 49.2
YHR105W 14.07.02.01 glycosylation/deglycosylation 49.2
YHR140W 20.01.27 drug/toxin transport 66.0
YJL058C 01.04 phosphate metabolism 36.0
YJL058C 01.06 lipid, fatty acid and isoprenoid metabolism 215.7
YJL058C 42.04 cytoskeleton/structural proteins 42.6
YJL122W 10.03.01.01 mitotic cell cycle 34.4
YLR376C 10.03.02 meiosis 36.6
YLR376C 10.03.04 nuclear or chromosomal cycle 37.1
YKL065C 20.01.11 amine/polyamine transport 50.3
YKL065C 32.05.01 resistance proteins 51.9
YPL264C 01.20.19.01 metabolism of porphyrins 54.9

For each unknown protein, our probabilistic approach predicted a set of functions with prediction confidence, log λ. The prediction results, whose 
confidence is greater than 32, were listed. A protein can have more than one function predicted with different confidence rates.
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YOR076C was predicted with very high confidence,
greater than 200.

Discussion
Through recent advances of high-throughput techniques,
a significant amount of protein-protein interaction data
have been accumulated. Protein function has been pre-
dicted from the interaction data because the evidence of
interaction can be interpreted as functional links. How-
ever, we observed only a small fraction of current interac-
tion data from major interaction databases are related to
functional linkage. The results in Figure 1 indicate that
more than or around 60% of interacting protein pairs are
not linked by similar functions. In other words, at most
40% of protein pairs have been motivated by similar func-
tions. This rate goes beyond the potential false positives of
experimentally determined interactions, claimed in [34].
This observation has been also demonstrated by the lim-
ited accuracy of previous function prediction methods,
which are based on the connectivity of protein interaction
networks, as shown in Figure 6 and Table 1.

Our function prediction algorithm uses a probabilistic
formula derived from functional similarity between pro-
teins that interact with each other. The functional similar-
ity can be measured using the structure or annotations
from Gene Ontology (GO). Various measurements for the
functional similarity were evaluated in terms of functional
co-occurrence and consistency of interacting pairs. The

experimental results in Figure 2, 3 and 4 show that the
annotation-based method performs the assessment of
similarity better than the structure-based method. It indi-
cates that the current GO structure itself is an imperfect
resource to identify functional linkage. In our experi-
ments, function prediction has been conducted with yeast
protein-protein interaction data. However, our probabil-
istic framework can be well-applicable to higher-level
organisms because of its efficiency.

Conclusion
Functional characterization of proteome is a central goal
in the field of Bioinformatics. The experimentally deter-
mined protein-protein interactions are crucial data
sources to uncover the functional knowledge of uncharac-
terized proteins. However, a pre-process to assess the
functional linkage of interacting proteins from current
interaction data is required for predicting protein function
successfully.

In this article, we presented a novel concept for integrating
the connectivity of protein interaction networks with
already published annotation data in Gene Ontology
(GO). Our results imply that function prediction from
protein interaction networks has been calibrated by inte-
grating with the functional knowledge from GO. Clearly,
the prediction accuracy can be more improved by the inte-
gration of multiple data sources available, which are rele-
vant to functional linkage. Furthermore, developing

Table 3: Localization prediction results for unknown proteins

unknown predicted subcellular localization confidence

ID in MIPS description

YER070W 755 mitochondria 90.7
YJR033C 750 nucleus 215.9
YJR091C 722 integral membrane/endomembranes 49.6
YJR091C 725 cytoplasm 213.2
YJR091C 770 vacuole 52.1
YLL038C 705 bud 50.0
YML023C 722 integral membrane/endomembranes 119.8
YML023C 750 nucleus 191.3
YNL293W 705 bud 81.0
YNL293W 715 cell periphery 69.6
YNL293W 730 cytoskeleton 54.3
YOR076C 750.05 nucleolus 215.8
YOR076C 755 mitochondria 60.3
YOR231W 705 bud 168.7
YOR231W 715 cell periphery 58.0
YOR231W 730 cytoskeleton 45.3
YOR231W 750 nucleus 88.0

For each unknown protein, our probabilistic approach predicted a set of subcellular components with the prediction confidence, log λ. The 
prediction results, whose confidence is greater than 40, were listed. A protein can have more than one subcellular component predicted with 
different confidence rates.
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effective integration models for the explosive amount of
heterogeneous biological data sources is promising in
future research for functional knowledge discovery.

Methods
Structure-based functional similarity measures
To measure the functional similarity of an interacting pro-
tein pair, we can use the path length between two GO
terms in the GO structure. We first find the most specific
GO terms on which each interacting protein is annotated,
and then selects the term pair that has the shortest path
between the terms. The shortest path length can be scaled
down by the maximum depth of GO and applied log
smoothing.

where Ti and Tj are the GO terms whose annotations
include the interacting proteins p1 and p2, respectively,
and depth denotes the maximum path length from the
root term to a leaf.

As an alternative way, we can consider the proportion of
common parent GO terms. A set of parent terms of a term
Ti represents all the terms on the paths towards the root
from Tiin the DAG structure. Ti is exclusive and the root
term is inclusive. The similarity is then calculated by the
common parent GO terms over all distinct parent GO
terms.

where  and  is the set of GO parent terms of Ti and

Tj, respectively.

As a combination of the two factors, path length and com-
mon parent terms, we can use the maximum path length
from the root to the most specific common term on which
the interacting proteins are annotated together. It is then
normalized by the path lengths from the root to the most
specific terms which have the annotation of each interact-
ing protein.

where Tr is the root term and Tc is the most specific com-
mon parent term of Ti and Tj. Figure 7 shows the examples
of the structure-based similarity by Formula 13. The simi-
larity between a parent and a child is higher than that of

siblings, and the similarity of siblings on a lower level is
higher than that of siblings on a higher level in the hierar-
chy. The functional similarity of two proteins then
becomes the maximum similarity of the pair-wise func-
tions they have.

Annotation-based functional similarity measures
In Information Theory, self-information is a measure of
the information content associated with the outcome of a
random variable. The amount of self-information con-
tained in a probabilistic event c depends on the probabil-
ity P(c) of the event. Specifically, the smaller the
probability of the event, the larger the self-information
associated with receiving information when the event
indeed occurs. The information content of a concept C is
defined as the negative log likelihood of C, -log P(C). The
similarity between two concepts is measured by their
commonality, i.e., the information content of the most
specific common concept [35].

In the same manner, the information content of a GO
term T can be represented as -log P(T) where P(T) is the
proportion of the proteins annotated on T, and the simi-
larity of two terms Ti and Tj is calculated by -log P(Tk)
where Tk is the most specific common term of Ti and Tj. To
measure the functional similarity of interacting proteins
p1 and p2, we list all pair-wise terms that have the annota-
tions of p1 and p2 respectively and select the maximum
similarity of the pairs. Suppose Sk(p1,p2) is a set of proteins
annotated on the GO term Tk that includes both p1 and p2
in the annotation. The functional similarity between p1
and p2 is defined as:

Figure 7 shows the examples of the annotation-based sim-
ilarity by Formula 14. The functional similarity can be
normalized by the number of annotated proteins on the
individual terms, Ti and Tj.
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Examples of structure-based similarity and annotation-based similarity between functions in a hierarchyFigure 7
Examples of structure-based similarity and annotation-based similarity between functions in a hierarchy. Each 
circle represents a function, and each edge is a general-to-specific relationship between two functions. The depth of a function 
is the path length from the root to the function. The number close to each function represents the number of proteins anno-
tated on the function. The structure-based similarity between two functions is calculated by the ratio of the depth of the most 
specific common function to the average depth of the functions of interest (Formula 13). The annotation-based similarity 
between two functions becomes the negative logarithm of the proportion of proteins annotated on the most specific common 
function (Formula 14). Some examples of the structure-based and the annotation-based similarity between two functions in the 
hierarchy are shown in the boxes.
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