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Abstract
Background: Comparative genomics is the analysis and comparison of genomes from different
species. This area of research is driven by the large number of sequenced genomes and heavily
relies on efficient algorithms and software to perform pairwise and multiple genome comparisons.

Results: Most of the software tools available are tailored for one specific task. In contrast, we have
developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit)
that allows solving several different tasks in a unified framework: (1) finding regions of high similarity
among multiple genomic sequences and aligning them, (2) comparing two draft or multi-
chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and
(4) mapping cDNA/EST to genomic sequences.

Conclusion: CoCoNUT is competitive with other software tools w.r.t. the quality of the results.
The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative
genomics tasks more efficiently than previous tools. With the improved user interface (including
an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use
software tool for large scale studies in comparative genomics.

Background
The size of genome sequence data has been rising at an
exponential rate for the past decade or two, and will dra-
matically increase with new sequencing technologies
becoming widely available. To analyze, annotate and
compare these genome sequences, new algorithms and
software for post-sequencing functional analysis are
demanded by the scientific community.

Whole genome comparisons can be used as a first step
toward solving genomic puzzles, such as determining
coding regions, discovering regulatory signals, and deduc-

ing the mechanisms and history of genome evolution. Of
importance to the genome annotation process, the
genome comparison approach obviates the need for a pri-
ori knowledge of a protein sequence motif and provides a
straightforward means for mapping information from the
stored annotated genomes to the novel ones.

Sequence comparison in the context of comparative
genomics is complicated by the fact that both local and
global mutations of the DNA molecules occur during evo-
lution. Local mutations (point mutations) consist of sub-
stitutions, insertions or deletions of single nucleotides,
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while global mutations (genome rearrangements) change
the DNA molecules on a large scale. Global mutations
include inversions, transpositions, and translocations as
well as large-scale duplications, insertions, and deletions.

Thus, if the organisms under consideration are closely
related (that is, if no or only a few genome rearrangements
have occurred) or one compares regions which are sus-
pected to be orthologous (regions in two or more
genomes in which orthologous genes occur in the same
order), then global alignments can, for example, be used
for the prediction of genes and regulatory elements. This
is because coding regions are relatively well preserved,
while non-coding regions tend to show varying degrees of
conservation. Genome comparisons of more closely
related species may also help to determine the genetic
basis for phenotype variation and may reveal species-spe-
cific regions (signatures) that can be targeted for identifi-
cation.

For diverged genomic sequences, however, a global align-
ment strategy is likely predestined to failure for having to
align non-colinear and unrelated regions.

In fact, the realm of comparative genomics is not limited
to the comparison of two or multiple uni- or multi-chro-
mosomal genomes. It also includes the comparison of
two or multiple draft genomic sequences, the comparison
of different assemblies, cDNA/EST mapping, and the
comparison of two cDNA/EST libraries from different spe-
cies. In all these tasks, the key problem is to identify
regions of similarity among the sequences, and to align
them.

To cope with the shear volume of data, most of the com-
parative genomics software-tools use an anchor-based
method that is composed of three phases:

1. computation of fragments (segments in the sequences
that are similar),

2. computation of highest-scoring chains of colinear non-
overlapping fragments (these are the anchors that form
the basis of the alignment), and

3. alignment of the regions between the anchors.

See [1,2] for reviews about the tools using this strategy for
comparing whole genomic sequences, and see [3,4] and
the references therein for the tools addressing the task of
cDNA/EST mapping. All the tools employing this strategy
implement the three phases, but the details depend on the
task and are different among the tools. For example, some
tools use exact algorithms, some use greedy algorithms,

some use a graph based solution, and others use a geomet-
ric based solution.

Comparative genome analysis on a large scale
A tool for the systematic comparative study of sequences
as large as vertebrate or plant genomes must satisfy the
following criteria.

Versatility
To be useful for molecular biologists, such a tool should
be able to deal with versatile tasks. The CoCoNUT system
supports the following genome comparison tasks:

• Computation of a multiple alignment of closely related
(i.e., similar) sequences.

• Computation of regions of high similarity among mul-
tiple genomic sequences.

• Comparison of two draft or multi-chromosomal
genomes. (This task is similar to the comparison of two
cDNA/EST libraries).

• Identification of segmental duplications in whole
genomic sequences.

• cDNA/EST mapping.

To the best of our knowledge, there is no other software-
tool which covers so many tasks. CoCoNUT is freely avail-
able for non-commercial purposes.

Compositionality and usability
A complex system supporting the manifold tasks of
genome analysis usually consists of several advanced pro-
grams. Thus it must provide simple interfaces to enable
the composition of these programs. CoCoNUT uses varia-
tions of the above-mentioned anchor-based strategy to
support genome comparison tasks. The three phases (1)
computation of fragments, (2) chaining of fragments, and
(3) post-processing of chains are clearly separated. Thus,
it is possible to exchange a program performing one of the
phases without affecting the whole system. Moreover, it is
possible to stop the computation at any phase, and store
the intermediate results for later use.

Efficiency
To analyze complete genomes of up to several billion base
pairs, the space and time used by the algorithms must
scale "almost" linearly with the sequence length and the
output size. CoCoNUT is based on the anchor based strat-
egy mentioned before and its algorithms meet this
requirement. Our implementation of the crucial first
phase (computations of fragments) is linear, see [5] for
more details. The second phase uses techniques from
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computational geometry to chain the fragments. This
approach is "almost" linear in the number of fragments,
which is a considerable advantage over the straightfor-
ward graph based approach (which requires quadratic
running time). For more details about our chaining algo-
rithms, see [4,6-8].

Experimental results show that CoCoNUT is able to effi-
ciently handle large sequence sets. For example, four bac-
terial genomes are processed (i.e., finding regions of high
similarity and aligning them) in a few minutes. CoCoNUT
can process three large mammalian X-chromosomes in
about one hour on a standard workstation. However, for
the largest vertebrate chromosomes, a server class
machine (of say 16 or 32 GB of RAM) is probably
required. Comparing a set of complete mammalian
genomes in one run would require even more RAM, and
therefore we recommend to perform the comparison on
the chromosome level. However, a general statement
about the upper limit of the number and size of the
sequences which can be processed is difficult, because the
resource requirement very much depends on the similar-
ity of the genomes. The more similar, the more matches
are to be computed and the more resources are required.

Interactive Visualization
The large amount of data delivered by comparative
genomics requires a visualization. CoCoNUT comes with
an interactive visualization tool called VisCHAINER. This
displays dot plots of the comparison results (with zoom
and select capabilities). In contrast to established dot-plot
tools like DOTTER [9] or Gepard [10], VisCHAINER can
automatically display dot plots of multiple genome com-
parisons. That is, all two-dimensional projections of the
common regions among multiple genomes are plotted.
Moreover, VisCHAINER has functionalities specific to the
anchor-based strategy.

Related work
Whole genome comparison
In [2], Treangen and Messeguer presented a classification
of genome comparison tools. In this classification, CoCo-
NUT falls into the category of large-scale multiple genome
comparison tools. Some of these (ABA [11], Mulan [12],
TBA [13], Mauve [14], and M-GCAT [2]) can deal with
genome rearrangements. In what follows, we briefly com-
pare our system with these software-tools except for
Mulan, because Mulan is a network server based on TBA.
ABA and TBA employ a progressive alignment strategy,
i.e., they construct local alignments from pairwise com-
parisons, possibly following a "guide" tree. Both tools use
BLASTZ [15] to identify hits (small regions of similarity)
between pairs of genomes, and then they combine these
hits into larger alignment blocks. Therefore, these tools
can detect similarities that must not necessarily be present

in all of the genomes under consideration. This is an
advantage over Mauve, M-GCAT, and CoCoNUT. On the
other hand, both tools suffer from large running times
even for short sequences; see [11,13] and [[2], page 2].

Mauve and M-GCAT use maximal unique matches as frag-
ments. By definition, these matches occur only once in
each genome (or chromosome). As a consequence, for
genomes containing large-scale duplications (e.g., plants
genomes), the number of fragments may be very small
and thus no reasonable alignment can be produced. In
fact, this shortcoming was already mentioned in [16] and
[2].

Identification of large genomic duplications
There are many software tools for locating repeated seg-
ments in large genomic sequences; see [17] for a review.
CoCoNUT is different from other tools because it can effi-
ciently locate large genomic duplications (such as di- and
tetraploidization). These are difficult to detect as they (1)
are very long, (2) may be interrupted by large gaps (due to
deletions or insertions of other repeat types), and (3)
might have undergone rearrangement events. As an exam-
ple, we show how CoCoNUT can locate the genome
duplications in chromosome I of A. thaliana.

cDNA/EST mapping
Standard dynamic programming algorithms cannot be
used for high throughput mapping of cDNA sequences
because they have a quadratic running time. Hence, heu-
ristic algorithms have been developed for this task. All of
them either use a seed-and-extend strategy or a chaining
strategy.

Tools applying the seed-and-extend strategy include,
among others, BLAT [18] and MGAlign [19]. These tools
differ in the type of seeds they use and in the way the seeds
are computed. Tools using the chaining based strategy
include, among others, GenomeThreader [20], GMAP
[21] and the program by Shibuya and Kurochkin [3].

The work of [3] is worth mentioning because it uses suffix
trees for the computation of exact matches and introduces
a geometric-based chaining algorithm. In [4], the algo-
rithm of [3] was further refined by using enhanced suffix
arrays instead of suffix trees, by using maximal exact
matches instead of maximal unique matches, and by
using a chaining algorithm that is less complicated and
more suitable for cDNA mapping. Its sensitivity/specifi-
city was compared to the program BLAT (the most popu-
lar program for cDNA mapping applying the k-mer based
seed-and-extend strategy). It was shown in [4] that the
chaining strategy is more specific than the seed-and-
extend strategy, while achieving the same level of sensitiv-
ity. Moreover, the algorithm obviates the need for mask-
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ing the genomes, while unmasked sequences can often
not be processed by k-mer based seed-and-extend strate-
gies, as the number of k-mers is too large. Seed-and-extend
strategies based on maximal exact matches (e.g., as imple-
mented in [22]) may be able to process unmasked,
sequences, but for cDNA mapping they are less specific
than the chaining approach, see above. In CoCoNUT, the
algorithms and software prototypes presented in [4] were
rewritten and extended by additional splice site detection
methods.

Implementation
Computing the fragments
For i, 1  i  k, let Si = Si[1..ni] denote a string of length ni
= |Si|. In our applications, Si is a long DNA sequence (e.g.,
a complete chromosome). Furthermore, Si[li... hi] is the
substring of Si starting at position li and ending at position
hi. A fragment consists of substrings S1[l1... h1], S2[l2...
h2],..., Sk[lk... hk] that are "similar". If S1[l1... h1] = S2[l2... h2]
= ... = Sk[lk... hk] (i.e., the substrings are identical), then
such a fragment is called exact fragment or multiple exact
match. A multiple exact match is called left maximal, if Si[li
- 1]  Sj[lj - 1] for some i  j, and it is called right maximal
if Si[hi + 1]  Sj[hj + 1] for some i  j. A multiple maximal
exact match (multiMEM for short) is left and right maxi-
mal. In other words, the constituent substrings cannot be
simultaneously extended to the left and to the right.

A multiMEM is called rare if the constituent substrings
Si[li... hi] appear at most r times in Si, where 1  i  k and r
is a natural number specified by the user. We call the value
r the rareness value. A multiMEM is called unique if r = 1. In
this case, we speak of a multiple maximal unique match or
multiMUM for short. Note that the maximal unique
matches used in the program MUMmer can be viewed as
multiMEMs with rareness value r = 1 for k = 2 sequences.

If character mismatches, deletions, or insertions are
allowed in the constituent substrings of a fragment, then
we speak of a non-exact fragment. The programs DIALIGN
[23] and LAGAN [24] compute fragments with substitu-
tions, and the program BLASTZ [15] (used in PipMaker
[25]) computes fragments with substitutions, insertions,
and deletions.

Our system can use any kind of fragments, provided that
they are output in the CoCoNUT format. For our experi-
ments, we use (rare) multiMEMs because these are easier
and faster to compute than non-exact matches. Using
spaced seeds [26] for pairwise comparisons would also be
reasonable. Note that multiMEMs of minimum length k
achieve the same level of sensitivity as approximate
matches computed by extending seeds of length k. More-
over, the number of multiMEMs is much smaller than the
number of k-mers, which results in faster processing and
better specificity.

Fragment representation and global chainingFigure 1
Fragment representation and global chaining. The fragments in (a) can be represented, as shown in (b), by hyper-rec-
tangles in a k-dimensional space, where k is the number of genomes, and each axis corresponds to one genome. In this exam-
ple, the optimal global chain of colinear non-overlapping fragments consists of the fragments 2, 3, and 7.
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Geometrically, a fragment f of k genomes can be repre-

sented by a hyper-rectangle in  with the two extreme

corner points beg(f) and end(f). beg(f) is the k-tuple (l1,

l2,..., lk), where l1,..., lk are the start positions of the frag-

ments in S1,..., Sk. end(f) is the k-tuple (h1, h2,..., hk), where

h1,..., hk are the end positions of the fragments in S1,..., Sk,

respectively; see Figure 1. With every fragment f, we asso-

ciate a positive weight f. weight  �. This weight can, for
example, be the length of the fragment (in case of exact
fragments) or its statistical significance. In our system, in
the default case, we use the fragment length as weight.

Chaining the fragments
We define a binary relation << on the set of fragments by
f << f' if and only if end(f).xi <beg(f').xi for all i, 1  i  k. If
f << f', then f precedes f'. Two fragments in a chain are colin-
ear if the order of their respective segments is the same in
all genomes. In the pictorial representation of Figure 1(a),
two fragments are colinear if the lines connecting their
segments are non-crossing (e.g., the fragments 1 and 4 are
colinear, while 1 and 2 are not).

A chain of colinear non-overlapping fragments (or chain
for short) is a sequence of fragments f1, f2,..., f� such that fi
<< fi+1 for all 1  i < �. The score of a chain �C = f1, f2,..., f�� is

where g(fi+1, fi) is the cost of connecting fragment fi to fi+1
in the chain. We will call this cost gap cost. The gap cost
implemented in the current version of CoCoNUT is
defined as follows. For two fragments f << f',

Given n weighted fragments from two or more genomes,
the following problems can be defined:

• The global chaining problem is to determine a chain of
maximum score starting at the origin 0 = (0,..., 0) and end-
ing at the terminus point t = (n1 + 1,..., nk + 1). Such a
chain will be called optimal global chain. Figure 1 shows a
set of fragments and an optimal global chain.

• The local chaining problem is to determine a chain of max-
imum score  0. Such a chain will be called optimal local
chain. It is not necessary that this chain starts at the origin
or ends at the terminus. Figure 2 shows a set of fragments
and an optimal local chain.

• Given a threshold T, the all significant local chains problem
is to determine all chains of score  T. Obviously, the all
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significant local chains problem is a generalization of the
local chaining problem.

In a solution to the all significant local chains problem,
some chains can share one or more fragments, composing
a cluster of fragments. In the example of Figure 2, the local
chains �1, 3, 6� and �1, 4, 6� share the fragments 1 and 6,
yielding the cluster �1, {3, 4}, 6�. The cluster �7, {8, 9}� rep-
resents two local chains �7, 8� and �7, 9�. To reduce the out-
put size, we report the clusters and from each cluster we
report a local chain of highest score as a representative
chain of this cluster. This representative chain is a signifi-
cant local chain. In the example, the representative chains
are �1, 4, 6� and �7, 8�.

Our chaining algorithm is not heuristic, i.e., it computes
an optimal chain w.r.t. the given constraints. It is based on
the line-sweep paradigm and uses range maximum queries
(RMQ) with activation. During the line sweep procedure,
the fragments are scanned w.r.t. their order in one of the
genomes. If an end point of a fragment is scanned, then it
is activated. If a start point of a fragment is scanned, then
we connect it to an activated fragment of highest score
occurring in the rectangular region bounded by the start
point of the fragment and the origin. This highest-scoring
fragment is found by an RMQ, see Figure 2(b). For more
details about our chaining algorithms; see [6,7,27]. In
practice, variations of the basic algorithms or certain pre-
processing steps are required. Because these variations are
specific to each application, we handle them in detail in
the respective sections.

The data flow in CoCoNUT
Figure 3 summarizes the data flow and typical usage of
CoCoNUT.

The input to the system is a set of genomic sequences. For
genome analysis, all chromosomes are input. Usually,
each chromosome is given as a single FASTA file and one
compares a combination of chromosomes at a time.
(However, CoCoNUT can also compare two multi-chro-
mosomal or draft genomes in a single run; this will be
explained in the following section.) Inversions can be
taken into account by considering the backward strands of
some chromosomes and the forward strands of the other
chromosomes. In CoCoNUT, all combinations of orienta-
tions are considered by default, but the user has the
option to restrict the comparison to the forward strands
only. For repeat analysis, the input is a single genomic
sequence in single or multiple FASTA files. For cDNA
mapping, the user submits one genomic sequence and
cDNA sequences in a multiple FASTA file.

Each comparison consists of a fragment generation phase
and a chaining phase. The fragments are usually generated

by the program ramaco [5], which computes rare multi-
MEMs using an enhanced suffix array of one of the chro-
mosomes. Alternatively, if one does not expect too many
repeats in the considered sequences (and therefore no
explosion in the number of multiMEMs), it may not be
necessary to specify a rareness parameter. In such a case,
one can use the program multimat [28] to compute the
multiMEMs. While ramaco can also compute multiMEMs
(without rareness parameters), multimat does this more
efficiently at the expense of a larger index size (as it
requires to build an enhanced suffix array of all chromo-
somes.) The program CHAINER carries out the chaining
phase and delivers all significant local chains, where each
chain corresponds to a region of similarity.

Upon completion of these two phases, CoCoNUT pro-
vides the functionality to

• visualize the resulting chains in 2D plots, or

• compute an alignment on the nucleotide level for each
chain (by the strategy described in the next section) and
filter out chains with low sequence identity, or

• compute and visualize regions of high similarity, or

• perform a second chaining step with the chains of the
first chaining step as new fragments.

To repeat parts of the comparison with different parame-
ters, the user can re-start the comparison at four points:
(1) after the index generation, (2) after the fragment gen-
eration, (3) after the first chaining step, and (4) after the
alignment. For example, if the user has already computed
the fragments and chains, then he/she could run the align-
ment program later, based on the stored fragments and
chains. He/she could also repeat the chaining step with
the stored fragments, but with different parameters.

Results and discussion
Finding regions of high similarity
The first two phases of CoCoNUT are (1) the computation
of fragments (multiMEMs) and (2) the computation of all
significant local chains. These chains correspond to
regions of high similarity, but the reader should keep in
mind that the regions depend on the parameters with
which the program was called. This behavior bears resem-
blance to the widely used program BLAST [29] for com-
paring DNA or protein sequences. A BLAST search enables
a researcher to compare a query sequence with a database
of sequences, and identify sequences in the database that
are similar to the query sequence. The sequences delivered
by BLAST depend on the parameters with which the pro-
gram was called, and the parameter choice is very impor-
tant. The following scenario shows a typical usage of
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CoCoNUT block diagramFigure 3
CoCoNUT block diagram. The data-flow in CoCoNUT for the task of comparing multiple genomes. The user can repeat 
the comparison starting in any of the four phases (marked as use index, use fragments, use chains, and use alignment) and proceed 
further in the comparison. The extensions of the files produced in each step are shown in brackets; see also Table 1.
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BLAST. Following the sequencing of a DNA segment of
functional importance in a certain species, a scientist will
typically perform a BLAST search against genomes of
related species. It is then a research hypothesis that the
sequences identified by the search are in fact homologous
(in the phylogenetic sense) to the query sequence. How-
ever, because sequence similarity may arise from different
ancestors (e.g., short sequences may be similar by chance
or sequences may be similar because both were selected to
bind to a particular protein, such as a transcription factor)
this working hypothesis must be corroborated. The same
is true for CoCoNUT. The regions of high similarity iden-
tified by CoCoNUT may or may not be homologous, and
an alignment of these may or may not be meaningful.

Other authors use the terms synteny or syntenic regions
instead of regions of high similarity. In genetics, synteny
describes the physical co-localization of genetic loci on
the same chromosome within an individual or species,
while shared synteny describes preserved co-localization of
genes on chromosomes of related species. The term shared
synteny is sometimes also used to describe preservation of
the precise order of genes on a chromosome passed down
from a common ancestor, but many geneticists reject this
use of the term. Passarge et al. [30] wrote: "We believe
molecular biologists ought to respect the original defini-
tion of synteny and its etymological derivation, especially
as this term is still needed to refer to genes located on the
same chromosome. We recognize the need to refer to gene
loci of common ancestry. Correct terms exist: 'paralogous'
for genes that arose from a common ancestor gene within
one species and 'orthologous' for the same gene in differ-
ent species." However, in our context, the term orthologous
regions cannot be used either, simply because we cannot
generally infer orthology from sequence similarity alone
(nevertheless, shared synteny in the gene order sense is
one of the most reliable criteria for establishing the
orthology of genomic regions in different species).
Because there is no "right word" yet, we will use the term
regions of high similarity, although we feel that this term
does not have the right connotation (especially if one uses
a second chaining step, see below).

In contrast to global alignment tools (e.g., MGA [31]),
which assume global similarity, CoCoNUT can cope with
genome rearrangements. It uses the three step approach
depicted in Figure 3. The user can specify several parame-
ters in the CoCoNUT system and a reasonable parameter
choice is very important.

In the fragment generation phase, the parameter "mini-
mum fragment length" can be set by the user, but it is usu-
ally a good idea to first use the default parameter, which
is estimated based on the count statistics; see [32]. Fur-
thermore, the user can specify the rareness value of a frag-

ment. The rareness parameter depends on the number of
"important to see" repeated segments in the genomes, an
information that cannot be determined automatically.
Therefore, the user has to test different rareness values. In
our experiments, we found that 5 is a reasonable rareness
value to start with.

Only fragments (multiMEMs) whose lengths exceed the
minimum fragment length are generated. On the one
hand, if the minimum fragment length is too small or the
rareness value is too large, a large number of fragments is
generated. On the other hand, if the minimum fragment
length is too large or the rareness value is too small, too
few fragments for a meaningful comparison may be gen-
erated.

In the chaining phase, CHAINER solves the all significant
local chains problem. In addition, the user can specify an
upper bound on the gap length between fragments in a
chain. That is, two fragments can only be connected in a
chain if the number of characters separating them does
not exceed this user-defined maximum gap-length, which
is identical for all sequences. This option prevents unre-
lated fragments from extending a chain. The user can also
filter out chains based on their length or their score. (This
filtration can also be carried out using the visualization
tool VisCHAINER.)

The fragments of a local chain represent anchors that form
the basis of the local alignment. Only the regions between
them must be aligned on the nucleotide level. If one com-
pares just two genomes, the regions between the anchors
are aligned by a global alignment algorithm based on
standard dynamic programming. For more than two
genomes, the program CLUSTALW [33] is used to align
these regions. This strategy is also used in the multiple glo-
bal alignment tool MGA [31], albeit for a single global
chain.

For closely related genomes, it is recommended to
increase the minimum fragment length. This usually does
not affect the sensitivity of the procedure. Moreover, a sin-
gle chaining step is usually enough to identify regions of
high similarity.

For distantly related genomes, the minimum fragment
length needs to be reduced to increase the sensitivity of
the comparison. This, however, has the effect that many
fragments appear by chance. To identify regions of high
similarity in the "noisy" fragment set, it is important to
use a double-chaining strategy. In the first chaining phase,
one computes chains of multiMEMs with a stringent gap
length. In the second chaining phase, the chains resulting
from the first chaining step are considered as new frag-
ments. Moreover, the gap length is increased. In this way,
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it is possible to remove the noise without missing relevant
fragments.

We exemplify these two strategies by comparing three
related bacterial genomes and three distantly related
mammalian chromosomes. The experiments were carried
out on a Sun Sparc V processor with 1015 MHz and 6GB
RAM.

Comparing closely related bacterial genomes
We compared the three bacterial genomes E. coli, S. sonnei,
and S. boydii (accession numbers are NC_000913,
NC_007384, and NC_007613, respectively). As a refer-
ence, we first compared the proteomes of the three
genomes and obtained the best hit of all proteins encoded
in three genomes. This comparison was performed using
the Comprehensive Microbial Resource web-based compari-
son tools [34]. We used the option that reports the best
hits for each protein. Figure 4 (lower left) shows the pro-
jection E. coli vs. E. sonnei in which the hits that appear on
a vertical or horizontal line correspond to repeated seg-
ments in E. coli or E. sonnei encoding the same protein. (By
searching the non-redundant protein database using
BLAST, we found that the repeats are insertion elements.)

We used CoCoNUT to compare the three genomes on the
DNA level. The minimum length of the fragments was
between 15 to 18 and the rareness value was between 5
and 20. (The default values for minimum length and rare-
ness are 18 and 5, respectively.) In the chaining step, the
maximum gap length was set to 1000 bp. For minimum
length 15 and rareness value 20, we obtained the best
results w.r.t. the reference comparison on the protein
level. All chains of length less than 500 bp were filtered
out. As can be seen in Figure 4, the regions containing
orthologs are covered by the local chains. The remaining
repeated segments visible in the DNA plot, but not in the
protein plot, are insertion elements that do not encode a
protein.

In this comparison, there was no need for a second chain-
ing step because regions of high similarity could easily be
identified. All alignments derived from the chains show
an identity of more than 70%. The whole experiment,
including the computation of the multiple alignment,
took a few minutes.

We applied the program Mauve to the same three bacterial
genomes. Mauve uses fragments of the type multiMUMs,
and as shown in Figure 4, is not able to identify repeated
segments.

Comparing distantly related mammalian chromosomes
The X-chromosomes of human, mouse, and rat were com-
pared by CoCoNUT. We used masked and unmasked

sequences of the latest assemblies of the three genomes.
We used the human genome version 18 NCBI build 36,
the mouse genome version 9 NCBI build 37, and the rat
X-chromosome version 4 RGSC v3.4 from the UCSC
genome browser. The accession numbers of the X-chro-
mosomes of human, mouse, and rat are NC_000023 and
NC_000086, and NC_005120, respectively.

As a reference, we used the BioMart system [35,36] to
retrieve all orthologous proteins among the three X-chro-
mosomes. The human X-chromosome was taken as a ref-
erence. Figure 5 (upper left) shows the plot for the human
vs. mouse X-chromosome. (Projections w.r.t. other pair-
wise genomes are not shown.) Each point in this plot cor-
responds to a protein shared in all X-chromosomes with
identity larger than 25%.

We also compared our results with Bourque et al. [37],
who identified synteny blocks and used them to compute
genome rearrangement scenarios. (A synteny block in the
Bourque et al. paper is composed of non-repeated colin-
ear regions of high similarity. As discussed above, some
readers may reject the use of the term synteny block, but we
will stick to the original terminology used by Bourque et
al. [37].) The synteny blocks were identified by first com-
bining the results of all pairwise genome comparisons,
and then by verifying these using all pairwise proteome
comparisons.

We ran CoCoNUT using different parameters, starting
with the default values. The parameters that produced
good results were as follows: The minimum fragment
length was 20 and the rareness value was 10. Furthermore,
the gap length between two fragments in a chain was set
to 600 bp and chains with length less than 80 bp were fil-
tered out. Figure 5 (upper right) shows the projections of
the resulting chains w.r.t. the human and mouse chromo-
somes. (Other projections are not shown.)

Although the results show that the regions containing the
orthologous proteins are covered by CoCoNUT local
alignments, it is difficult to automatically identify large
regions of high similarity by visual inspection. Therefore,
we performed a second chaining step. In this step, the gap
length between two fragments was 500 Kbp, and chains
with length less than 300 Kbp were filtered out. The result-
ing chains were considered to be the regions of high sim-
ilarity. The parameters were chosen to mimic the strategy
of [37]. Figure 5 (lower left) depicts the results of the sec-
ond chaining step w.r.t. the human and mouse chromo-
somes. (Other projections are not shown.) Table 1 in
Additional file 1 lists the exact coordinates of the regions
of high similarity.
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CoCoNUT can optionally filter out repetitions and coa-
lesce the regions of high similarity into synteny blocks.
The corresponding output is shown in Figure 5 (lower
right); see Table 2 in Additional file 1 for the exact coordi-
nates. A detailed analysis of the genome comparisons of
the three X-chromosomes reveals that our results are very
similar to the results presented in [37] (the boundaries of
the synteny blocks differ only slightly), except for two seg-
ments that are not in the same orientation. We attribute
this difference to the fact that the genome assembly we
used is a more recent one compared to [37]. In the new

assembly, the X-chromosome sizes were modified and the
orientation of two large segments in the mouse X-chro-
mosome was corrected. (This can be verified by compari-
sons on the protein level; see Figure 5). The reason why we
preferred to use the new assemblies is to stimulate a fol-
low-up study for re-estimating the rearrangements sce-
nario using the new synteny blocks.

For masked X-chromosomes, the fragment generation and
the chaining step took about 21 minutes, and the align-
ment step took about 40 minutes. For unmasked X-chro-

Comparison of three bacterial genomesFigure 4
Comparison of three bacterial genomes. A comparison of the three bacterial genomes of E. coli, S. sonnei, and S. boydii. 
We show the projections E. coli vs. S. sonnei (upper left) and E. coli vs. S. boydii (upper right). (The third projection S. sonnei vs. S. 
boydii is not shown). The plot on the lower-left is the projection E. coli vs. S. sonnei, where each point represents a protein that 
is encoded in all three genomes. (Other projections are not shown.). The arrows point to some proteins repeated in the 
genomes (vertically aligned hits correspond to repetitions in S. sonnei and the horizontally aligned ones correspond to repeti-
tions in E. coli.). The fourth plot is the projection E. coli vs. S. sonnei plotted according to the alignment computed by the pro-
gram Mauve. Red lines correspond to similar regions (or protein hits) between the forward strands of the genomes on the x-
and y-axis, while green lines correspond to similar regions (or protein hits) between the forward strand of the genomes on the 
x-axis and the backward strand on the y-axis.
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mosomes, the fragment generation and the chaining step
took about 95 minutes, and the alignment step took 47
minutes. The time for the second chaining step is a few
seconds.

We can conclude from this example that the use of rare
multiMEMs permits CoCoNUT, unlike other tools such as
BLASTZ, to work with complete unmasked sequences.
Although the computation of rare multiMEMs takes most
of the time of the genome comparison, it is still much

faster than masking and processing the sequence using
other tools.

Comparing two draft/multi-chromosomal genomes
In contrast to a finished genome, a draft genome consists
of contigs of unknown order and orientation (a contig is
a contiguous stretch of the genome). Unlike any other
software tool, CoCoNUT can compare two draft or multi-
chromosomal genomes in a single run, i.e., without the
explicit comparison of all pairs of contigs/chromosomes.
Although there is no theoretical advantage in running the

The similar regions of three mammalian chromosomesFigure 5
The similar regions of three mammalian chromosomes. The results of comparing the three unmasked mammalian X 
chromosomes, projected w.r.t. the human and mouse chromosomes. (Other projections are not shown.) Red lines correspond 
to chains between the forward strands of the X-chromosomes on the x- and y-axis. Green lines correspond to chains between 
the forward strand of the X-chromosome on the x-axis and the backward strand of the X-chromosome on the y-axis, i.e., they 
correspond to inversions. The plot on the upper left shows projection of the orthologous proteins w.r.t. the human and mouse 
chromosomes. (Different colors refer to different orientations.) The plot on the upper right shows projections of the resulting 
three dimensional chains w.r.t. the human and mouse chromosomes. The plot on the lower left shows the results of the dou-
ble-chaining strategy. The lower right plot shows the synteny blocks computed by CoCoNUT.
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experiment at once, it is still an attractive feature, as it does
not require to artificially split up a collection of
sequences. Less important, but worth to mention, is that
it is slightly faster because the comparison runs at once in
main memory, and no repeated access to the external
memory for each pairwise comparison is required. The
disadvantage of this feature is the increased space con-
sumption, due to the fact that the complete sequence set
is stored as an enhanced suffix array.

We proceed as depicted in Figure 3, but now the bounda-
ries between the contigs/chromosomes are taken into
account. More precisely, all contigs/chromosomes of each
draft/multi-chromosomal genome are concatenated, but
a unique separator symbol is inserted between consecu-
tive contigs/chromosomes to represent their border. The
fragments are then generated w.r.t. the concatenated
sequences. This allows us to use the same line-sweep algo-
rithm as in the basic chaining algorithm, but we have to
make sure that the chains do not cross the borders
between contigs/chromosomes. This can be done by
restricting a range maximum query to the fragments lying
in the same contig/chromosome; see Figure 6. Regions of
high similarity and synteny blocks are computed as
described in the previous sections, but the contig/chromo-
some boundaries are taken into account.

To exemplify this, we compared the finished multi-chro-
mosomal genome of S. cerevisiae and the draft genome of
S. paradoxus. (The S. cerevisiae genome consists of 16 chro-
mosomes and the mitochondrial genome. Accession
numbers are from NC_001133 to NC_001148 and
NC_001224. The S. paradoxus genome consists of 333
scaffolds from 832 contigs assembled in [38,39]. The con-
tigs are deposited in Genbank with accession numbers
from AABY01000001 to AABY01000832). Figure 7 shows
the result of this comparison. The plot shows a high sim-
ilarity between the two genomes. (In the comparison, the
minimum fragment length was 18, the gap length was
1000, and the reported regions are longer than 1 Kbp and
have sequence identity larger than 70%.) This comparison
including the alignment step takes about two minutes.

Identification of genomic duplications
CoCoNUT also provides a chaining based strategy that is
able to locate genome duplications. This is accomplished
in CoCoNUT by comparing a chromosome S with itself.
In this case, each (rare) MEM S[l1..h1] = S[l2..h2] computed
in the fragment generation phase is in fact a repeat in S
with first instance S[l1..h1] and second instance S[l2..h2].
For the special task of finding repeats, we use the algo-
rithm from [40] for computing either maximal repeated
pairs or supermaximal repeats. (A supermaximal repeat is
a repeated pair such that repeated sequence does not
occur as a substring of any other repeated pair.)

For detecting genome duplications, we use – as default –
supermaximal repeats as fragments. In fact, supermaximal
repeats can be regarded as rare maximal repeated pairs in
which the rareness value is 4 (the size of the DNA alpha-
bet). This follows from [[40], Lemma 3.3]. That is, a
repeated pair (S[l1..h1], S[l2..h2]) is excluded if S[l1..h1]
occurs more than 4 times in the sequence. The use of
supermaximal repeats has the advantage of skipping other
abundant repeats not belonging to genome duplications,
and speeding up the determination of genome structures.

To identify large segmental duplications, these repeats are
chained with the basic local chaining algorithm men-
tioned in the implementation section, but with one extra
constraint: Every chain C = f1, f2,..., f� of fragments must
satisfy end(f�).x1 <beg(f1).x2. That is, the first instance of
the last element of a chain must not overlap with the sec-

Table 1: File extensions for CoCoNUT output and their 
semantics

extension file contents

.chn chains

.ccn chain boundaries without fragments

.stc statistics about the fragments and the chains

.align alignment of the chains on a character level

.filtered filtered chains

.ps 2D plots of the results in PostScript format

Chaining for draft/multi-chromosomal genomesFigure 6
Chaining for draft/multi-chromosomal genomes. The 
contigs c11, c12 and c13 of the first draft genome are compared 
to the contigs c21, c22 and c23 of the second draft genome. The 
dash-dotted lines represent the borders between the con-
tigs. The range maximum query is restricted to the colored 
region, because the fragments in the contigs c12 × c22 are 
chained.
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ond instance of the first element of a repeat; see Figure 8.
This constraint is necessary for detecting non-overlapping
repeats.

Analyzing chromosome I of A. thaliana
Locating the genome duplications within chromosome I
of A. thaliana (accession number NC_003070) is a diffi-
cult task due to the abundance of repeated segments of
different types (dispersed and tandem), and rearrange-
ments of the repeated segments. We overcame these
obstacles by a double-chaining strategy. Fragments of the

type supermaximal repeats (minimum length 17, default
value) were generated. These were chained with maxi-
mum gap length 250 bp. Chains spanning less than 34 bp
were filtered out. Figure 9 (left) shows the resulting
chains. Note that the red points near the diagonal line cor-
respond to tandem repeats, which are abundant in this
genome. Some traces of large segmental duplications can
be seen in this plot. To automatically identify these, we
performed a second chaining step with a gap length of 70
Kbp. Chains of length smaller than 50 Kbp were filtered
out. The result, shown in Figure 9 (right), clearly reveals

Comparing a draft genome to a finished genomeFigure 7
Comparing a draft genome to a finished genome. Comparison of the finished multi-chromosomal budding yeast genome 
(x-axis) and the draft genome of S. paradoxus (y-axis). The vertical lines correspond to the boundaries between the chromo-
somes. The horizontal lines corresponds to the boundaries between the scaffolds (333 scaffolds).
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the genomic duplications. It is worth mentioning that our
result is consistent with previous work: [41,42] found the
same large segmental duplications in the A. thaliana
genome, albeit with methods that are not fully automatic.
For this comparison, CoCoNUT took less than two min-
utes, including the computation of the alignments (1015
MHz CPU with 1GB RAM).

cDNA mapping
An important step in gene annotation of eukaryotes is the
mapping of cDNA/ESTs to the genome. Complementary
DNA (cDNA) is obtained from mRNA through reverse
transcription. The cDNA is a concatenation of the exons of
the expressed gene, because the introns have been spliced
out. While the exons are short segments ranging from tens
to hundreds of base pairs, introns can span segments of
many Kbp. Expressed sequence tags (ESTs) are segments
of the cDNA usually obtained by sequencing their 3' and
5' ends.

The problem of cDNA/EST mapping is to find the gene
and its exon/intron structure on the genome from which
the cDNA originated; see Figure 10(a).

CoCoNUT can compare one genome to a complete cDNA
or EST database. It also provides functionality for post-
processing the mapped cDNA sequences (or ESTs). It clus-
ters and reports the mapped cDNA sequences whose posi-
tions are overlapping in the genome. This feature helps in
detecting alternatively spliced genes. Furthermore, CoCo-
NUT reports genes which are repeated in the genome.

For cDNA mapping, CoCoNUT uses a variation of the
chaining method which tolerates overlaps between the
successive fragments of a chain. Two fragments overlap if
their segments overlap in one of the genomes. The ration-
ale of allowing overlaps is twofold: First, overlapping frag-
ments were found to be very common in cDNA mapping
[3,43], and they usually occur at the exon boundaries in
the cDNA; see Figure 10(b). Second, the amount of
sequence covered by the chain will increase, which is cru-
cial for both improving the sensitivity/specificity and for
speeding-up the mapping. In [4,8], it was shown how to
optimally solve the chaining problem with overlaps in
subquadratic time based solely on range maximum que-
ries.

After computing the optimal chain of fragments, CoCo-
NUT computes the alignment on the nucleotide level. The
alignment step is different from standard sequence align-
ment because of the intron-exon structure and the splice
site signals at the exon boundaries. The user can either use
canonical models of the splice sites or specify a position
weight matrix (PWM) [44].

Experimental results, presented in [4], show that our
chaining algorithms achieve better specificity with the
same level of sensitivity, compared to other software tools
based on a seed-and-extend strategy (notably BLAT).
Moreover, the algorithms work for unmasked sequences.
(Using unmasked sequences results in better sensitivity
than using masked sequences.) Other software tools
based on the seed-and-extend strategy cannot efficiently

Genome duplications in the A. thaliana chromosome IFigure 9
Genome duplications in the A. thaliana chromosome I. Left: The result after the first chaining step is applied to the A. 
thaliana. (The identity of each chain is at least 70%.) Right: The result after the second chaining step.
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handle unmasked sequences. To avoid redundancy, we
refer the reader to [4] for more details.

Conclusion
We have presented the software tool CoCoNUT that does
not only provide functionality for whole genome compar-
isons (finding regions of high similarity and aligning
them) of finished genomes. It is also able to detect large
scale duplications, to map a cDNA/EST database to a
genome, and to compare draft genomes. In principle, the
latter fact allows for processing the unordered sets of
sequences (reads, contigs) delivered by new sequencing
technologies (like 454 [45], Solexa [46], or SOLID [47]).
However, we have not yet evaluated such an application.
There are other software tools which solve one of the men-
tioned tasks individually but to the best of our knowledge
CoCoNUT is the first software tool with such a broad
spectrum of applications. This feature makes it especially
attractive to users who have to solve a wide range of com-
parative genomics problems.

CoCoNUT uses several new algorithms developed by the
authors of this article, notably an algorithm for the space
efficient computation of rare multiMEMs [5] based on
enhanced suffix arrays [40] and new chaining algorithms
[7,8]. As a consequence, CoCoNUT is fast and memory
efficient, and users will certainly appreciate that it scales
well for large input sizes.

Availability and requirements
CoCoNUT is freely available for non-commercial users.
For details and tool download, see http://toolcoco
nut.org. Mirror site: http://www.nubios.nileu.edu.eg/
tools/CoCoNUT.

Project name: Computational Comparative geNomics
Utility Toolkit (CoCoNUT)

Project home page: http://toolcoconut.org; Mirror site:
http://www.nubios.nileu.edu.eg/tools/CoCoNUT

Operating system(s): Unix/Linux (windows version under
development)

Programming language: C, C++, Perl

License: free for non-commercial purposes

Any restrictions to use by non-academics: see license agree-
ment on the tool home page
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software tool for comparative genomics. The roots of the
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cDNA mappingFigure 10
cDNA mapping. (a) A cDNA mapped to a genomic sequence. The exons are separated by long introns in the genome. (b) 
Fragments (represented by parallelograms) overlap in the cDNA sequence only. (c) The overlap is in the cDNA and in the 
genome.

(a)

exon 3exon 2

exon 2

intron intron

cDNA

Genome exon 1

exon 3exon 1

(c)

GGACACAGT GTGTACCCGCC

GGACACAGTGTACCCGCC

S
1 (genome)

S
2 (cDNA) S

2 (cDNA)

S
1 (genome)

GGACACAGTACCCGCC

GGACACAGT GTACCCGCC

(b)
Page 15 of 17
(page number not for citation purposes)

http://toolcoconut.org
http://toolcoconut.org
http://www.nubios.nileu.edu.eg/tools/CoCoNUT
http://www.nubios.nileu.edu.eg/tools/CoCoNUT
http://toolcoconut.org
http://www.nubios.nileu.edu.eg/tools/CoCoNUT


BMC Bioinformatics 2008, 9:476 http://www.biomedcentral.com/1471-2105/9/476
Additional material

Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft 
(OH53/5-1). We would like to thank the anonymous reviewers for valuable 
comments on a previous version of the article.

References
1. Chain P, Kurtz S, Ohlebusch E, Slezak T: An Applications-Focused

Review of Comparative Genomics Tools: Capabilities, Limi-
tations and Future Challenges.  Briefings in Bioinformatics 2003,
4(2):105-123.

2. Treangen T, Messeguer X: M-GCAT: Interactively and effi-
ciently constructing large-scale multiple genome compari-
son frameworks in closely related species.  BMC Bioinformatics
2006, 7:433.

3. Shibuya S, Kurochkin I: Match Chaining Algorithms for cDNA
Mapping.  In Proc. 3rd Workshop on Algorithms in Bioinformatics LNBI
2812, Springer Verlag; 2003:462-475. 

4. Wawra C, Abouelhoda M, Ohlebusch E: Efficient mapping of
large cDNA/EST databases to genomes: A comparison of
two different strategies.  Proc. of German Conference on Bioinformat-
ics 2005:29-43.

5. Ohlebusch E, Kurtz S: Space efficient computation of rare max-
imal exact matches between multiple sequences.  J Comput
Biol 2008, 15(4):357-377.

6. Abouelhoda M, Ohlebusch E: A Local Chaining Algorithm and
its Applications in Comparative Genomics.  In Proc. 3rd Work-
shop on Algorithms in Bioinformatics LNBI 2812, Springer Verlag;
2003:1-16. 

7. Abouelhoda M, Ohlebusch E: Chaining Algorithms and applica-
tions in comparative genomics.  J Discrete Algorithms 2005, 3(2–
4):321-341.

8. Abouelhoda M: A Chaining Algorithm for Mapping cDNA
Sequences to Multiple Genomic Sequences.  In Proc. 14th Inter-
national Symposium on String Processing and Information Retrieval Lecture
Notes in Computer Science 4726, Springer Verlag; 2007:1-13. 

9. Sonnhammer E, Durbin R: A dot-matrix program with dynamic
threshold control suited for genomic DNA and protein
sequence analysis.  Gene 1995, 167:GC1-GC10.

10. Krumsiek J, Arnold R, Rattei T: Gepard: A rapid and sensitive
tool for creating dotplots on genome scale.  Bioinformatics 2007,
23(8):1026-1028.

11. Raphael B, Zhi D, Tang H, Pevzner P: A novel method for multiple
alignment of sequences with repeated and shuffled ele-
ments.  Genome Research 2004, 14(11):2336-2346.

12. Ovcharenko I, Loots G, Giardine B, Hou M, Ma J, Hardison R, Stubbs
L, Miller W: Mulan: Multiple-sequence local alignment and vis-
ualization for studying function and evolution.  Genome
Research 2005, 15:184-194.

13. Blanchette M, Kent W, Riemer C, Elnitski L, Smit A, Roskin K, Baert-
sch R, Rosenbloom K, Clawson H, Green E, Haussler D, Miller W:
Aligning multiple genomic sequences with the threaded
blockset aligner.  Genome Res 2004, 14(4):708-715.

14. Darling A, Mau B, Blattner F, Perna N: Mauve: Multiple Alignment
of Conserved Genomic Sequence With Rearrangement.
Genome Research 2004, 14:1394-1403.

15. Schwartz S, Kent J, Smit A, Zhang Z, Baertsch R, Hardison R, Haussler
D, Miller W: Human-Mouse Alignments with BLASTZ.
Genome Research 2003, 13:103-107.

16. Mau B, Darling A, Perna N: Identifying Evolutionarily Conserved
Segments Among Multiple Divergent and Rearranged
Genomes.  In Proc. Workshop on Comparative Genomics LNBI 3388,
Springer-Verlag; 2005:72-84. 

17. Haas B, Salzberg S: Finding Repeats in Genome Sequences.  In
Bioinformatics – From Genomes to Therapies Edited by: Lengauer T.
Wiley-VCH; 2007. 

18. Kent W: BLAT – The BLAST-Like Alignment Tool.  Genome
Research 2002, 12:656-664.

19. Ranganathan S, Lee B, Tan T: MGAlign, a reduced search space
approach to the alignment of mRNA sequences to genomic
sequences.  Proc. of 14th International Conference on Genome Informat-
ics 2003:474-475.

20. Gremme G, Brendel V, Sparks M, Kurtz S: Engineering a software
tool for gene structure prediction in higher organisms.  Infor-
mation and Software Technology 2005, 47(15):965-978.

21. Wu T, Watanabe C: GMAP: A Genomic Mapping and Align-
ment Program for mRNA and EST Sequences.  Bioinformatics
2005, 21(9):1859-1875.

22. The Vmatch large scale sequence analysis software   [http://
www.vmatch.de]

23. Morgenstern B, Frech K, Dress A, Werner T: DIALIGN: Finding
Local Similarities by Multiple Sequence Alignment.  Bioinfor-
matics 1998, 14:290-294.

24. Brudno M, Do C, Cooper G, Kim M, Davydov E, NISC Comparative
Sequencing Program, Green E, Sidow A, Batzoglou S: LAGAN and
Multi-LAGAN: Efficient tools for large-scale multiple align-
ment of genomic DNA.  Genome Research 2003, 13(4):721-731.

25. Schwartz S, Zhang Z, Frazer K, Smit A, Riemer C, Bouck J, Gibbs R,
Hardison R, Miller W: PipMaker-a web server for aligning two
genomic DNA sequences.  Genome Research 2000,
10(4):577-586.

26. Ma B, Tromp J, Li M: PatternHunter: Faster and More Sensitive
Homology Search.  Bioinformatics 2002, 18(3):440-445.

27. Abouelhoda M, Ohlebusch E: CHAINER: Software for Compar-
ing Genomes.  Proc. 12th International Conference on Intelligent Sys-
tems for Molecular Biology/3rd European Conference on Computational
Biology 2004 [http://www.iscb.org/cms_addon/conferences/
ismbeccb2004/short%20papers/19.pdf ].

28. Kurtz S, Lonardi S: Computational Biology.  In Handbook on Data
Structures and Applications Edited by: Mehta D, Sahni S. CRC Press;
2004. 

29. Altschul S, Gish W, Miller W, Myers E, Lipman D: A Basic Local
Alignment Search Tool.  J Mol Biol 1990, 215:403-410.

30. Passarge E, Horsthemke B, Farber R: Incorrect use of the term
synteny.  Nature Genetics 1999, 23:387.

31. Höhl M, Kurtz S, Ohlebusch E: Efficient Multiple Genome Align-
ment.  Bioinformatics 2002, 18:S312-S320.

32. Karlin S, Ost F, Blaisdell B: Patterns in DNA and amino acid
sequences and their statistical significance.  In Mathematical
Methods for DNA Sequences CRC Press; 1989:133-157. 

33. Thompson J, Higgins D, Gibson T: CLUSTALW: Improving the
Sensitivity of Progressive Multiple Sequence Alignment
through Sequence Weighting, Position Specific Gap Penal-
ties, and Weight Matrix Choice.  Nucleic Acids Research 1994,
22:4673-4680.

34. Peterson J, Umayam L, Dickinson T, Hickey E, White O: The Com-
prehensive Microbial Resource.  Nucleic Acids Research 2001,
29:123-125.

35. Kasprzyk A, Keefe D, Smedley D, London D, Spooner W, Melsopp C,
Hammond M, Rocca-Serra P, T C, Birney E: EnsMart: A Generic
System for Fast and Flexible Access to Biological Data.
Genome Research 2004, 14:160-169.

36. Clamp M, Andrews D, Barker D, Bevan P, Cameron G, Chen Y, Clark
L, Cox T, Cu3 J, Curwen V, Durbin R, Eyras E, Gilbert J, Hammond
M, Hubbard T, Kasprzyk A, Keefe D, Lehvaslaiho H, Iyer V, Melsopp
C, Mongin E, Pettett R, Potter S, Rust A, Schmidt E, Searle S, Slater G,
Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A,
Vastrik I, Birney E: Ensembl 2002: Accommodating compara-
tive genomics.  Nucleic Acids Research 2003, 31:38-42.

37. Bourque G, Pevzner P, Tesler G: Reconstructing the Genomic
Architecture of Ancestral Mammals: Lessons From Human,
Mouse, and Rat Genomes.  Genome Research 2004, 14:507-516.

Additional file 1
The coordinates of the regions of high similarity and the synteny 
blocks. Additional file 1 contains the coordinates of the regions of high 
similarity and synteny blocks (Tables 1 and 2 respectively) of the 
(unmasked) X-chromosomes of human, mouse, and rat.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-476-S1.pdf]
Page 16 of 17
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-476-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12846393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12846393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12846393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17022809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17022809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17022809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18361760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18361760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8566757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8566757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8566757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17309896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17309896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15590941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15590941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11932250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15728110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15728110
http://www.vmatch.de
http://www.vmatch.de
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9614273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9614273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10779500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10779500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934743
http://www.iscb.org/cms_addon/conferences/ismbeccb2004/short%20papers/19.pdf 
http://www.iscb.org/cms_addon/conferences/ismbeccb2004/short%20papers/19.pdf 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10581019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10581019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14707178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14707178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15059991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15059991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15059991


BMC Bioinformatics 2008, 9:476 http://www.biomedcentral.com/1471-2105/9/476
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

38. Kellis M, Patterson N, Endrizzi M, Birren B, Lander E: Sequencing
and comparison of yeast species to identify genes and regu-
latory elements.  Nature 2003, 423:241-254.

39. Broad Institute: Sequencing and Comparison of Yeasts to Iden-
tify Genes and Regulatory Elements.   [http://
www.broad.mit.edu/annotation/fungi/comp_yeasts/downloads.html].

40. Abouelhoda M, Kurtz S, Ohlebusch E: Replacing Suffix Trees with
Enhanced Suffix Arrays.  J Discrete Algorithms 2004, 2:53-86.

41. The Arabidopsis Genome Initiative: Analysis of the genome
sequence of the flowering plant Arabidopsis thaliana.  Nature
2000, 408:796-815.

42. Vision T, Brown D, Tanksley S: The Origins of Genomic Duplica-
tions in Arabidopsis.  Science 2000, 290:2114-2117.

43. Florea L, Hartzell G, Zhang Z, Rubin G, Miller W: A Computer Pro-
gram for Aligning a cDNA Sequence with a Genomic DNA
Sequence.  Genome Research 1998, 8:967-974.

44. Staden R: Measurements of the effects that coding for a pro-
tein has on a DNA sequence and their use for finding genes.
Nucleic Acids Res 1984, 12(1 Pt 2):551-567.

45. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA,
Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM,
Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando
SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR,
Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB,
McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant
R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW,
Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang
SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM: Genome
sequencing in microfabricated high-density picolitre reac-
tors.  Nature 2005, 437(7057):376-80.

46. Bentley DR: Whole-genome re-sequencing.  Curr Opin Genet Dev
2006, 16(6):545-52.

47. Mardis E: The impact of next-generation sequencing technol-
ogy on genetics.  Trends Genet 2008, 24(3):133-41.
Page 17 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12748633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12748633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12748633
http://www.broad.mit.edu/annotation/fungi/comp_yeasts/downloads.html
http://www.broad.mit.edu/annotation/fungi/comp_yeasts/downloads.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11130711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11130711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11118139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11118139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9750195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9750195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9750195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6364041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6364041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16056220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16056220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16056220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17055251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18262675
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18262675
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Comparative genome analysis on a large scale
	Versatility
	Compositionality and usability
	Efficiency
	Interactive Visualization

	Related work
	Whole genome comparison
	Identification of large genomic duplications
	cDNA/EST mapping


	Implementation
	Computing the fragments
	Chaining the fragments
	The data flow in CoCoNUT

	Results and discussion
	Finding regions of high similarity
	Comparing closely related bacterial genomes
	Comparing distantly related mammalian chromosomes
	Comparing two draft/multi-chromosomal genomes
	Identification of genomic duplications
	Analyzing chromosome I of A. thaliana
	cDNA mapping

	Conclusion
	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

