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Abstract

Background: Modern sequencing technologies allow rapid sequencing and bioinformatic analysis of
genomes and metagenomes. With every new sequencing project a vast number of new proteins become
available with many genes remaining functionally unclassified based on evidences from sequence similarities
alone. Extending similarity searches with gene pattern approaches, defined as genes sharing a distinct
genomic neighbourhood, have shown to significantly improve the number of functional assignments.
Further functional evidences can be gained by correlating these gene patterns with prevailing
environmental parameters. MetaMine was developed to approach the large pool of unclassified proteins
by searching for recurrent gene patterns across habitats based on key genes.

Results: MetaMine is an interactive data mining tool which enables the detection of gene patterns in an
environmental context. The gene pattern search starts with a user defined environmentally interesting key
gene. With this gene a BLAST search is carried out against the Microbial Ecological Genomics DataBase
(MEGDB) containing marine genomic and metagenomic sequences. This is followed by the determination
of all neighbouring genes within a given distance and a search for functionally equivalent genes. In the final
step a set of common genes present in a defined number of distinct genomes is determined. The gene
patterns found are associated with their individual pattern instances describing gene order and directions.
They are presented together with information about the sample and the habitat. MetaMine is implemented
in Java and provided as a client/server application with a user-friendly graphical user interface. The system
was evaluated with environmentally relevant genes related to the methane-cycle and carbon monoxide
oxidation.

Conclusion: MetaMine offers a targeted, semi-automatic search for gene patterns based on expert input.
The graphical user interface of MetaMine provides a user-friendly overview of the computed gene patterns
for further inspection in an ecological context. Prevailing biological processes associated with a key gene
can be used to infer new annotations and shape hypotheses to guide further analyses. The use-cases
demonstrate that meaningful gene patterns can be quickly detected using MetaMine.

MetaMine is freely available for academic use from http://www.megx.net/metamine.
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Background

More than 99% of the microbial diversity on earth still
resists cultivation. To address their metabolic potential,
numerous efforts to clone and sequence large DNA-frag-
ments directly from the environment (the metagenome)
have been accomplished worldwide. Several studies [1-3]
have shown that on average only for 27-48% of the genes
a specific function can be inferred by similarity searches
[4]. This untapped pool of so called hypothetical proteins
represents a still unexploited source for new enzymatically
driven reactions.

With the availability of a large number of complete
genomes comparative genomics becomes increasingly
important. The major aspect of this approach is the anal-
ysis of gene neighbourhoods to indicate functional asso-
ciation, which can therefore significantly improve the
predictions of gene functions. This idea was first systemat-
ically applied in 1999 by Overbeek and colleagues [5].
They introduced the concept of a "pair of close bidirec-
tional best hits" and could prove functional coupling of
such genes for several pathways. Some years later the sub-
system approach was introduced [6,7], which is a general-
ization of the pathway concept and describes a group of
related functional roles jointly involved in a specific
aspect of the cellular machinery. Today systems like IMG
[8]/IMG/M [9], STRING [10,11] and RAST [12] provide
several functionalities to analyse gene neighbourhoods
and other protein interaction features for a broad range of
microbial genomes based on pre-computed data.

Additional support for functional evidences might be
gained by correlating these gene patterns with prevailing
environmental parameters. The growing number of
genome and metagenome sequences from the environ-
ment, especially from the marine system, opens for the
first time the possibility to link genomic information with
environmental parameters in a systematic way [13-15].
Subsequently, if process correlated gene patterns can be
identified in the habitats it should be possible to return
hints on the functions of the respective patterns.

MetaMine is an interactive data mining tool which ena-
bles the detection of gene patterns, defined as genes shar-
ing a distinct genomic neighbourhood, initiated by a user
provided key gene. The underlying pipeline was designed
to handle genomic data sets where gene family classifica-
tion information is not available or incomplete. Because
consistent family classification is a prerequisite for the
pattern determination step we first calculate gene groups
of functional equivalence. This is still an open research
problem. Therefore, our system allows the user to work
with different parameter settings and to switch between
alternative methods. By focussing on the resulting pat-
terns the calculation of the functional groups allows the

http://www.biomedcentral.com/1471-2105/9/459

inclusion of highly similar paralogs and genes to be part
in several groups, because errors made in this step can be
easily revealed by the gene patterns found. Given a user
selected key gene of environmental relevance MetaMine
carries out a semi-automatic search for gene patterns on a
regularly updated database of marine genomes and
metagenomes. The gene patterns found are presented to
the user together with information about the samples and
the habitat within an interactive graphical user interface
(GUI) for further inspection. To our knowledge, currently
no system exists combining genomic and metagenomic
pattern information with environmental parameters.

Implementation

Microbial Ecological Genomics Database

The Microbial Ecological Genomics DataBase (MEGDB)
contains prokaryotic genome and metagenome sequences
of marine origin together with information about their
environmental context. A list of criteria have been used to
select the (meta-)genomic sequences to build the data-
base: i) public access (sequences must be available in one
of the public sequence databases [16]); ii) marine origin;
iii) bacterial or archaeal; iv) high sequence quality (i.e.
assembled contigs with a sequencing coverage of at least
eight fold) and v) the exact geographic origin of the
sequences (e.g. from the original publication).

Habitat parameters like water and sediment depths, tem-
perature, salinity, and other physical-chemical properties
have been extracted from the literature or extrapolated
based on global ocean data sets like the World Ocean
Atlas and the World Ocean Database [17] and remote
sensing information (SeaWiFS) [18] within the EU project
MetaFunctions [19]. A detailed overview of the current
content of MEGDB can be found at http://www.megx.net,
portal/content/content.html.

Besides MetaMine, public access to the MEGDB is granted
by the MetaLook tool [20] and especially the Genomes
Mapserver as a central entry point [14,21]. A Geographic-
BLAST tool is also available online to get an overview of
the geographical distribution of particular genes across
the world.

Gene patterns and key gene approach

The term "gene pattern" often covers two related biologi-
cal observations in genetics/genomics. In prokaryotic
genomes, genes are often organised in operons, where
transcription leads to a single messenger RNA molecule
(mRNA) encoding different subunits of a protein or even
distinct, but related proteins. The definition of an operon,
as a set of commonly regulated genes is strict, but as long
as no common mRNA is proven experimentally, the cor-
responding set of genes is often called a gene cluster/gene
pattern which is loosely defined as a set of neighbouring

Page 2 of 10

(page number not for citation purposes)


http://www.megx.net/portal/content/content.html
http://www.megx.net/portal/content/content.html

BMC Bioinformatics 2008, 9:459

genes with possibly coupled functions and/or conserved
order across organisms.

The distinction between operons and gene patterns is not
crucial for the biological questions we want to address
with MetaMine. Moreover, the detection of habitat spe-
cific gene patterns requires some extensions with respect
to environmental parameters in the concept described
above. For the systematic search for correlations between
the habitat and the gene content two basic types of gene
patterns are of interest: (1) genes which are present or
over/under-represented under specific environmental
conditions and (2) patterns consisting of a set of genes
occurring in specific genomic neighbourhoods. If such
gene patterns are found genomic context analysis assists
in potential functional assignments. In addition, if gene
patterns correlate with distinct environmental parameters
or processes further evidences for potential functions may
be inferred. MetaMine was designed to detect such gene
patterns. Due to the huge amount of genomic and
metagenomic sequences we decided to apply a bottom-up
approach, where prior biological knowledge is used to
select a so-called key gene with known biological function
and environmental relevance which plays the role of a
seed to search for gene patterns in genomic sequences
with at least two predicted genes.

Process steps

For gene pattern discovery the user can carry out the fol-
lowing process steps starting with the selection of the key
gene. A detailed description of the analysis process includ-
ing a flowchart can be found in the user guide available on
the website and as Additional file 2.

I. & 2. Definition of a project and a key gene

In order to store and retrieve the results of a certain anal-
ysis the corresponding processing steps are organised in a
project described by a project name, the user and a short
comment. Also the key gene is defined by a name, a short
description of its function and a comment.

3. Importiretrieval of the corresponding key gene sequence

The corresponding key gene sequence(s) can be imported
from an external file containing the protein sequence in
Fasta-format or by retrieving the protein sequence from
the MEGDB.

4. BLAST search with key gene

Using the key gene sequence as a query for a BLAST search
[22] against all marine genomic and metagenomic
sequences with at least two predicted genes stored in the
MEGDB is carried out. The result is a table with informa-
tion about e-value, organism, sampling site, habitat, water
and sediment depths and potential gene functions of sim-
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ilar genes found by this BLAST search presented to the user
in a specific BLAST panel within the MetaMine GUI.

5. Determination of neighbouring genes

Given a user-defined parameter k the k neighbouring
genes to each side with respect to all the genes found by
the BLAST search in the previous step are determined and
shown in tabular form. Using mouseover as well as a sec-
ond panel the user can see detailed information about the
functional annotation of the genes.

6. BLAST search of all neighbouring genes

A BLAST search is carried out with all neighbouring genes
from the last step. The results are represented by a hash
table containing the set of all neighbouring genes together
with their associated BLAST results. The user can access
this hash table by clicking a gene in the neighbour table
and gets the associated BLAST information in the corre-
sponding BLAST panel.

7. Determination of functionally equivalent genes

In order to detect functionally equivalent genes a recipro-
cal best hit approach followed by a clustering algorithm is
carried out. The result is a set of groups, whereby each
group represents genes of functional equivalence. All
group members are colour-coded and presented to the
user in the table of neighbouring genes (Fig. 1). In addi-
tion, the reciprocal best matches and the functional
groups are shown in separate views.

8. Determination of gene patterns

Given two user-defined parameters minimal length I and
quorum ¢ a gene pattern is defined as a set of at least !
genes (functional groups) which are all present in at least
q different genomes or metagenome samples. Each pat-
tern is associated with a pattern instance view. Pattern
instances describing also gene order and directions are
shown with their environmental information in tabular
form (see also Fig 1). Guidelines for parameter settings
can be found in the user guide (see Additional file 2).

9. Storage and retrieval of all intermediate results

All intermediate results are organised in special data
objects which can be stored to and retrieved from the local
MEGDB (stand-alone version only) as well as exported to
and imported from external XML files.

Each process step can be repeated with other parameters
resulting in a tree structure to organise intermediate
results. As shown in the left panel of Fig. 1, the user can
navigate through the history of all steps to analyse the cor-
responding results in detail. The user should be aware that
the final results can be influenced by the methods and
parameter settings of all previous steps. Therefore, the dif-
ferences can be used to prove the stability of the results. In
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MetaMine screenshot of the pattern panel.

case a certain gene is not in the functional group or gene
pattern as expected this roll back mechanism allows fur-
ther in depth analysis.

If the user specifies all parameters in advance he can also
start a batch-mode analysis. All parameters can be
adjusted using the Parameter Dialog "Set Parameters" in
the Settings menu.

Algorithms
The following section gives a short overview of the under-
lying algorithms describing basic ideas and strategies.

Determination of functionally equivalent genes

In this step we are interested in finding groups of func-
tionally equivalent genes which constitute the elements
for the next step - the determination of common gene
patterns. Different concepts and methods to obtain such
groups exist. The classical and well established method -
introduced by Clusters of Orthologous Groups (COG)
[23] - relies on the phylogeny-based concept of orthol-
ogy. Orthology describes genes in different species that
have derived from a common ancestor by speciation in
contrast to paralogous genes which arise from a duplica-
tion event. Therefore, orthology represents a strong rela-
tionship with a high potential describing the same

biological function. Nevertheless, it is a phylogenetic con-
cept originally introduced to study gene evolution. Conse-
quently this excludes paralogs which might still have
same functions. A complementary concept is to model
intrinsic properties for gene function derived from multi-
ple alignments and domain architecture as it is applied by
Pfam [24,25]. A third variant are automatic methods
based on sequence similarity and unsupervised clustering
like TRIBES [26].

A large proportion of our data set consists of metagenome
samples with a high potential of new gene sequences not
present in existing databases which might form new and
sometimes small functional groups. Therefore, we started
with the basic idea of COG and relaxed the constraints for
metagenomes and inparalogs [27]. In general orthology is
a well established concept for functional annotation and
with the establishment of the gene patters the potential
error of including some false positives is easily ruled out.
In this context Boekhorst and Snel [28] have shown that
"sharing gene order and similarity in size dramatically
increases the chance of a query-hit pair being homolo-
gous".

To detect the groups of functionally equivalent genes we

use a heuristic approach restricted to the gene sequences
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found in the BLAST searches which consist mainly of the
following two steps:

e determination of reciprocal best matches and

e determination of groups of functionally equivalent
genes.

Let G denote a set of identifiers for all genome and
metagenome sequences which are stored in MEGDB and
associated with an organism name and a sampling site,
respectively and R denote a set of identifiers for all
sequence regions which are predicted to be a protein
encoding gene, then genome: R — G is a function deter-
mining the genome identifier for a certain gene. Let b,
denote the result of a BLAST search for gene r € R against
the MEGDB and B a set of BLAST results b, for a given set
R, then rbm: R x B x G — R is a function determining the
identifier of the reciprocal best BLAST hit for gene r € R
with respect to genome g € G.

A reciprocal best match is commonly defined as follows:
Gene g, in genome G, is the best match of gene g, in
genome Gy and gene g, is the best match of gene g,. Given
the set of BLAST results B the function rbm checks this con-
straint for the genes and genomes specified. The search for
reciprocal best matches is restricted to the set R, R rep-
resenting the genes found in the BLAST search with the
key gene and their neighbours. Therefore, R, corresponds
to the upper table in the right panel in Fig. 1. In addition,
the set of genomes G, c G is restricted to U, _ y, genome(r).
These are the genomes related to the genes (and their
neighbours) found in the BLAST search with the key gene,
which correspond to the rows of this table. The result of
this step is a hash map RBM with key r € R, storing a vec-
tor of genome related reciprocal best matches rbm =
(rbmgy, Tbmy,, ..., bm,,) with Vg; € G, for each gene from
the neighbour table. This intermediate result can be seen
in the second table in the Orthology Panel.

The next step is the determination of functional groups
which is based only on the information stored in the hash
map RBM and carried out in a bottom-up manner. Let F
denote this set of functional groups where each group f; €
F,i=1, .., |F| contains a set of functionally equivalent
genes, they are established as follows:

e For each gene r € R, the corresponding vector of genome
related reciprocal best matches is retrieved from the hash
map RBM and checked for triangle relationships of recip-
rocal best matches. If such a triangle relationship exists
between at least three genes of the vector a potential group
frew 18 created with these genes. This strategy corresponds
to the COG approach [23].
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¢ Check the new group against all already existing groups
F for the following three cases: a) all genes of f,,,, are con-
tained in a group f;. Then f,,, is not needed and will be
removed. b) If the intersection of f,,,, with a group f;is > 3
genes and there are remaining genes in f,,,, not contained
in group f;, check these remaining genes for triangle rela-
tionships in f; and include them if possible. If all remain-
ing genes could be included in group f;, f,.,, is not needed
and will be deleted. c) There exists at least one gene from
frew Which could not be included in any group f; then f,,,,
is added to the set .

¢ Check all groups of set F for subset relationships. Delete
the smaller one from F and keep only one set in case of
equivalence.

Based on this procedure a gene can be part of several func-
tional groups, a functional group can contain several
genes from the same genome (inparalogs) but outpara-
logs are excluded by the rbm approach.

Determination of gene patterns

As described above, for our approach we define a gene
pattern as a set of shared genes within a given genomic
neighbourhood. This definition corresponds to a problem
known as gene team model [29-32], which searches for a set
of gene groups that co-occur in a given set of genomes.
Further information on formal models can be found in
chapter 8 of Mandoiu [33]. The order and the orientation
of the genes need not be conserved, and insertions/dele-
tions are allowed within the gene patterns. For in depth
analysis we use the concept of pattern instance describing
these properties, which are neglected in the process of pat-
tern determination. The approaches mentioned above
[29-32] are different with respect to the following features:
i) if they are designed for two or more input genomes, ii)
if they restrict a gene to be unique in a genome/chromo-
some or if paralogs are allowed. In addition, these
approaches require consistent family assignments of
genes for all input genomes, which is not available or
incomplete in many cases. Hu and colleagues [34] call this
type of problem gene pattern mining problem and describe
a very similar approach compared to ours.

For the pattern discovery step we have implemented two
methods: a systematic search and a heuristic to reduce the
search space. The systematic search is adapted from the
character enumeration approach successfully applied in
motif search algorithms like Pratt [35,36] and TEIRESIAS
[37] with the difference that the basic unit to enumerate is
a functional group instead a single character.

Given the set of functional groups F of the previous step
ordered by a numerical identifier and the parameters min-
PatternLength and g (quorum) describing the minimal
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length of a pattern as well as the minimal number of dif-
ferent sequences in which a pattern should be present, the
systematic search is carried out as follows:

Let P denote the set of pattern to be determined, then P is
initialized with patterns of length 1 represented by the
entities f € F. Each pattern is associated with a set of
(meta-)genome identifiers G, = G where it occurs. In each

iteration i, i = 2, ..., |F| all patterns p € P A |p| = i-1 (the
patterns from the last iteration having length i-1) are
enlarged by the functional group having the next higher
identifier and checked whether the corresponding set of
genome identifiers covers more or equal entities than q. If
yes, the pattern will be added to P. This systematic search
guarantees to find all patterns fulfilling the constraints of
the given parameters, but it has an exponential growing
search space depending on the number of functional

H(F|
groups | F|: O E( ) ]
i

i=1

Therefore, a second method was implemented combining
the systematic search and a heuristic. In order to generate
a pattern there are two entities, which have to be checked:
i) the functional groups as constituents for a pattern and
ii) the (meta-) genome(s), where the pattern is present. In
contrast to the systematic search based on the functional
groups the heuristic inverts the constituents and the test in
the following sense. First the gene patterns are generated
as described above until a user-specified length minLength-
Heuristics with default value of five. Second, for the set P
of patterns found so far, the associated sets of (meta-
)genome identifiers G, are collected and filtered to be
redundancy-free. The resulting set contains all genome
combinations G, where a pattern can occur. Then, for
each (meta-)genome combination G, the largest set of
shared functional groups are determined applying the
intersection operation. Given a set of genome combina-
tions the advantage of this heuristic is its ability to detect
long gene patterns very quickly without explicit genera-
tion and testing of all functional group combinations,
which can be a huge number.

System architecture

The system was implemented using a three-tier architec-
ture that allows flexibility for subsequent integration of
MetaMine into other systems. It can be used in two
modes: as stand-alone system with direct access to a local
database or as a client-server application using web serv-
ices for all database operations.

The persistence layer is responsible for the permanent
storage and retrieval of all necessary data for MetaMine.
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Therefore, it provides storage and retrieval functions for
the MEGDB. In addition, there are functions to read and
write to the file system especially for the import of key
gene sequences stored in FASTA format and to import and
export the analysis results as XML files for further data
exchange. The BLAST database file containing the protein
sequences for the BLAST searches belongs also to this
layer. In principle it is possible to exchange the underlying
database with an own version.

The application layer contains all objects and methods
implementing the application logic by providing methods
for all functions provided to the user (see description of
prototype for details). In addition, interfaces to external
programs like BLAST for the sequence similarity search
exist, as well as readers and writers for specific file formats
used in molecular biological applications.

The presentation layer comprises the graphical user inter-
face and the controller which activates the functions cho-
sen by the user.

Results and discussion

The MetaMine software was tested using the MEGDB
which contains high-quality georeferenced marine
genomes and metagenomes of prokaryotic origin. This
pattern detection approach can also successfully applied
on large metagenome data sets based on shot-gun
sequencing approaches as long as a significant fraction
contains sequences with at least two predicted genes. Har-
rington et al. [4] reported recently that 47% of short
metagenome sequences obtained by whole genome shot-
gun sequencing in fact have neighbours even in the same
transcriptional direction.

The focus of MetaMine is searching for gene patterns rep-
resenting biological functions occurring in specific envi-
ronmental contexts regardless their evolutionary history.
Even if the current public DNA sequence databases covers
only a fraction of the natural prokaryotic diversity [38],
numerous environmentally relevant microbial pathways
occurring in marine environments have been discovered
and genetically described [39-41]. Two examples illustrat-
ing the benefits of the semi-automatic gene pattern dis-
covery procedure of MetaMine for the study of globally
important metabolic pathways in (meta-)genomic con-
text are presented.

Archaea Cl| metabolism gene patterns

Methanogenesis and the Anaerobic Oxidation of Methane
(AOM) are two microbial metabolic pathways of environ-
mental relevance, because they produce and consume the
greenhouse gas methane in marine sediments, respec-
tively. A MetaMine analysis using archaeal C1 key genes
(mcrA, mcrB, mcrC, merD, mcrG, mrtC taken from [42])
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discovered five distinct gene patterns called mcrB/G/A-14,
mcrC-14, maB/D/C/G/A-5a/11, mcrC/B/G/A-5b and
mrtC-17, where the name describes the key genes con-
tained and the length of the patterns (see Fig. 2 and Addi-
tional file 1). As expected, the analysis shows that all key
genes and their associated patterns occur exclusively in the
habitat type "sediment". The computational results foster
the functional coupling of the genes with respect to their
involvement in the C1 metabolism. Furthermore, all pat-
terns, except that found in isolated organisms (mcrB/D/C/
G/A-5a/11), revealed conserved hypothetical genes (chp;
all red genes in Fig. 2) indicating their potential role in
these particular metabolisms. These genes represent inter-
esting new functional candidates and should be prior tar-
gets for wet-lab experiments. Moreover, four of the five
gene patterns could be detected on metagenomic frag-
ments, but not on complete genomes, which might reflect
the specific modifications needed for the AOM metabo-
lism as compared to the classical methanogenesis path-
way [43,42,39].

Carbon monoxide oxidation gene patterns
Carbon monoxide (CO) is a gas evaporating from the

ocean into the atmosphere. CO reacts with hydroxyl radi-

mcrC-14, found in metagenome Eel River Basin
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cals who are also able to oxidize methane and nitrous
oxides and is therefore an indirect mediator of the green-
house effect [40]. Interestingly, microorganisms from the
surface ocean water have recently been shown to carry
genes encoding CO oxidation pathways, potentially influ-
encing the diffusion of this gas in the atmosphere [44,45].

In order to search for gene patterns associated with CO
oxidation, the corresponding key genes have been used as
input for a MetaMine analysis (coxL, GenBank:
AAV95654 and GenBank: AAV94806[44,40]). The results
show four main gene patterns including up to five genes
(Fig. 3 and Additional file 1). Two conserved hypothetical
genes can be found within these patterns, which designate
them as potentially relevant for the CO oxidation path-
ways (Fig. 3, green and blue genes). Furthermore, one out
of the eight gene patterns could be found exclusively in
genomes isolated from marine sediments/geothermal
sources, but not in genomes originating from the water
column (Fig 3, pattern ID 70).

Conclusion
The exponentially growing DNA sequence datasets can
only be handled effectively using semi-automatic process-

|chp Ichp I -3 | -2 | -1 Imcrclchp | +2 | +3 I +4 |chp | +6 Ichp Ichpl

-3: protease of the collagenase family; -2&-1: methyl coenzyme M reductase system component A2 (atw) +2: oxygen-sensitive ribonucleoside-
triphosphate reductase; +3: pyruvate-formate lyase-activating enzyme +4: methyltransferase; +6. dGTP triphosphohydrolase

mcrC/BIG/A-5b, found in metagenome Eel River Basin
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mrtC-17, found in metagenome Eel River Basin

|-6 |-5 |-4 |-3 |-2 |-1 Imltclchplchp|+3 |+4|+5 |+6|+7 |+8|+9 |+1DI

-6: Transcriptinal regulator; -5: LSU ribosomal proteins L19E; -4: L18p; -3: SSU ribosomal protein S5P; -2: L30p; -1:
geranylgeranylglyceryl diphosphate synthase; +3: N5-methyl-tetrahydromethanopterin:icoenzyme M methyltransferase, subunit E
(mtrE); +4: mtrD; +5: mtrC; +6: mtrB; +7: mtrA; +8: mtrA; +9: mtrG; +10: mrtH

mcrB/G/A-14, found in metagenome Eel River Basin, Slope of North-Western Crimera area

p—

chp Ichp I -5 Ichp | -3 I -2 I -1 |mch|mch|mcrA| chp | +2 Ichp Ichp | +5 |chp I +7 Ichp | +9 |+10 l

-5: coenzyme PQQ synthesis protein (pgqE); -3: rhodanese-like thiosulfate sulfurtransferase; -2: protease of the collagenase family; -1: putative
methyltransferase; +2: adenine deaminase (adeC); +5: pneumococcal surface protein; +7: multicatalytic endopeptidase complex subunit alpha;

+9: exosome complex RNA-binding protein 1; +10: ribonuclease PH (rph)

Figure 2

Consensus patterns. Five consensus patterns (longest extension with mismatches) of the analysis with mcr gene. Chp repre-
sents conserved hypothetical proteins. All BLAST searches were carried out with a threshold of |E-5.
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Figure 3

Analysis of coxL. All BLAST searches were carried out with threshold IE-I.

ing pipelines that go beyond similarity based approaches.
It has been shown that comparative approaches can sig-
nificantly improve the quantity and quality of functional
assignments leading to deeper insights into the complex
metabolic and regulatory processes in a cell. The ecoge-
nomic revolution initiated by the Venter cruises some
years ago has opened the door to expand this approach by
correlating syntenic gene patterns with specific environ-
mental parameters and associated prevailing biological
processes.

MetaMine offers a targeted, knowledge driven system to
detect gene patterns for subsequent correlation with envi-
ronmental information. First, the system is meant to con-
firm existing biological knowledge about genes involved
in specific processes or pathways. Second, the approach
has the potential to detect genes of so far unknown func-
tions but functionally linked to specific habitat parame-
ters. By integrating structural genomic information with
environmental conditions MetaMine helps to find the
"needle in the (meta)genomic haystack" especially for
genes of so far unknown function. This reduced set of
genes contains than prime candidates for further detailed
functional analysis in the wet-lab. A use-case for Archaea
C1 metabolism and CO oxidation genes showed that

meaningful initial results can be quickly generated using
MetaMine and a set of user-defined key genes. Further
developments will concentrate on the incorporation of
further genomic and metagenomic sequences, additional
environmental parameters and further methods for the
detection of functionally equivalent genes. In addition, to
enhance the usability of MetaMine we plan to include
links to external resources like GO or KEGG to support
functional annotation as well as concepts to compare the
functional groups found by MetaMine with other systems
like COG.

Availability and requirements
Project name: MetaMine

Project home page: http://www.megx.net/metamine

Operating systems: Every OS with Java JRE 1.5 or higher
(tested on Windows/Linux).

Programming language: Java.
Other requirements: Java JRE 1.5 or higher
License: license-free.
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Any restrictions to use by non-academics: MetaMine may
not be sold or bundled with any type of commercial appli-
cation.
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AOM: Anaerobic Oxidation of Methane; CO: carbon
monoxide; coxL: carbon monoxide dehydrogenase (large
subunit) gene; mcr/Mcr: methyl-coenzyme-M reductase
gene/protein; rbm: reciprocal best match; COG: clusters
of orthologous groups of genes; GUI: graphical user inter-
face; XML: extensible markup language; FP6: the sixth
framework programme of the European Union; NEST:
new and emerging science and technology
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