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Abstract

Background: In current comparative proteomics studies, the large number of images generated
by 2D gels is currently compared using spot matching algorithms. Unfortunately, differences in gel
migration and sample variability make efficient spot alignment very difficult to obtain, and, as
consequence most of the software alignments return noisy gel matching which needs to be
manually adjusted by the user.

Results: We present Sili2DGel an algorithm for automatic spot alignment that uses data from
recursive gel matching and returns meaningful Spot Alignment Positions (SAP) for a given set of
gels. In the algorithm, the data are represented by a graph and SAP by specific subgraphs. The
results are returned under various forms (clickable synthetic gel, text file, etc.). We have applied
Sili2DGel to study the variability of the urinary proteome from 20 healthy subjects.

Conclusion: Sili2DGel performs noiseless automatic spot alignment for variability studies (as well
as classical differential expression studies) of biological samples. It is very useful for typical clinical
proteomic studies with large number of experiments.

Background

Two-dimensional gel electrophoresis is a high resolution
technique that is widely used in proteomics to separate
thousands of proteins from a complex sample. After sepa-
ration, a 2D map is obtained in which each protein, or iso-
form, is represented by a spot. In clinical proteomics the
user has to analyze 2D maps of a large number of proteins
as, very often, dozens of controls and pathological sam-
ples are compared. To allow this comparison, maps from
all gels have to be aligned. Unfortunately, differences in
gel migration and sample variability can render spot

alignment very difficult [1]. There are two types of general
limitations for 2D profiling: i) those due to variations in
proteome composition and ii) those due to inadequacy of
the analytical methods [2]. Computer-aided image analy-
sis contributes to the second kind of limitations and may
lead to analytical pitfalls [1]. For instance, 2D gel migra-
tion can cause geometrical distortion and variable spot
coordinates in different gels [3,4] for many reasons [5].
During the process of image analysis, spot alignment is a
critical step since it will condition spot comparison. Spot
alignment can be performed mainly in two way: i) spot
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detection followed by spot-based image warping and
finally spot alignment, or ii) pixel-based image warping
followed by spot detection and then spot alignment [3].
In the first method the spot-based image warping corrects
image distortion using user-defined landmark spots. This
process can eventually be fully automated by making the
spatial correction implicit [3]. The spot alignment is often
expressed using a fusion gel that is representative to the
whole experiment [6,7]. When the number of gels to be
aligned is high, the distortion has to be modelled with a
low-order polynomial transformation [3,8]. In this case,
local geometric distortions are poorly corrected leading to
an increase of noise in the spot alignment. In the second
(pixel-based warping) method, the spatial correction is
performed directly from raw-image data, taking advantage
of techniques originating from image processing research.
This approach leads to a more flexible image distortion
(followed by spot detection) virtually eliminating match-
ing problems. However, even if this method is more con-
venient, it remains bias due for instance to discontinuous
change in intensity among the set of aligned gels [9] end-
ing to affected spot intensity quantitation. In addition, the
user must systematically adjust or control the spot align-
ment process by hand [4,6]. This is time consuming and a
source of errors.

Up to now comparative analysis of 2D gels has been based
on the utilization of commercial gel analysis systems (e.g.
Pdquest [10], Melanie [11], Samespots [12], Pro-
teomweaver, Gellab [13], etc.), which identify spots of
interest by image comparison, a process called gel match-
ing. While some systems pair each gel of a matching set
against a single "reference gel" (e.g. Melanie, Pdquest,
etc.), some other algorithms follow the concept of recur-
sive gel matching (e.g. Samespot, Proteomweaver, etc.).
This means that each gel of a matching set is recursively
used as "reference gel" once during the matching process.
However, the resulting spot alignment remains noisy and
is not suitable for further statistical analysis. We propose
herein a new algorithm for automatic spot alignment,
called Sili2DGel, which uses data from recursive gel
matching to return only the meaningful Spot Alignment
Positions (SAP) for a given set of gels (Figure 1). Sili2DGel
is based on graph theory, input data are represented by a
graph in which specific subgraphs are searched. The
results are returned under various formats (clickable syn-
thetic gel, text file, etc.). This approach provides the user
with an automatic and efficient spot alignment tool suita-
ble for analysis of a large set of 2D gels.

Implementation

Alignment representation using graph theory

Ideally, after different experiments, a given protein should
be represented by spots displayed at the same coordinates
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Principle of the Sili2DGel algorithm. Sili2DGel repre-
sents the result of recursive gel matching with a graph,
decomposes it in disconnected subgraphs, searches specific
subgraphs which represent the SAP and returns them under
various formats.

on each gel. However, if only a single reference gel is
selected for a match set, spots that are not found in that
reference gel will not form alignments. For instance in Fig-
ure 2, if Gel 1 is the reference gel then the alignment of
{d2;d3} will not be recorded as they are not present in Gel
1. Moreover, different kinds of distortions can skew the
matching. As a consequence, some spots are likely to end
up in an alignment where they should not, and others will
not be attributed to an alignment when they should. For
instance in Figure 2, assuming that the spots b;, b, and b,
represent the same protein, if b, matches with b5, it should
be aligned with b,. Spots which belong to an alignment
due to an error have to be eliminated (noise spots), and
spots which are missing have to be restored (missing spots).
The meaningful Spot Alignment Positions (SAP) corre-
spond to the set of spots which represent the same protein
after exclusion of the noise spots and reinstatement of the
missing spots. SAP can be determined by analysing the
alignments given by the recursive gel matching method.
One should note that this program depends on prior accu-
rate processing of the spots indentifications and the pre-
liminary spot alignments which are not trivial tasks. So a
spot that has not been recognised due to low signal level
in spot identifications of the prior process, will be missing
in the following analysis.

If N is the number of gels and S the set of all spots of the
N gels, then for any spot i, gel matching will give all the
spots j which match with i. We use the notation i — j when

Page 2 of 9

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:460

Gel 3
/a3/@ b3

Ob2

Gellc/e/% CZ/B

Gel 2

Figure 2
Example of alignments of three gels. Spot a; matches
with a, and as, thus A(a,) = {a,; a,; a3}, A(b,) = {b,; b3}; simi-

larly A(c,) = {c;; ¢ 5} and A(¢}) = {c}; ¢ 3}

spot i matches with spot j. An alignment of spot i includes
i and all its matching spots (see Figure 2), noted as A(i):

A()={jeS:i>j}ul{i}

Alignments are represented by a weighted undirected
graph which is called matching graph. A node corresponds
to a specific spot of a given gel and an edge represents the
matches between spots. The weight of an edge is the
number of matches between two spots. Therefore, it is less
or equal to the number of gels.

If Gy is the matching graph of N gels and |S| the size of a
set S, then we have:

Gy= (V. E w)
where :
e V =S is the set of vertices of G
eE={(i,j):i€S, je A(i) i#j} is the set of edges of Gy

ew(i,j)=|{keS:iecAk),jeAk)}| V(i j) € E is the
weight of the edge (i, j).

http://www.biomedcentral.com/1471-2105/9/460

Nodes are labelled with the name of the gel and the
number of the spot. Edges are labelled with their weight.
SAP are represented in the graph by high density zones,
i.e. zones where a lot of nodes are pairwise adjacent (Fig-
ure 3a bottom left panel). Most of the time, there are
many associations that make the graph highly incorrectly
connected (Figure 3a top panel). It is therefore necessary
to clean the graph to find the sets of nodes which repre-
sent the same spots. This is done by removing the edges
which represent wrong connexions.

The search of SAP on N gels comes down to finding spe-
cific subgraphs of the matching graph G. In the best case,
all the spots, which represent the same element, will pair-
wise match in n gels, with n < N. In the matching graph
the nodes representing these n spots are all connected
together. This subgraph is called a clique (i.e. a complete
graph); moreover all its edges are weighted by n. A graph
G = (V, E) is a clique if all vertices are pairwise adjacent,
i.e. Vi, j € Vwith i # j, we have (i, j) € E. However, align-
ments are not always perfect. The case where all the spots
match at least once, but are not all pairwise adjacent, is
represented in the matching graph by a clique in which at
least one edge is weighted by a value lower than n. In the
worst case, some spots will be missing in an alignment
even through they should belong to it. If two spots from
different gels never match together during the whole
recursive matching procedure, but match with many of
the other spots, they are not adjacents in the matching
graph and the subgraph is not a clique. This subgraph con-
tains a clique and some other nodes which are adjacents
to several nodes of the clique; we call it a pseudoclique. In
all cases, SAP are represented by dense clusters of nodes in
the graph (i.e. nodes that are highly connected to each
other) which are either cliques or pseudocliques.

Algorithm of SAP identification

Reducing the graph

Finding a maximal clique is a classical NP-hard problem
[14], thus exact algorithms are guaranteed to return a solu-
tion only in a time which increases exponentially with the
number of vertices in the graph [15]. Therefore, one can
expect exact solution methods to have limited perform-
ance on large datasets. To overcome this difficulty, we
decomposed the graph into reduced subgraphs and then
we determined the SAP in the corresponding reduced
search spaces.

To reduce the search space, the graph is partitioned in all
its connected components (i.e the maximal connected
subgraphs). Before searching the connected component,
we suppressed the edges weighting 1, as we assumed that
an edge with a weight of 1 was not sufficient to belong to
a pseudoclique, and that it could not represent an align-
ment of size 2 (which contains 2 spots). The suppression
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Figure 3
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Graph representations. (2) raw graph (before treatment) and (b) treated graph (after treatment). Graphs were represented
with the Tulip software [24]. The raw graph is composed of good SAP (3a, bottom left panel) and noisy SAP (3a, bottom right

panel)

of these edges will not distort the results because if these
spots are really in the same alignment, they should have a
high connectivity with some other spots of the alignment
and so they would be later restored.

Pseudocliques represent very dense clusters of the graph.
To select very dense clusters, the isthmuses (i.e. the edges
which separate a set of nodes of the graph in two highly
connected subgraphs) have to be eliminated. The strength
metric [16] allows the isthmuses determination by meas-
uring how much an edge is likely to separate a graph in
two highly connected subgraphs. It is defined as:

[Way |

+ e( My Wy )+e( My Wyy )+e( My, My )J+e(Wyy )
[Wa [+ My [+ My |

sm(u, v) =
W,
E O e e

Whereu, v € V, M, = N,\N,and W, = N, n N, with N(u),
N(v) denote the neighborhoods of u and v. e¢(A, B) (or
e(A)) denotes the number of edges between the two sets A
and B (or within a set A). The first term counts the number
of triads (cycles of length 3) containing the edge (u, v) and
the later computes the relative number of cycles of size 4
containing the edge.

Values of sm are between 0 and 2. A low value indicates
that the edge is more likely to act as an isthmus whereas a

high value signifies that it is potentially at the centre of a
cluster. It is worth noting that a null strength metric is an
isthmus and a value of two is an edge which belongs to an
isolated clique. Thus, edges with a small strength metric
(lower than a threshold value sm) are suppressed to
reduce the graph. If the graph is highly connected, sm
value should not to be too low to allow a good reduction
of the graph. Then, the connected components are calcu-
lated and SAP can be researched into all these reduced
graphs. Table 1 represents the overall algorithm of SAP
search and Table 2 the algorithm of cluster search for each
connected component of the graph.

Clusters search

The principle of the algorithm of cluster search is to find
sets of nodes which are highly connected but not neces-
sary all pairwise adjacent and with edges of high weight
value (with respect to the size of the set). Maximal cliques
were searched by using the Bron-Kerbosch algorithm [17]
with the heuristics of Koch [18] and Cazals [19]. Moreo-
ver, we kept the cliques of size 2 only if they were discon-
nected from the rest of the graph. The search of cliques did
not take into account the weight of the edges, which had
to be checked; moreover the nodes which are highly con-
nected to the clique had to be added. After finding all the
maximal cliques, we assumed that the nodes characterized
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Table I: Algorithm of SAP search
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SAP_search(sm, y):

I. Graph construction.

2. Graph reduction:

* Remove edges having a weight of |.

* Remove edges for which the strength metric is lower than sm.

* Decompose the graph into its connected components.

3. For each connected components, cluster_search(}).

4. Return the new graph.

by edges with a small maximal weight in the clique were
noisy spots and therefore we removed them. If they are
not, they will be restored in the next steps. In conclusion,
the nodes n which have a maximal weight in a clique C
smaller than a threshold value 7{C) (1) are removed (i.e.
if In € Cs.t max w(n, i);.c< 7(C) then n is removed from
C). On the principle, the threshold value insures a high
tolerance to weakly connected nodes within a great clique
and a low tolerance within a small clique.

If Gy = (V, E) is a matching graph of N gels and C = (V,
E,) a subgraph of G, then we define the threshold of C as
a function zsuch that:

N

?(C) = |V, |x ——,
N+GeINb(C)

(1)

where GelNb(C) is the number of gels in C. We can note
that GeINb(C) can be different of | V| because all nodes in

C are not always coming from different gels, (c.f. spots ¢,

and ¢} in Figure 2). Thus, GeINb(C) < |V,|. 7(C) gets its

Table 2: Algorithm of clusters search

values from interval [% |[V.|, |V.|]]. The threshold gives a

value which is close to % |V.| if the clique is of great size

and a value closed to |V| if the clique is of small size. It is

worth noting that this formula is valid for clusters of
nodes which are not cliques.

A node n is selected to be added to a clique C if it is con-
nected with at least y x |V,| nodes of C where y € [0, 1] is
a parameter. y is the percentage of nodes that a node has
to be connected to belong to a clique. This value is chosen
depending the quality of the gels and/or the matching. If
qualities are not very good, » has to be low to tolerate
nodes which might have been missed in the matching
process else has to ¥ be high not to give noisy SAP. We say
that n is y~dense in C. If Gy = (V, E) is a a graph and C =
(V. E,) a subgraph of G, then anode i € V is -dense in
C if there is a subset V. < V,_such that for eachj € V| the

edge (i,j) € Eand | V| 2 y x |V,|. Moreover a node which

Clusters_search(}):

I. Clique and pseudoclique search:
neighbour

* Find the maximal cliques and remove the cliques of size two if their nodes have more than |

* For all cliques C, remove the nodes n for which max w(n, i);.c< 7(C)
* For all cliques C, add to C the j~dense nodes n such that min w(n, i);.c = 7(C)
* Remove from the list of cluster the included clusters.

2. Select clusters according to their s-value:

« Remove the "worst clusters": For all clusters C;, C,such that | V. |>|V. |,if|V. n
&2 o c, o

VC2 |=yx| VC] | and s(C,) = s(C,) and Gelnb(C,) > Gelnb(C,) then remove C,.

* Forall clusters C,, Gysuch that |V, V|2 yxmin(|V_ ||V, |),add the nodes of

min(s(C,), s(C,)) which have a maximal weight greater than 7(C,

in max(s(C,), s(Gy)).

min)

3. Select nodes which belong to several clusters:

* For all nodes n which belong to several clusters, remove n from all clusters where it does

not have its maximal MeanW.
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is added to a clique C must have matched several times
with the nodes of C (i.e min w(n, i);.o 2 7(C)). If at least
one node has been added to a clique, the resulting set of
nodes is not a clique anymore; we will called it in the fol-
lowing a cluster. It is worth noting that all the j-dense
nodes of a maximal clique C of a graph Gy belong to a
maximal clique of G. This means that, at this step, many
clusters are likely to be included in other clusters. When
this happens, the included clusters are removed.

Select clusters according to their quality criteria value

Clusters which share a lot of nodes can remain, whereas,
clusters which are characterized by a small size and low
quality criteria will be removed. The clustering quality
measure [20] for a cluster C, s(C), is defined as follows:

| Ec|

Vel ’ (2)
2

Where the binomial coefficient (\;CJ gives the maxi-

S(C) =

mum number of edges between the vertices in C. s(C) is
the ratio between the number of edges and the highest
possible number of edges. For all clusters C in G, we have
s(C) € 10, 1]. If s(C) = 1, C is a clique. Thus, a cluster rep-
resents a good alignment if its s-value is close to 1. If we
find two clusters such that

|vcl AV,

2y><max(|vc1

Ve,

) we will remove the

one with the lower s-value and the lower number of gels.
As few clusters of small size have been removed, so clus-
ters which share a lot of nodes with a bigger one may still
remain. Our aim is to adjust the clusters in order to obtain
a high value of s(C). Therefore, if there are two clusters
such that the cluster with smaller number of nodes is
dense in the other (i.e

|VC] NV, )), the nodes of the

2)/><min(|Vcl

Ve,

cluster with smaller s-value which have a maximal weight

greater than 7(C,;,) are added in the cluster with greater s-

min)

value.

Select nodes which belong to several clusters

The last step is to remove nodes, which belong to several
clusters, from their worst clusters. If Gy = (V, E) is a graph
and C = (V,, E,) a subgraph of Gy, then the mean weight
of anode n € Vin C is defined as the sum of all weights
of all edges of n divided by the total number of vertices in
C:

http://www.biomedcentral.com/1471-2105/9/460

Ziec w(n,i) .

MeanW(n,C) = |V |
c

3)

Thus, if a node n belongs to several clusters, n remains
only in the cluster where n has its highest mean weight.

Results and discussion

We used Sili2DGel to study the variability of the urinary
proteome from 20 healthy subjects. After 2D gel electro-
phoresis, silver straining and imaging as in [21], a recur-
sive matching was performed with the Melanie software to
identify every spots in each gel. The matching graph of
these alignments had 16 386 nodes and 236 593 edges.

The raw matching graph (Figure 3a) allowed us to notice
that the spots (i.e nodes of the graph) were very connected
while the graph should have been composed of subgraphs
which look like cliques. Therefore, it was not possible to
make a relevant large scale statistical analysis at that stage.
By applying Sili2DGel which withdrew background
noises with parameter settings y = 0.4 and sm = 0.8, we
obtained 924 SAP of which 634 were cliques, 152 con-
tained several spots in the same gels, 92 were conserved in
all gels (Figure 4a) and only 25 had a clustering measure
lower than 0.7 (Figure 4b). The closer sm is to zero, the
more an edge will represent an isthmus and the closer sm
is to 2, the more the edge in the centre of a clique. Looking
at the raw data, we never found any edges representing an
isthmus. So, after probing various values for the sm
parameter, we found a value of 0.8 as the best compro-
mise. The resulting graph contained 11 746 nodes and 80
769 edges (Figure 3b). All the subgraphs were clusters
which represented the alignments and were either cliques
or pseudocliques. These clusters represented good choices
because the s-value for 770 of them was greater than 0.9
(Figure 4b) and only few clusters with a low s-value were
left. Our software provided a synthetic gel that conven-
iently represented the SAP distribution and spot conserva-
tion among the studied gels (Figure 4a). We observed that
spot conservation in the urinary proteome was heteroge-
neous. Indeed, by looking at the SAP length distribution
we observed occurrences for all the possible SAP length
from 3 to 20 gels. Interestingly, we noticed that the high-
est occurrence is found for the spots strictly conserved
among the 20 gels. The more variable spots (SAP length of
4) are more rare in this study. This heterogeneity is con-
sistent with experimental data found in the literature
[22,23].

The analysis showed that 152 SAP contained several spots
from the same gels. This suggests that for a given SAP, gels
where single spots are found have a lower resolution than
gels with duplicated spots in the corresponding SAP (for
instance, see spots ¢, and ¢; of Figure 2). As a consequence,
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SAP distribution and clustering measure. (a) SAP dis-
tribution i.e. frequencies of the number of gels in different
SAP and (b) clustering measure distribution

the resolution of a specific spot of a low resolution gel
could be enhanced by using the corresponding spot from
a better resolution gel. This set of heterogeneous SAP is
provided to the user to allow specific analysis. Our soft-
ware provided a synthetic gel which corresponds to all the
SAP found among all the gels which have been identified
(Figure 5a) with the algorithm. Figure 5 shows the raw
spots from Gell before edge reduction (Figure 5c) built
from the Gel 1 image (Figure 5b) and the difference
between the SAP-related spots from Gel 1 (Figure 5d) and
the rejected spots (Figure 5e). When we compared the per-
centage of the volume of the SAP-related spots in the syn-
thetic gel to that of the rejected spots for Gel 1, we
observed an average conservation of 80% (Figure 6) of the
original signal. Indeed, out of the 947 spots of Gell
(100% of volume), 717 spots (88% of volume) were
related to a SAP of the synthetic gel. The rejected spots,
which represented on average the remaining 12% of the
spots, were considered as ambiguous signals (see rejected
spots set for Gell in figure 5d).

http://www.biomedcentral.com/1471-2105/9/460

We also calculated the overall signal loss after Sili2Dgel
spot alignment by comparing the total volume of each gel
before and after treatment (Figure 6). All together, the
sum of the percentage of the conserved intensity of all
SAP-related spots (1598) in the synthetic gel represented
80% of the sum of the percentage of intensity of all spots
(2000) from the original gels. The 924 SAP of the syn-
thetic gel covered 80% of the experimental signal. The
remaining 20% of the signal was found in the set of
rejected spots after spot alignment, and could be accessed
by the user in the output table for possible further manual
analysis (see also synthetic gel in Figure 5d). The SAP-
related spots constituted the set of data that were consid-
ered suitable for further statistical analysis.

Conclusion

In comparative proteomics studies, the large number of
images generated by 2D gels is currently compared using
spot matching algorithms. However, most of the software
alignments return noisy gel matching which needs to be
manually adjusted by the biologist. Moreover, several of
these systems pair each gel only against a single reference
gel and therefore some spots might be missed. To restore
them, it is necessary to make recursive alignments. To
meet the needs of clinical proteomics of comparing large
sets of 2D gels, we have developed Sili2Dgel an automatic
gel alignment method based on graph theory to find SAP
(without manual adjustment) after a recursive alignment
procedure. This method first constructs a matching graph
and then reduces its complexity by searching all its maxi-
mal cliques, adding the j-dense nodes with a high mini-
mal weight, selecting the clusters with high size and
quality values and selecting nodes which belong to several
clusters. Each cluster is considered as a SAP in the syn-
thetic gel and indicates the equivalent spot position in the
complete set of gels.

All SAP-related spots are available to the user for further
statistical analysis. In addition, our method allows one to
address recurrent clinical questions about the variability
of biological samples leading to the issue of the conserva-
tion of proteins in the studied proteome. We used
Sili2Dgel to analyze 20 normal urinary proteomes and we
could show that spot conservation was heterogeneous,
probably reflecting individual variations.

Finally, the input and output files of Sili2DGel (tabular
text files) are compatible with the main 2D gel analysis
systems on the market and this allows users to easily com-
bine our method with their familiar environment, making
Sili2Dgel a companion tool for users of current commer-
cial proteome analysis software. It performs, after recur-
sive gel matching, an automatic global spot alignment of
large sets of related gels with little loss of global signal and
a large number of SAP. If needed, the SAP can be used to

Page 7 of 9

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:460

d)

Figure 5

http://www.biomedcentral.com/1471-2105/9/460

Conservation between 1 to 4 gels
Conservation between 5 to 9 gels
Conservation between 10 to 14 gels

Conservation between 15 to 20 gels

e)

Synthetic gels. (a) SAP of the synthetic gel, (b) Gell image, (c) raw spot list from Gell, (d) rejected spots from Gell and (e)

SAP-related spots of Gell.
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Gel

Figure 6

Percentage of volume of SAP-related spots from the
synthetic gel. Signal before treatment is considered at
100%. One can note that 80% of spot intensity is conserved.

enhance the resolution of other spots using the spot reso-
lution from the best gels of the set. Sili2DGel performs
noiseless automatic spot alignment for variability studies
(as well as classical differential expression studies) of bio-
logical samples. It makes it very useful for typical clinical
proteomic studies with large number of experiments.

Availability and requirements
¢ Project name: Sili2DGel

e Project home page: http://www.sysdiag.cnrs.fr/publica

tions/supplementary-materials/Sili2DGel
e Operating system(s): Platform independent
e Programming language: Java
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