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Abstract
Background: The prediction of a consensus structure for a set of related RNAs is an important
first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that
is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used
tools for this task. In recent years, several alternative approaches have been advocated, pointing to
several shortcomings of the original RNAalifold approach.

Results: We show that the accuracy of RNAalifold predictions can be improved substantially by
introducing a different, more rational handling of alignment gaps, and by replacing the rather
simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices.
These improvements are achieved without compromising the computational efficiency of the
algorithm. We show here that the new version of RNAalifold not only outperforms the old one,
but also several other tools recently developed, on different datasets.

Conclusion: The new version of RNAalifold not only can replace the old one for almost any
application but it is also competitive with other approaches including those based on SCFGs,
maximum expected accuracy, or hierarchical nearest neighbor classifiers.

Background
Unbiased surveys of the transcriptomes of higher eukary-
otes by multiple techniques ranging from tiling arrays and
short-read sequencing to large-scale sequencing of full-
length cDNAs have dramatically changed our perception

of genome organization: At least 90% of the mammalian
genomes are transcribed, the vast majority of this tran-
scription is non-protein-coding, and there is mounting
evidence that a significant fraction of the non-coding tran-
scripts are functional [1,2]. The investigation of non-cod-
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ing RNAs has thus developed into a focal topic in
molecular biology and bioinformatics alike. Most of the
ancient house-keeping RNAs (tRNAs, rRNAs, snRNAs,
snoRNAs) and many of the newly discovered regulatory
RNAs, including microRNA precursors, form evolutionar-
ily well-conserved secondary structures, reviewed e.g. in
[3]. These structures are tightly linked to the molecules'
functions. It is therefore a core task in RNA bioinformatics
to compute in particular the consensus structures of evo-
lutionarily conserved RNAs.

It has long been known that the accuracy of thermody-
namic structure predictions for individual sequences is
rather limited. On the other hand, computing the consen-
sus structure common to several related RNA sequences
can drastically improve the prediction [4]. The conceptu-
ally most elegant approach towards consensus structure
prediction is to solve the alignment and the structure pre-
diction problem simultaneously. The Sankoff algorithm
[5] provides a solution that is practically applicable and
has been implemented in various variants including dyna-
lign [6], stemloc [7], foldalign [8], LocARNA [9] or consan
[10]. Still, these approaches are computationally too
expensive for large-scale routine applications. One basic
alternative is to first compute structures for the individual
sequences and then to align these sequences taking into
account the structural information. This can be achieved
in different ways using sequence-based (e.g. stral [11]),
tree-based [12,13], or Sankoff-style alignment algorithms
[14]. Alignment-free approaches include RNAspa [15]
and consensus shapes [16].

A large group of methods pre-supposes a (sequence)
alignment. Most methods of this type use the alignment
to super-impose predicted structures to global [17,18] or
local structures [19]. RNAalifold [4], on the other hand, in
essence averages the contributions of the standard Turner
energy model [20] according to a given alignment  and
then solves the thermodynamic folding problem w.r.t.
these averaged energies. A special case is the ConStruct
package [21], which besides acting as a front-end for sev-
eral prediction tools provides an interface for changing
RNA alignments using expert knowledge.

Methods
Original RNAalifold
The original RNAalifold approach combines a thermody-
namic energy minimization [22] with a simple scoring
model to assess evolutionary conservation. Both an
energy minimization and a partition function version are
implemented in the Vienna RNA package [4]. Energy min-
imization uses the following recursions:

As in single-sequence folding, the arrays Fij, Cij, Mij, and

 hold, for every sub-sequence from i to j, the energies

of the optimal folds of unconstrained structures, of struc-
tures enclosed by (i, j) base pairs, of multi-loop compo-
nents, and of multi-loop components with a single
branch, respectively [23]. The Turner energy parameters
for hairpin loops delimited by alignment positions i and j

in sequence α ∈  are denoted by (i, j, α); similarly ℑ(ij,

kl, α) encodes the energies of interior loops including
stacked base pairs. Multi-loops are modeled by a linear
model with a "closing" contribution , and contribution

 and  for each branch and unpaired position, respec-
tively. Note that these values are the tabulated single-
sequence parameters multiplied by the number N = | |
of aligned sequences, since the recursion above computes
the sum of the folding energies. RNAalifold modifies the
energy model by introducing a (base pair) conservation

score γ(i, j) that evaluates the corresponding alignment
columns w.r.t. evidence for base pairing. In [4], we used

where the Hamming distance h(a, b) = 0 if a = b and h(a,

b) = 1 if a ≠ b and  = {AU, UA, CG, GC, GU, UG} is the

set of possible base pairs. The full covariation score γ also
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includes penalties for sequences in which the (i, j) base
pair cannot be realized:

Potentially paired columns, in which less than a user-
defined number or fraction of sequences can form the
pair, are considered to be forbidden. RNAalifold therefore
predicts the structure common to most of the sequences in
an alignment. A prediction for a single molecule that is
consistent with the consensus structure can be obtained
by using the result of RNAalifold as a constraint for single
molecule folding. Both mfold [22] and RNAfold [24] can
be used for this purpose.

The purpose of this contribution is to explore several ave-
nues for improving the performance of RNAalifold. Intui-
tively, there are two leverage points: (1) the details of the
energy evaluations in the presence of gaps, and (2) the
rather ad hoc covariance bonuses and penalties.

Improved Energy Evaluation
The 2002 implementation of RNAalifold uses a very sim-
plistic way of treating gaps in order to save computational

resources: gaps within unpaired regions are simply
ignored, because then only alignment positions appear as
indices and loop sizes, for instance, do not need to be
evaluated separately for every sequence. This can, how-
ever, distort the energetics in particular if there are many
gaps, and in extreme cases can lead to the inclusion of
unrealistically short hairpins, see Figure 1. A second
source of error is that gaps do not contribute to the dan-
gling end energies in this setting.

The new implementation thus evaluates (i, j, α) and ℑ(ij,
kl, α) by first mapping the alignment indices back to the
positions in α. Then the correct energy parameters accord-
ing to the Turner model are retrieved. In the same way, the
handling of dangling ends is fixed. In practice, this is
achieved by introducing three arrays of dimension N × n,
where n is the length of the alignment of N sequences. For
each sequence α and each alignment position, these
arrays hold the 5' neighboring base, the 3' neighboring
base, and the position in the original sequence. Since in
typical applications we have N &#x226A; n, this does not
significantly change memory consumption. Still, the
problem remains that in some sequences hairpin loops
with less than three unpaired positions may arise. We
penalize these sequences with a contribution of the same
order of magnitude as that of non-canonical base pairs.
From here on, we will refer to this "gap free" energy com-
putation as the "new RNAalifold".
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Possible results of treating gaps as basesFigure 1
Possible results of treating gaps as bases. The consensus structure of the alignment in the middle is predicted once with 
gaps treated as if they were bases (old), and once by removing them before computing the energies (new). The predicted 
structures (highlighted in red) are shown to the left. As can be seen in 1, sequence 1 can form a perfect hairpin. In 2, the ster-
ically impossible hairpin for the other two sequences is shown. Two of the three sequences cannot form the predicted struc-
ture. On the other hand, the new version of RNAalifold predicts a stem that has a bulge (3), but only in one sequence, the 
other two sequences can form the perfect stem shown in 4.

           ************   *   *************
sequence_2 AGCGUUCUUGCGC--GUGUUUUUGCGCUUGCU    30
sequence_3 AGCGUUCUUGCGC--GU--UUUUGCGCUUGCU    28
sequence_1 AGCGUUCUUGCGAUAGCGUUUUUGCGCUUGCU    32

old (((((....(((....)))....))))).... -5.95
new ((((.....((((..(......))))).)))) -5.83
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Energy Parameters
Instead of the usual Turner energy parameters, one may
use other parametrizations. Andronescu et al. [25] intro-
duced energy parameters that increase the performance of
single stranded RNA folding, with striking results in par-
ticular on ribosomal RNAs. We found, however, that they
provide no significant over-all performance gain for
RNAalifold on the broad range of datasets we used to
assess performance (see section Performance Evaluation
below). The results obtained for Andronescu's energy
parameters, together with those of other unsuccessful
attempts to increase performance, are tabulated in the
additional file 1.

Sequence Weighting
In practice, many input alignments have a very unbal-
anced distribution of sequences. Often most sequences
are very closely related and outweigh one or a few diver-
gent ones. In this case it seems appropriate to down-
weight the influence of closely related sequences [26] sim-
ilar to the weighted sum of pairs score frequently used for
multiple alignment. The problem with this approach is
that distant sequences receive the highest weights, but are
also more likely to be misaligned, and hence a rational
weighting scheme will also increase the impact of align-
ment errors.

One can try to minimize this effect by dividing the score
of RNAalifold in two parts, one which does not contain
the outliers, thus scoring a smaller alignment, and one
which contains all sequences. If the smaller alignment
scores significantly better than the complete one, one can
assume that the divergent sequence is either misaligned or
at least does not share the consensus structure. At present,
we have not been able to devise a fail-safe automatic pro-
cedure to identify these cases. Since sequence weighting
leads to a significant increase in CPU time because the
weighting has to be introduced in the inner-most loop of
the energy evaluation, we have decided against including
the weighting option into the public version of RNAali-
fold.

Improving the Evaluation of Sequence-Covariation
RIBOSUM Matrices
The covariance term γ' of the old RNAalifold implementa-
tion is based on qualitative arguments only. A more quan-
titatively sound approach is to use scoring matrices akin to
the RIBOSUM scheme [27]. As a training set, we selected
13,500 sequences in total from the about 20,000
sequences in the SSU alignment of the European Ribos-
omal RNA Database [28], which are available in the DCSE
file format. When reading in the DCSE format, one needs
to correctly assign helix numbers to concrete helices of the
sequences. In some cases, this assignment could not be
done in an automated way. Avoiding possible mis-assign-

ments, such base pairs were ignored in the computation.
We also kept only sequences with less than 5% undeter-
mined nucleotides and at least 50% of the maximum pos-
sible number of base pairs. This set was clustered using
single linkage clustering to determine clusters where the
sequence identity between different clusters is ≤ P. For
each cutoff value P we determined the frequencies f(ac) of
nucleotides of type a and c being aligned and f(ab; cd) of
base pairs of type ab and cd being aligned in sequences
that are within different clusters. Besides being more dif-
ferent than P, the sequences had to have at least a
sequence identity of Q. For each pair Q, P, we define the
modified RIBOSUM scores as the log-odds scores

R(ab, cd) = log (f(ab; cd)/f(ac)f(bd)) (3)

In practice, we vary P and Q in steps of 5% sequence iden-
tity and obtain altogether 99 matrices. Note that this pro-
cedure is somewhat different from the approach reported
in [27]. The frequencies can be determined either for all
base pairs including the non-canonical ones or restricted
to the six types of canonical base pairs. Only the latter ver-
sion has proved useful in our context, and will be referred
to as RIBOSUM in the following.

The covariance term is computed as

i.e., the RIBOSUM matrices replace the Hamming dis-
tances h(αi, βi) + h(αj, βj), and are scaled by a factor x so
that the entries are in the same range as the entries of the
Hamming distance matrix. In order to determine which
matrix to use, we determine the minimum q and maxi-
mum p sequence identity in the alignment and select the
RIBOSUM matrix with smallest P and Q so that p ≤ P and
q ≤ Q.

RNAalifold uses two parameters to fine-tune the impact of
the covariance score. The first parameter, β, controls the
influence of the covariance score γ' relative to the total
folding energy. The second one, δ, weights the impact of
non-standard pairs. The old default value for both param-
eters is 1.

Simply leaving them as they are would lead to a large
change in the balance between the thermodynamic and
the covariance score. In the old RNAalifold program, less
than 10% of the total score is derived from the covariance
score. If β and δ were kept at 1, this fraction would
increase to more than 50%. This would presumably over-
emphasize covariance over thermodynamics. To find
appropriate values for β and δ, we use k-fold cross valida-

′ =
∈

≠

∑g a a b b
a b
a b

( , ) ( ; ),
,

i j xR i j i j
A

1
2 (4)
Page 4 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:474 http://www.biomedcentral.com/1471-2105/9/474
tion, with k = 11 on the CMfinder-SARSE benchmark data-
set described below.

Pfold-like Scoring
Inspired by the approach used in Pfold, we also tested a
covariance scoring based on an explicit phylogenetic
model. More precisely, we used the log-odds ratio of the
probabilities of a base pair given a tree and the alignment,
and the product of the corresponding probabilities of
unpaired bases given the same tree and alignment [29]. A
neighbor joining tree computed from the distances meas-
ured within the alignment was used. The probabilities
were then computed from this tree using the Pfold rate
matrices. This ansatz, however, did not result in more
accurate predictions. Therefore, it was not included into
RNAalifold.

Additional features
In addition to increasing the performance, additional
functionalities are included in the new RNAalifold soft-
ware.

Centroid structure
The partition function computation now includes the
computation of the centroid structure, which is defined as
the structure with minimal mean base pair distance to all
the structures of the ensemble:

Here, d(S) is the distance of a structure to the ensemble, B
denotes the set of all possible base pairs in the ensemble,
B(S) is the set of all base pairs of structure S, and p(i, j) is
the probability of the base pair i, j in the ensemble. It can
easily be seen that the structure with minimal d(S) is the
structure that contains all base pairs with a probability
greater than 0.5. This centroid structure can be seen as the
single structure that best describes the ensemble [30]. The
centroid structure usually contains less base pairs than the
minimum free energy structure, and is therefore less likely
to contain false positives.

Stochastic Backtracking
When trying to find out about statistical features of the
structure ensemble other than base pair probabilities, it is
sometimes of interest to compute a sample of suboptimal
structures according to their Boltzmann weights. This can
be achieved efficiently using so-called stochastic back-
tracking. In this variation of the standard backtracking
scheme, one uses the matrices of the partition function
computation to determine the probability of base pairs or
unpaired bases that are included in the structure instead
of choosing the alternative with the minimum free energy
at each step. The principle of stochastic backtracking in

RNA folding has been used already in [31] for the genera-
tion of uniformly distributed random structures. Later,
sfold [32] and the Vienna RNA Package [24] also imple-
mented energy-weighted variants. These implementations
differ from the original algorithm only by the inclusion of
the Boltzmann factors of the loop energy contributions
instead of treating all structural alternatives with equal
weight. The generalization of the stochastic backtracking
algorithm to consensus folds is straightforward. See addi-
tional file 2 for a detailed description. Stochastic back-
tracking is now implemented in the RNAalifold software.

Performance Evaluation
A trusted set of aligned sequences with corresponding
structures is needed in order to evaluate the performance
of consensus structure prediction tools. Most papers on
this topic use some subset of the Rfam [33]. However, the
structures and alignments contained in Rfam pose several
problems. The database consists of a large number of
snoRNAs (more than 30% of the alignments) and micro
RNAs (about 7%). Furthermore, many of the Rfam entries
contain short sequences that can only form simple one
stem structures. A serious problem is the fact that many of
the Rfam structures are predictions, some of which were
created by the very programs that are to be tested. Not
even all of the structures flagged as published within the
database have been experimentally derived. Mostly
because of this reasons, only 19 of the more than 600
Rfam families are contained in RNA STRAND [34], a
recently created, curated database of high quality single
RNA secondary structures.

We therefore chose several different datasets for perform-
ance evaluation. In addition to the complete Rfam (ver-
sion 8.1) seed alignments, we use here the CMfinder-
SARSE subset compiled from [35,36], which contains 44
high quality seed alignments (also used in the recent PET-
fold paper [37]), the seeds of 19 Rfam families contained
in RNA STRAND, and the dataset of KNetFold [38]. A list
of these Rfam subsets can be found in the additional file
3 or including links in the online supplement.

The script refold.pl of the Vienna RNA package is used to
remove gaps and non-standard base pairs from the
RNAalifold predictions. The resulting structure is com-
pared to the reference structure. For each alignment only
the first sequence is used for performance evaluation to
avoid a bias from the unequal sizes of the aligned
sequence sets. As performance measure we use the Math-
ews correlation coefficient (MCC) as introduced in a pre-
vious benchmark [39]: Base pairs that are not part of the
reference structure are counted as false positives only if
they are inconsistent with the reference structure, while
they are ignored if they can be added to the reference
structure. Thus additional stems and elongated stems are

d S
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not penalized. While this is a physically reasonable way to
compute the MCC, the question of comparability might
arise. To address this, we also used the more simple way
of defining false positives as all base pairs predicted that
were not part of the reference structure, and called it
"other MCC".

For the comparison procedure, we used the web-servers of
Pfold [29] and KNetFold. In case the Rfam seed alignment
contained more than 40 sequences, only the first 40 were
used; all-gap columns were removed from such align-
ments. The McCaskill-MEA software McC_mea [17] was
installed locally. The predictions were also filtered with
refold.pl before scoring.

In order to evaluate the dependence on the alignment
quality, we also realigned the Rfam alignments of the
CMfinder-SARSE dataset using Clustal [40], and then pro-
ceeded as described above. Furthermore, we also com-
puted the MCC for all Rfam seed alignments for those
programs that can be run locally (i.e. the RNAalifold vari-
ants and McC_mea).

The RNAalifold algorithm has been extensively used for
the prediction of thermodynamically stable and/or evolu-
tionary conserved RNAs [41-43]. The AlifoldZ program
[41] evaluates stability and structural conservation at the
same time simply by comparing the consensus free energy
of an alignment to the consensus free energies of a large
number of randomly shuffled alignments, relying entirely
on RNAalifold. RNAz [42], on the other hand calculates
two separate scores for stability and conservation. Struc-
tural conservation is assessed by means of the folding
energy based structure conservation index (SCI). Here, the
consensus energy is set in relation to the mean free ener-
gies of the single sequences. The lower bound of the SCI is
zero, indicating that RNAalifold is not able to find a con-
sensus structure, while a SCI close to one corresponds to
perfect structure conservation. Here, we investigate
whether the improved performance of RNAalifold in
terms of correctness of the predicted structure can also
improve the performance of ncRNA gene finders.

In order to evaluate the performance of AlifoldZ and the
SCI, we re-consider a sub-set of the test-set used in a pre-
vious benchmark [44]. As usual, we compute ROC curves
to determine our ability to discriminate between truly
conserved alignments and randomized controls. For sim-
plicity, only the area under the ROC curve (AUC) is
reported below as a measure of the discrimination power.

Results and Discussion
Predicting consensus structures
We first compared the new implementation of RNAalifold
with the 2002 version. As shown in Figure 2, the proper

treatment of gaps in the new version leads to a consist-
ently improved accuracy. The data also shows that the cov-
ariance contribution in the 2002 version was too large.
Using RIBOSUM matrices instead of the naïve Hamming
distance score substantially increases the beneficial effect
of the covariance score. However, if the same parameters
as in the original RNAalifold were used, the relative por-
tion of the covariance term within the score would be
greater than the thermodynamic score. We remark that for
large values of β, where the covariance contributions
dominate, the performance becomes much worse than for
a purely thermodynamic energy computation (data not
shown). As a new default, we therefore use β = 0.6 and δ
= 0.5. Still, the portion of the covariance term in the com-
bined energy term is much higher (about 44%) in the
RIBOSUM than in the other RNAalifold variants (about
7%). We want to remark that with the exception of very
low β, the performance of the RIBOSUM variant always
exceeds the performance of the new variant without
RIBOSUM, which in turn always performs better than the
2002 variant of RNAalifold (see Figures 2 and 3).

Table 1 summarizes the comparison of the consensus
structure predictions for five alignment-based programs
on the CMfinder-SARSE dataset. The new RNAalifold with
RIBOSUM matrices often yields perfect predictions and
appears to have a good worst case performance: the small-
est observed MCC is 0.64, and in this case the input align-
ment is clearly flawed, see additional file 4.

In Table 2, the performance of the same five programs on
the RNA STRAND-Rfam dataset is shown. This curated
dataset, in contrast to the other datasets we used, has
many pseudo-knotted structures (6) and only 2 of the 19
alignments have simple one-stem structures. In this
regard, it is a good extension to our other datasets. While
the total MCCs of all programs are lower, again the RIBO-
SUM variant of RNAalifold outperforms the other pro-
grams – however, on this dataset, the centroid structure
computed using RIBOSUM RNAalifold has the best per-
formance, with an MCC of 0.794. For this table, KNetFold
was run using the "check pseudoknots" option. Still, it
only correctly predicted a part of a single pseudo-knot.

We also used the Rfam subset that was used to evaluate
the performance of KNetFold [38]. However, we did not
use the same procedure to prune alignments down to a
maximum of 40 sequences. Therefore, the MCCs reported
here cannot directly be compared to the ones in [38]. The
MCC we achieve with the RIBOSUM variant of RNAali-
fold is 0.818. This is again a significant improvement over
the MCC of 0.604 achieved by the 2002 variant.

When considering an almost complete set of about 570
Rfam alignments (a few alignments that for various rea-
Page 6 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:474 http://www.biomedcentral.com/1471-2105/9/474
sons are problematic were removed), the mean MCC of
RNAalifold 2002 is 0.729, the new RNAalifold with RIBO-
SUM matrices achieves a mean MCC of 0.790, while
McC_mea achieves 0.742.

In Table 3, the performance of the new RNAalifold vari-
ants using the "other MCC" variant and the results when
using Clustal realigned sequences are shown.

Effects on predicted structures
Over all, there are two main reasons why prediction using
the RIBOSUM variant of RNAalifold will give better pre-
dictions than the 2002 variant. By treating gaps as if they
were bases, the 2002 implementation sometimes assigns
much too unfavorable energies to loops containing gaps
in a small number of sequences. As a consequence, these
loops cannot be part of the consensus structure. Examples

MCC on the CMfinder-SARSE dataset as a function of the β and δ parametersFigure 2
MCC on the CMfinder-SARSE dataset as a function of the β and δ parameters. It can be seen that except for β = 
1.0, using RIBOSUM Matrices improves the performance of the new RNAalifold, which is in turn always better than the 2002 
(old) variant. Furthermore, for the RIBOSUM variant, the size of the plateau, i.e. the subset of parameters with a MCC ≥ 0.93 
is quite big, containing 36 of 100 combinations of parameters (80 are ≥ 0.9, 21 are ≥ 0.935 and 6 are 0.937). Top: 3d-plot of 
the MCC against the parameters β and δ. Bottom: Vertical section along the diagonals β = δ and δ + β = 1.1.
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for this effect are GcvB, where an interrupting bulge loop
in the consensus structure actually exists in only one
sequence, or the Hammerhead ribozyme, where a large
insertion within a hairpin loop is present in about a third
of the sequences.

The beneficial effect of using the RIBOSUM matrices is
mostly due to the possibility to assign covariance boni to
certain base pairs even if not much (or even no) covaria-
tion actually occurred. This makes it possible to compen-
sate for a few contradicting base pairs, whether they are
due to alignment errors or to a slightly different structure
for some sequences. Predictions that benefit from that
effect are e.g. the Enterovirus 5' cloverleaf, the Snake H/
ACA box small nucleolar RNA or the UnaL2 LINE 3' ele-
ment. A mixture of both effects is seen in the R2 RNA ele-
ment as well as in the Hammerhead ribozyme. The
detailed results for these molecules can be seen in the
additional files 5, 6, 7, 8, 9 and 10 or in the online supple-
ment.

Detection of ncRNAs
AlifoldZ detects structural non-coding RNAs by compar-
ing the energy of the native alignment to the energies of a
population of randomized control alignments via a z-

score. Here, the better predictive power of the new RIBO-
SUM approach directly translates into increased ability to
distinguish evolutionary conserved RNAs from rand-
omized controls. The RIBOSUM approach achieves an
AUC of 0.969 compared to 0.954 for both the 2002
implementation and the new RNAalifold. The perform-
ance boost comes mainly from additional bonus energies
derived from covariance scoring. In the RIBOSUM
approach these energies have a much higher contribution
than in the conventional model thereby favoring true con-
servation patterns by giving a lower total free energy and
hence a lower z-score. This beneficial effect is not observed
in the case of the SCI, where the RIBOSUM covariance
energies even result in a performance drop (AUC 0.767)
compared to the other two implementations (new: 0.917,
2002: 0.916). The SCI is a conservation measure that com-
pares the consensus free energy to the mean free energy of
the single sequences. The covariance energies are impor-
tant for the high discrimination capability of the SCI, but
with the RIBOSUM scoring model the over-emphasis of
the covariance energy contributions blurs the signal for
true conservation. If we neglect the covariance score for
the computation of the SCI, the effect is much smaller
(AUC 0.907). We expect, however, that the RIBOSUM

Dependence of RNAalifold on the weights β and δFigure 3
Dependence of RNAalifold on the weights β and δ.A: For all three RNAalifold variants, the accuracy of the structure 
prediction, measured here as MCC for the CMfinder-SARSE dataset (Table 1), depends on the weight β of the covariance term 
(δ = 0.6). B: The AUC value for the SCI computation also depends strongly on the values of β and δ. The green square indi-
cates the optimal parameters (β = 1.55, δ = 0.6), the red dot is the default (1, 1). As the default is close to the maximum, there 
is little room for improvement.
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approach will perform well on purely structure-based sim-
ilarity or distance measures.

Computational requirements

Theoretically, the new and the old RNAalifold variants
have the same space ( (n2)) and time ( (Nn3)) com-
plexity, with N sequences in an alignment of length n.
However, neglecting possible base pairs with a conserva-
tion score below a certain cutoff (e.g. if more than 50% of

the sequences cannot form a base pair) dramatically
reduces computation time without affecting the results. As
an example, folding a subset of five randomly chosen
sequences of a ribosomal SSU alignment (length 1716 nt)
takes an average of about 42.2 seconds, while using 10
sequences of the same alignment takes about 3.8 seconds
on an Intel Xeon 2.8 GHz processor (Figure 4). The RIBO-
SUM matrices make it much harder to exclude base pairs

 

Table 1: Results on the CMfinder-SARSE dataset

RNA #seq MPI RIBOSUM RNAalifold Pfold KNetFold McC_mea

Antizyme_FSE 13 87 1.000 1.000 1.000 1.000 1.000
ctRNA_pGA1 15 72 1.000 1.000 1.000 0.976 1.000
Entero_5_CRE 160 84 1.000 0.848 0.478 1.000 0.942
Entero_CRE 56 81 1.000 0.736 1.000 0.953 0.953
GcvB 17 64 0.939 0.799 0.889 0.939 0.921
glmS 11 60 0.986 0.972 0.972 0.809 0.837
HACA_sno_Snake 22 90 0.871 0.407 0.414 0.915 0.884
HCV_SLIV 110 89 1.000 0.922 1.000 1.000 0.961
HDV_ribozyme 15 95 0.953 -0.015 0.590 0.460 0.460
HepC_CRE 52 87 1.000 0.962 1.000 1.000 1.000
Histone3 64 78 1.000 1.000 1.000 1.000 1.000
Hsp90_CRE 4 98 0.855 0.855 0.413 0.867 0.874
IBV_D-RNA 10 96 1.000 0.928 0.928 1.000 1.000
Intron_gpII 114 54 1.000 0.779 1.000 1.000 1.000
IRE 39 63 1.000 0.938 1.000 1.000 0.938
let-7 14 73 1.000 0.979 1.000 1.000 0.957
lin-4 9 73 1.000 0.973 1.000 1.000 1.000
Lysine 43 49 0.990 0.918 0.960 0.990 0.990
mir-10 11 67 0.973 0.888 0.916 0.973 0.973
mir-194 4 79 0.870 0.849 1.000 0.866 0.698
mir-BART1 3 93 0.977 0.977 0.861 1.000 0.977
nos_TCE 3 90 0.975 0.975 0.951 1.000 0.975
Purine 22 56 0.945 0.917 1.000 0.945 0.945
Rhino_CRE 12 72 0.734 0.734 0.680 0.974 0.756
RNA-OUT 4 96 0.775 0.775 0.834 0.740 0.775
rncO 6 80 0.903 0.923 0.668 0.896 0.825
Rota_CRE 14 86 1.000 0.764 0.682 0.099 -0.011
s2m 38 79 0.739 1.000 0.774 0.652 0.861
SCARNA14 4 67 0.969 0.748 -0.005 0.532 0.777
SCARNA15 3 96 1.000 1.000 0.601 0.971 0.925
SECIS 63 43 0.941 0.813 0.943 0.971 0.813
SNORA14 3 92 0.944 0.944 0.853 0.959 0.869
SNORA18 6 79 0.913 0.503 0.702 0.971 0.893
SNORA38 5 84 0.759 0.743 0.858 0.410 0.734
SNORA40 7 80 0.962 0.962 0.704 0.948 0.920
SNORA56 4 97 0.816 0.922 0.446 0.779 0.741
SNORD105 2 89 1.000 1.000 -0.007 0.648 0.971
SNORD64 3 94 1.000 0.539 0.539 0.661 -0.014
SNORD86 6 82 0.641 -0.012 -0.007 0.511 0.000
snoU83B 4 87 0.927 0.927 0.846 0.895 0.927
TCV_H5 3 97 1.000 1.000 0.685 1.000 1.000
TCV_Pr 4 95 1.000 1.000 0.688 1.000 1.000
Tymo_tRNA-like 28 64 1.000 0.916 1.000 0.973 1.000
ykoK 36 61 0.856 0.756 0.906 0.841 0.794

mean 0.937 0.831 0.765 0.866 0.837

Performance comparisons on the CMfinder-SARSE dataset. We list the MCC for different alignments. Best performance bold.
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from the outset. Thus, the RIBOSUM variant is by far the
slowest option on alignments with many rather diverse
sequences.

Conclusion
We have shown here that the performance of RNAalifold
can be improved to be competitive with all recently pub-
lished alignment-based consensus structure prediction
tools. This improvement is reached by a more accurate
treatment of gaps and an elaborate model for the evalua-
tion of sequence covariations that resembles the RIBOSUM

matrices. The gain in performance is achieved at negligible
extra computational cost and without dramatic changes to
the implementation. While a sequence weighting scheme
apparently can yield further improvements on good align-
ments, this makes the procedure less resilient towards mis-
alignments. It seems, therefore, that the approach is essen-
tially limited by the quality of the input alignments.

Authors' contributions
SHB designed and implemented the new version of
RNAalifold, ILH and PFS initiated the study and contrib-

Table 2: Results on the RNA STRAND-Rfam dataset

RNA comment RIBOSUM RNAalifold Pfold KNetFold McC_mea

7SK 0.507 0.456 0.292 0.429 0.306
bicoid_3 0.949 0.840 n.a. 0.829 0.927
Corona_pk3 Pk 0.579 0.646 0.674 0.678 0.705
CPEB3_ribozyme Pk 0.756 0.756 0.663 0.756 0.612
Gammaretro_CES 0.983 0.948 0.983 0.935 0.983
Hammerhead_1 1.000 0.474 0.621 0.831 0.614
Hammerhead_3 1.000 0.960 1.000 1.000 1.000
HDV_ribozyme Pk 0.709 -0.018 0.784 0.388 0.396
IRES_c-myc -0.004 0.079 0.286 -0.002 0.350
R2_retro_el 1.000 0.842 0.946 0.987 0.890
RNAIII 0.467 0.595 n.a. 0.479 0.830
RNase_MRP Pk 0.626 0.423 0.457 0.271 0.575
rne5 0.994 0.969 0.975 0.762 0.923
RydC Pk 0.466 0.562 0.608 0.466 -0.020
s2m 0.739 1.000 0.774 0.652 0.861
Telomerase-cil 1.000 0.937 0.921 1.000 0.953
Telomerase-vert pk 0.918 0.751 n.a. n.a. 0.820
Vimentin3 0.741 -0.016 0.184 0.771 0.629
Y 1.000 1.000 0.925 1.000 1.000

mean 0.759 0.651 0.703
mean knetfold 0.750 0.645 0.680 0.696
mean pfold 0.756 0.635 0.693 0.682 0.673

Performance comparisons on the RNA STRAND-Rfam dataset. We list the MCC for different alignments. Best performance indicated in bold, n.a. 
means that data is not available due to length restrictions on the respective server, pk denotes structures that contain a pseudo-knot. As there are 
many pseudo-knotted structures in this dataset, KNetFold was used in the "Check pseudoknot" mode. The MCCs take into account the pseudo-
knots.

Table 3: Results using alternative MCC and alignment

Program or variant MCC Other MCC Clustal MCC

RNAalifold 2002 0.831 0.814 0.708
RNAalifold new 0.845 0.819 0.711
RNAalifold RIBOSUM 0.937 0.871 0.788
RNAalifold 2002 centroid 0.828 0.815 0.693
RNAalifold new centroid 0.848 0.834 0.712
RNAalifold RIBOSUM centroid 0.934 0.896 0.780
Pfold 0.765 0.739 0.601
KNetFold 0.866 0.808 0.761
McC_mea 0.837 0.816 0.716

Performance comparisons on the CMfinder-SARSE dataset. We list the mean MCC for different programs. Best performance indicated in bold. 
Other MCC is the variant counting every wrongly predicted pair as false positive, Clustal MCC is the MCC as introduced by Gardner et al. [39] 
applied to alignments realigned using Clustal [40].
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Time series for the old, new and RIBOSUM RNAalifold variantsFigure 4
Time series for the old, new and RIBOSUM RNAalifold variants.A: Folding different alignments with 4 sequences and 
different lengths. B: Folding a different number of random sequences from the same alignment (1716 nt).
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uted to the theory, SW derived and calculated the RIBO-
SUM-like scores, ARG evaluated the performance for
structured RNA detection. All authors closely collaborated
in writing the manuscript.

Availability and requirements
RNAalifold is part of the ViennaRNA software package,
the new version can be downloaded for Linux as a tar
archive at: http://www.tbi.univie.ac.at/~ivo/RNA/.

The electronic supplement of this paper can be found at
http://www.bioinf.uni-leipzig.de/Publications/SUPPLE
MENTS/08-010/
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[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-474-S7.pdf]

Additional file 8
Hammerhead Rybozyme structure. Analysis of the effects leading to bet-
ter prediction of the Hammerhead Rybozyme structure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-474-S8.pdf]
Page 11 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S6.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S7.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S8.pdf
http://www.tbi.univie.ac.at/~ivo/RNA/
http://www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/08-010/
http://www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/08-010/


BMC Bioinformatics 2008, 9:474 http://www.biomedcentral.com/1471-2105/9/474
Acknowledgements
This work was supported in part by the European Union as part of the FP-
6 EMBIO project as well as by the Austrian GEN-AU project "Bioinformat-
ics Integration Network" and Deutsche Forschungsgemeinschaft as part of 
SPP-1258 "Sensory and Regulatory RNAs in Prokaryotes".

References
1. The ENCODE Project Consortium: Identification and analysis of

functional elements in 1% of the human genome by the
ENCODE pilot project.  Nature 2007, 447:799-816.

2. The FANTOM Consortium: The Transcriptional Landscape of
the Mammalian Genome.  Science 2005, 309:1159-1563.

3. The Athanasius F Bompfünewerer RNA Consortium: RNAs Every-
where: Genome-Wide Annotation of Structured RNAs.  J Exp
Zool B Mol Dev Evol 2007, 308B:1-25.

4. Hofacker IL, Fekete M, Stadler PF: Secondary Structure Predic-
tion for Aligned RNA Sequences.  J Mol Biol 2002,
319:1059-1066.

5. Sankoff D: Simultaneous solution of the RNA folding, align-
ment, and proto-sequence problems.  SIAM J Appl Math 1985,
45:810-825.

6. Harmanci AO, Sharma G, Mathews DH: Efficient pairwise RNA
structure prediction using probabilistic alignment con-
straints in Dynalign.  BMC Bioinformatics 2007, 8:130.

7. Holmes I: Accelerated probabilistic inference of RNA struc-
ture evolution.  BMC Bioinformatics 2005, 6:73.

8. Havgaard JH, Torarinsson E, Gorodkin J: Fast pairwise structural
RNA alignments by pruning of the dynamical programming
matrix.  PLoS Comput Biol 2007, 3:1896-1908.

9. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R: Inferring non-
coding RNA families and classes by means of genome-scale
structure-based clustering.  PLoS Comput Biol 2007, 3(4):400.

10. Dowell RD, Eddy SR: Efficient pairwise RNA structure predic-
tion and alignment using sequence alignment constraints.
BMC Bioinformatics 2006, 7:400.

11. Dalli D, Wilm A, Mainz I, G S: STRAL: progressive alignment of
non-coding RNA using base pairing probability vectors in
quadratic time.  Bioinformatics 2006, 22:1593-1599.

12. Höchsmann M, Töller T, Giegerich R, Kurtz S: Local Similarity in
RNA Secondary Structures.  Proc IEEE Comput Soc Bioinform Conf
2003, 2:159-168.

13. Siebert S, Backofen R: MARNA: multiple alignment and consen-
sus structure prediction of RNAs based on sequence struc-
ture comparisons.  Bioinformatics 2005, 21:3352-3359.

14. Will S, Missal K, Hofacker IL, Stadler PF, Backofen R: Inferring Non-
Coding RNA Families and Classes by Means of Genome-
Scale Structure-Based Clustering.  PLoS Comp Biol 2007, 3:e65.

15. Horesh Y, Doniger T, Michaeli S, Unger R: RNAspa a shortest
path approach for comparative prediction of the secondary
structure of ncRNA molecules.  BMC Bioinformatics 2007, 8:366.

16. Reeder J, Giegerich R: Consensus shapes: an alternative to the
Sankoff algorithm for RNA consensus structure prediction.
Bioinformatics 2005, 21:3516-3523.

17. Kiryu H, Kin T, Asai K: Robust prediction of consensus second-
ary structures using averaged base pairing probability matri-
ces.  Bioinformatics 2007, 23:434-441.

18. Wilm A, Linnenbrink K, Steger G: ConStruct: improved con-
struction of RNA consensus structures.  BMC Bioinformatics
2008, 9:219.

19. Hofacker IL, Stadler PF: Automatic Detection of Conserved
Base Pairing Patterns in RNA Virus Genomes.  Comp & Chem
1999, 23:401-414.

20. Mathews DH, Turner DH: Prediction of RNA secondary struc-
ture by free energy minimization.  Curr Opin Struct Biol 2006,
16:270-278.

21. Wilm A, Linnenbrink K, Steger G: ConStruct: Improved con-
struction of RNA consensus structures.  BMC Bioinformatics
2008, 9:219-219.

22. Zuker M, Stiegler P: Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information.
Nucleic Acids Res 1981, 9:133-148.

23. Hofacker IL, Stadler PF: Memory Efficient Folding Algorithms
for Circular RNA Secondary Structures.  Bioinformatics 2006,
22:1172-1176.

24. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schus-
ter P: Fast Folding and Comparison of RNA Secondary Struc-
tures.  Monatsh Chem 1994, 125:167-188.

25. Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP: Effi-
cient parameter estimation for RNA secondary structure
prediction.  Bioinformatics 2007, 23:i19-i28.

26. Vingron M, Sibbald PR: Weighting in sequence space: A com-
parison of methods in terms of generalized sequences.  Proc
Natl Acad Sci USA 1993, 90:8777-8781.

27. Klein RJ, Eddy SR: RSEARCH: finding homologs of single struc-
tured RNA sequences.  BMC Bioinformatics 2003, 4:44.

28. Wuyts J, Perrière G, Peer Y Van De: The European ribosomal
RNA database.  Nucleic Acids Res 2004, 32::D101-D103.

29. Knudsen B, Hein J: Pfold: RNA secondary structure prediction
using stochastic context-free grammars.  Nucleic Acids Res 2003,
31:3423-3428.

30. Carvalho LE, Lawrence CE: Centroid estimation in discrete
high-dimensional spaces with applications in biology.  Proc
Natl Acad Sci USA 2008, 105(9):3209-3214.

31. Tacker M, Stadler PF, Bornberg-Bauer EG, Hofacker IL, Schuster P:
Algorithm Independent Properties of RNA Structure Pre-
diction.  Eur Biophy J 1996, 25:115-130.

32. Ding Y, Lawrence CE: A bayesian statistical algorithm for RNA
secondary structure prediction.  Comput Chem 1999, 23(3–
4):387-400.

33. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman
A: Rfam: annotating non-coding RNAs in complete genomes.
Nucleic Acids Res 2005, 33( Database issue):121-4.

34. Andronescu M, Bereg V, Hoos HH, Condon A: RNA STRAND: the
RNA secondary structure and statistical analysis database.
BMC Bioinformatics 2008, 9:340-340.

35. Andersen ES, Lind-Thomsen A, Knudsen B, Kristensen SE, Havgaard
JH, Torarinsson E, Larsen N, Zwieb C, Ses-toft P, Kjems J, Gorodkin
J: Semiautomated improvement of RNA alignments.  RNA
2007, 13(11):1850-1859.

36. Yao Z, Weinberg Z, Ruzzo WL: CMfinder-a covariance model
based RNA motif finding algorithm.  Bioinformatics 2006,
22(4):445-452.

37. Seemann SE, Gorodkin J, Backofen R: Unifying evolutionary and
thermodynamic information for RNA folding of multiple
alignments.  NAR 2008.

38. Bindewald E, Shapiro BA: RNA secondary structure prediction
from sequence alignments using a network of k-nearest
neighbor classifiers.  RNA 2006, 12:342-352.

39. Gardner PP, Giegerich R: A comprehensive comparison of com-
parative RNA structure prediction approaches.  BMC Bioinfor-
matics 2004, 5:140.

40. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG,
Thompson JD: Multiple sequence alignment with the Clustal
series of programs.  Nucleic Acids Research 2003, 31(13):3497-500.

41. Washietl S, Hofacker IL: Consensus folding of aligned sequences
as a new measure for the detection of functional RNAs by
comparative genomics.  J Mol Biol 2004, 342:19-39.

42. Washietl S, Hofacker IL, Stadler PF: Fast and reliable prediction
of noncoding RNAs.  Proc Natl Acad Sci USA 2005, 102:2454-2459.

Additional file 9
R2 RNA element structure. Analysis of the effects leading to better pre-
diction of the R2 RNA element structure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-474-S9.pdf]

Additional file 10
UnaL2 LINE 3' element structure. Analysis of the effects leading to bet-
ter prediction of the UnaL2 LINE 3' element structure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-474-S10.pdf]
Page 12 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S9.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-9-474-S10.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17571346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17571346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17571346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17445273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17445273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17445273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17937495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17937495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17937495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16952317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16952317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16452790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16452790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17908318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17908318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17908318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16020472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16020472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18442401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18442401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16713706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16713706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18442401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18442401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6163133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6163133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16452114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16452114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17646296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17646296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17646296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8415606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8415606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14499004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14499004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18305160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18305160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10404626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10404626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18700982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18700982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17804647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16357030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16357030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18836192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18836192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18836192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16495232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16495232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15458580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15458580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15665081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15665081


BMC Bioinformatics 2008, 9:474 http://www.biomedcentral.com/1471-2105/9/474
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

43. Gesell T, Washietl S: Dinucleotide controlled null models for
comparative RNA gene prediction.  BMC Bioinformatics 2008,
9:248-248.

44. Gruber AR, Bernhart SH, Hofacker IL, Washietl S: Strategies for
measuring evolutionary conservation of RNA secondary
structures.  BMC Bioinformatics 2008, 9:122-122.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18505553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18505553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18302738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18302738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18302738
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Original RNAalifold
	Improved Energy Evaluation
	Energy Parameters
	Sequence Weighting

	Improving the Evaluation of Sequence-Covariation
	RIBOSUM Matrices
	Pfold-like Scoring

	Additional features
	Centroid structure
	Stochastic Backtracking

	Performance Evaluation

	Results and Discussion
	Predicting consensus structures
	Effects on predicted structures

	Detection of ncRNAs
	Computational requirements

	Conclusion
	Authors' contributions
	Availability and requirements
	Additional material
	Acknowledgements
	References

