
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Improved machine learning method for analysis of gas phase 
chemistry of peptides
Allison Gehrke1, Shaojun Sun1, Lukasz Kurgan2, Natalie Ahn4,5, 
Katheryn Resing4, Karen Kafadar3,6 and Krzysztof Cios*7,8

Address: 1Department of Computer Science and Engineering, University of Colorado at Denver, USA, 2Department of Electrical and Computer 
Engineering, University of Alberta, Edmonton, Canada, 3Department of Statistics, Indiana University, Bloomington, IN, USA, 4Department of 
Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA, 5Howard Hughes Medical Institute, University of Colorado, Boulder, CO, 
USA, 6Department of Preventive Medicine and Biometrics, School of Medicine, University of Colorado, Denver, CO, USA, 7Department of 
Computer Science, Virginia Commonwealth University, Richmond, VA, USA and 8IITiS, Polish Academy of Sciences, Poland

Email: Allison Gehrke - Allison.Gehrke@email.cudenver.edu; Shaojun Sun - Shaojun.Sun@email.cudenver.edu; 
Lukasz Kurgan - lkurgan@ece.ualberta.ca; Natalie Ahn - Natalie.Ahn@colorado.edu; Katheryn Resing - katheryn.resing@colorado.edu; 
Karen Kafadar - kk@math.cudenver.edu; Krzysztof Cios* - kcios@vcu.edu

* Corresponding author    

Abstract
Background: Accurate peptide identification is important to high-throughput proteomics analyses
that use mass spectrometry. Search programs compare fragmentation spectra (MS/MS) of peptides
from complex digests with theoretically derived spectra from a database of protein sequences.
Improved discrimination is achieved with theoretical spectra that are based on simulating gas phase
chemistry of the peptides, but the limited understanding of those processes affects the accuracy of
predictions from theoretical spectra.

Results: We employed a robust data mining strategy using new feature annotation functions of
MAE software, which revealed under-prediction of the frequency of occurrence in fragmentation
of the second peptide bond. We applied methods of exploratory data analysis to pre-process the
information in the MS/MS spectra, including data normalization and attribute selection, to reduce
the attributes to a smaller, less correlated set for machine learning studies. We then compared our
rule building machine learning program, DataSqueezer, with commonly used association rules and
decision tree algorithms. All used machine learning algorithms produced similar results that were
consistent with expected properties for a second gas phase mechanism at the second peptide bond.

Conclusion: The results provide compelling evidence that we have identified underlying chemical
properties in the data that suggest the existence of an additional gas phase mechanism for the
second peptide bond. Thus, the methods described in this study provide a valuable approach for
analyses of this kind in the future.

Background
A significant limitation in automated protein identifica-
tion for high-throughput proteomics research is low dis-

crimination between correct and incorrect peptide
assignments obtained by database searches. Recent stud-
ies show that prediction of MS/MS fragmentation intensi-
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ties using the gas phase chemistry simulator in the
MassAnalyzer software can achieve accurate results in
database searches [1-3]. This simulation is based on
kinetic methods, the known gas phase chemical mecha-
nisms for peptide fragmentation [4], and the mobile pro-
ton hypothesis [5]. We have shown that a comparison of
the observed MS/MS spectra with these theoretical spectra
improves peptide identification in the analysis of complex
samples [6].

As part of our overall goal to improve the simulator, we
developed software (MAE) to evaluate individual frag-
ment ions, and found specific cleavages where the soft-
ware, based on the kinetic model, did not perform well
[6]. In this paper, we focus on one such cleavage, namely
that at the second peptide bond from the N-terminus,
denoted here as the N2 bond. The simulator in the Mas-
sAnalyzer models only one cleavage mechanism for all
peptide bonds. The dominant mechanism for peptide
bond cleavage yields an oxazolonium product, where the
carbonyl oxygen of the preceding peptide bond (in this
case, the N1 bond) attacks the back of the carbonyl carbon
of the peptide bond [4,5]. Thus, the model is dominated
by the parameters driving the large number of cleavages of
this type across the whole peptide. However, we observed
that the theoretical model under-predicts the intensities at
the N2 cleavage site, suggesting that an additional mecha-
nism may be operating. Alternative chemistry at the N2
bond has been proposed, where the peptide amino termi-
nus provides the attacking group to form a diketopipera-
zine product [7,8].

Methods
Data Preparation
Our data is derived from a large shotgun proteomics data-
set of an extract of the erythroleukemia cell line K562
grown in suspension as described in [9], with protein pro-
filing as described in [10]. Briefly, gel filtration fraction-
ated proteins were digested with 3% weight trypsin/
weight sample in mg protein. Peptides were analyzed by
strong cation exchange followed by reverse phase chroma-
tography, on an LCQ mass spectrometer instrument. An
important goal is to minimize false positive peptide iden-
tifications. To evaluate the results from machine learning
algorithms, we needed a high confidence subset of the
data, which we achieved through the following five crite-
ria:

1. We required that each MS/MS yielded the same peptide
sequence with two search programs, Sequest and Mascot,
and that the overall similarity score against the theoretical
spectrum was at least 0.54. Previous results showed that
this threshold produced nearly complete separation of
incorrect and correct assignments with standard peptide
MS/MS, and allowed inclusion of cases that have low

scores in Mascot and Sequest [10]. The proportions of
over- and under-predicted cleavage products were compa-
rable in both the full vs. reduced datasets (not shown). Of
the alternative MS/MS that yielded different peptide
sequences, we selected the one with the highest SumScore.
SumScore is a combination of Sequest's XCorr and Mas-
cot's Mowse scores; XCorr is approximately one-half of
SumScore and Mowse is approximately seven times Sum-
Score [10]. Although the original dataset contained repli-
cate MSMS spectra, only the highest scoring exemplar of
each peptide charge form was included in this analysis.

2. Peptides with observed molecular weight below 950
Dalton were removed, because search programs are noto-
riously inaccurate for such small peptides.

3. We removed weak spectra, defined in terms of the
standard deviation (SD) of the intensities of the fragment
ions. A small SD (<1600) of the peptide ion intensities fre-
quently leads to confusion of the noise ions for N2 ions.

4. To minimize the possibility that the N2 ion was pro-
duced by contamination of the MS/MS spectrum from a
coeluting peptide, we required that the peptide sequence
account for at least 90% of the total ion current of the MS/
MS spectrum. We utilized the MS/MS feature recognition
functions in the MAE software to annotate the fragment
ions by ion types, after removing noise ions and combin-
ing the isotopic ion clusters to one ion; cf [6]. Fragment
ion features were annotated using heuristic rules devel-
oped for manual analysis of MS/MS spectra. The misiden-
tification rate is estimated at 1.4%. These rules (and
development of MAE software overall) are described in
detail in [6].

5. We considered only doubly charged MS/MS, due to the
more straightforward interpretation of the chemistry at
the N2 cleavage.

The resulting dataset consisted of 12,214 MS/MS spectra,
out of the original 69,512 spectra. Criteria 1 and 5 led to
the greatest number of exclusions; criteria 2 and 3 had the
least effect.

Pre-processing of intensity information for further analysis
Two types of fragment ions are generated by cleavage at
the N2 bond of doubly charged parent ions (a, b, and y
ions described in [4,5]):

1. Neutral Loss (referring to the uncharged a/b ions that
represent one of the two products of the N2 cleavage)

• a y(n-2)
+2 ion from an MH2

+2 parent, which is observed in
the middle m/z range of the MS/MS spectrum, where ion
yields are high and show good reproducibility.
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2. Positive Ion Loss (referring to the singly charged a/b
ions that represent one of the two products of the N2
cleavage)

• Large y(n-2)
+1 ions from MH2

+2 parents

• Small b2
+1 or a2

+1 ions from MH2
+2 parents (generated at

same time as y(n-2)
+1 ions)

This study focuses on the neutral loss cases, because the
products from the positive ion loss often are not observed,
due to instrument mass biases for both large and small
fragment ions. In addition, during manual analyses of
data, we often noted large differences between the pre-
dicted and observed intensities of the doubly charged
cleavage products of the second peptide bond. To confirm
this observation in the full dataset, we tested if these dif-
ferences were observed in other peptide bonds, by com-
paring the N2 cleavage with the N4 and N5. In each case,
intensities of dehydrated/deammoniated forms and their
unmodified precursor were combined to produce a single
metric for chemical activity of each site (referred to as y(n-

2)
+2, y(n-4)

+2, and y(n-5)
+2. A Quantile-Quantile (Q-Q) plot

was used to look at the predicted vs. observed ratios
between the simulated and observed fragment ions gener-
ated by cleavage at these sites. This graphical method to
compare distributions should be approximately linear if
the distributions (predicted ratios and observed ratios) are

the same. The theoretical intensities predicted by MassAn-
alyzer for the y(n-2)

+2 and y(n-4)
+2 ions vs. the observed ion

intensities are shown in Figures 1A and 1B, respectively.

Evaluating cases where intensity is zero
The Q-Q plot showed the need for proper normalization
when the observed and/or theoretical intensities are close
to or equal to zero. Such cases may arise if the overall
intensity of the MS/MS spectrum is low. Variation in the
intensity of the fragmented peptide ion results in observ-
ing a different number of the theoretically possible ions.
Ions that are relatively low in intensity will be observed in
MS/MS of the more intense parent ions, but will be hid-
den in the noise or may not be detected when the parent
ion is lower in intensity. On the other hand, all these less
likely products are generated by the kinetic model, where
signal to noise ratio is high.

We looked for evidence that the zero observed intensity
cases are due primarily to less intense spectra. In Figure 1,
where we have programmatically replaced the zero
observed value with a very small number, the cases with
observed N2 = 0 have log theoretical values ranging from
-5 to -15, indicating that these are among the less intense
fragment ions in the spectra. Furthermore, when we
exclude more spectra with overall low intensity, the
number of these cases decreases. These properties are con-
sistent with a detection problem, rather than with a varia-

Q-Q plotsFigure 1
Q-Q plots. 1A: QQ plot of the intensities of the y(n-2) ions for observed (O) vs. theoretical (T). 1B: QQ plot of the intensities 
of the y(n-4) ions for observed (O) vs. theoretical (T). In each case, the intensities were normalized to the total intensity of the 
MAE identified ions in the observed spectra or the total intensity of this subset of ions taken from the theoretical spectra (if 
total intensity of ions in the theoretical is used, the ratios are distorted by the large number of very weak ions that are not usu-
ally observed unless a parent ion is very intense). The vertical lines at the left are those cases where the observed is zero and 
the theoretical is not. The Q-Q plot shows that the N2 and N4 theoretical distributions deviation similarly from the observed 
distributions in their lower tails, while the upper N2 tail departs from the expected in a way that N4 does not.
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tion in the gas phase chemistry. Therefore, we did not
include them in the final dataset, which excluded only an
additional 1,387 cases.

We kept those spectra for which both the observed and
theoretical intensities are zero (500 examples), because
the two are in clear agreement and should be categorized
as well-predicted. Furthermore, the size of this subset did
not change significantly when we excluded weaker spec-
tra, and the parent ion intensity did not appear as an
important classifier in the well-predicted classes. These
cases were assigned an Observed/Theoretical (O/T) ratio
of 1.0, programmatically.

We classified each fragment ion to indicate whether the
ion intensity was well-, over-, or under-predicted (WP,
OP, and UP, respectively), based on the ratio between
observed and theoretical values. We then built two data
models: under-predicted vs. well-predicted, and over-pre-
dicted vs. well-predicted. The "zero issue" predominantly
affects the over-predicted vs. well-predicted model.
Changing the threshold between over-predicted and well-
predicted causes a significant shift in the number of cases
classified as over- or well-predicted, whereas changing the
under-predicted threshold only causes minor variations in
the distribution of the under- and well-predicted classes.
In addition, there were many more cases that were under-
predicted, making it more difficult to discern clear pat-
terns in the over-predicted vs. well-predicted model, than
it is in the under-predicted vs. well-predicted model. The
fact that our most significant results are with the under-
predicted class is consistent with the need for an addi-
tional mechanism in the simulation for this site. For this
reason, only results from the well-predicted vs. under-pre-
dicted model are described in detail in this paper.

Attribute Selection
We started with 38 attributes that delineate sequence
determinants for the attributes of MS/MS spectra and the
amino acid sequences of peptides, including all attributes
defined in [11] and additional attributes derived from the
observed MS/MS spectra by MAE, as described in [6]. This
set includes attributes both from the sequence itself and
from the feature recognition function in MAE, as well as
other features from the MS/MS spectrum. The 38
attributes are listed in Table 1.

As in most data mining applications, we need to identify
which attributes of the full set are the key determinants to
discriminate between the classes (well- or under-pre-
dicted), so we can eliminate irrelevant and/or redundant
features. We evaluated correlations among the attribute
set and eliminated six redundant attributes including
Mowse, XCORR, SIM, Tsum, mobileH, and NumIons.
SumScore is a combination of XCORR and Mowse, so the

latter two were removed; OMW and the number of ions
are highly correlated, so we kept OMW; Osum is corre-
lated with Tsum and SIM, so we kept Osum, because it is
an observed measure as opposed to a theoretically derived
measure. The number of basic amino acids to the right of
the N2 bond is correlated with mobileH. We kept the
number of basic amino acids to the right of the N2 bond,
because the final MS/MS dataset contained only doubly
charged cases, which reduces the range of the mobileH
feature.

Attribute selection methods are used to reduce the dimen-
sionality of the data and to simplify the subsequent task
of model-building. Determining which selection methods
are best for a given data mining application is typically
approached experimentally, because different selection
algorithms yield varying results, and the results can vary
dramatically with small changes in the dataset. We tested
for consensus among several attribute selection algo-
rithms using the open-source Weka library [12]. For the
under- vs. well-predicted subset, three attributes were
never selected by any of the algorithms and thus could be
eliminated as irrelevant (P_intensity, HydnC2, and
BasicityC1). An additional four attributes were eliminated
because they were classified as highly unlikely to provide
any discriminatory power, due to the fact that they were
selected by only one or two of the algorithms (PIC, Sum-
Score, HydnC1, and BasicityN5). Twenty-five attributes
remained.

We determined experimentally that the seven attributes
which included the first five amino acids on the N-termi-
nus and the last two amino acids on the C-terminus could
be removed without loss of accuracy (the total number of
correctly classified instances over the total number of
instances) in the under- vs. well-predicted data. Further-
more, because these attributes represented nominal data,
they could not be used in algorithms that require numeric
data. The information was also well-represented by the
basicity and hydrophobicity of the amino acid in each of
the seven positions. We used the remaining 18 attributes
for model building. Five features with continuous values
(OMW, OYMinusB, interScore, Osum, and Ave_basicity),
were discretized using our Class-Attribute Interdepend-
ence Maximization (CAIM) algorithm [13,14]. The CAIM,
unlike most other discretization algorithms does not
require the user to specify a priori the number of discrete
intervals; instead it uses class information to calculate
their number.

We first performed exploratory data analysis, then for
model-building we used supervised methods (a decision
tree algorithm, C4.5, and an association rule generating
algorithm, as implemented in Weka), plus our own rule
generating program, DataSqueezer [14,15].
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Results and Discussion
Exploratory Data Analysis
Exploratory data analysis revealed some of the dominant
findings used later in model building with decision trees,
rule algorithms, and association rules. Figures 2 and 3
demonstrate the tendency of large peptides (OMW values
above 1500) and arginine in the N1 position to be well-
predicted, respectively. Exploratory analysis also revealed
that glycine, leucine, and proline in the N2 position tend
to be under-predicted. We generated a 20 × 20 table of
amino acids in the N1 position (row) followed by amino
acids in the N2 position (column). Each cell in the table
held the median value of the observed to theoretical ratio
when a given amino acid in N1 is followed by a given
amino acid in N2. We frequency-weighted the table to see
patterns where the observed to theoretical ratio is unusu-
ally high especially compared with the same table chart-
ing the amino acids at the N4 bond (a bond that we know
is well-modelled by the theoretical prediction). We
observed that glycine, leucine, and proline in the N2 posi-
tion are sequence determinants for under-prediction (Fig-
ure 4). The decision tree and association rules also

revealed that proline in the N3 position was a sequence
determinant for well-prediction (also indicated by analy-
sis in Figure 5).

In addition, we used robust linear regression to fit the log-
arithm of the ratio of observed intensities to theoretical
intensities as a function of the 18 features using the
robustfit function in Matlab, which uses an iteratively re-
weighted least squares algorithm, with the weights calcu-
lated at each iteration by applying the bisquare function
to the residuals from the previous iteration [16]. The
results are considerably less sensitive to outliers in the
data as compared with ordinary least squares regression.
(Recall that 0/0 was set to 1, so its logarithm was set to
zero, indicating no difference between them.) We com-
pared the results of robust regression on the N2 dataset
against control datasets that contain the same features as
the N2 data but with observed and theoretical ions respec-
tively measured and predicted at the N4 bond and at the
N5 bond. We chose the N4 and N5 bond for comparison
to N2 because we knew experimentally that N4 and N5
did not exhibit the same tendency to under-predict N4

Table 1: Attributes used in machine learning algorithms.

Set A: 27 Attributes derived from sequence

AacidN1, AacidN2, AacidN3, AacidN4, AacidN5 First 5 amino acids on N-terminus.
AacidC1, AacidC2 Last 2 amino acids on C-terminus.

HydnN1, HydnN2,..., HydnC2 Hydrophobicity for each of the above seven amino acids.
BasicityN1, BasicityN2,..., BasicityC2 Basicity for each of the above seven amino acids.

Ave_basicity Average peptide basicity.
NumRs Number of arginine residues in peptide.
mobileH Number of basic residues subtracted from peptide charge (indicates existence of mobile 

proton).
NumHKR_RN2 Number of basic residues to the left of N2 bond.
NumHKR_LN2 Number of basic residues to the right of N2 bond.

OMW Observed Molecular Weight.

Set B: 5 Attributes derived from MAE feature recognition function

OYMinusB The balance between y and b ions.
NumIon Total number of ions.

P_intensity Intensity of the parent ion.
Osum (sum of intensity of observed major ions)/(sum of intensity of all ions in the MS/MS output).
Tsum (sum of intensity of theoretical major ions)/(sum of intensity of all ions)

Set C: 6 Attributes based on scores generated by database search/sequence validation programs and from our sequence 
validation methods

Mowse Mascot's score
Xcorr Sequest's score

SumScore Summary score; A combination of Sequest's XCorr and Mascot's Mowse score.
PIC Proportion of the total ion current score for each MS/MS spectrum which accounts for fragment 

ion assignments.
SIM Evaluates chemical plausibility based on relative fragment ion intensities when comparing 

observed MS/MS spectrum to theoretical spectrum.
InterScore The percentage of observed fragments accounted for by multiple fragmentation events.
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and N5 ion intensities as occurred with those at the N2
site. Figure 6 shows clearly that the distribution of inten-
sities of the N2 ions differs from that of the N4 ions (the
N4 and N5 ion intensity distributions are very similar to
each other, not shown), indicating that at least one addi-
tional chemical mechanism is operating at the N2 bond,
that is not currently addressed in the theoretical model.

Model Building
We used different approaches to validate the applicability
of supervised and unsupervised techniques to proteomics
data and to ensure our results reflected true chemical
properties in the data. By and large all the methods were
very consistent in their findings. Figure 7 shows a decision
tree generated for the under-predicted vs. well-predicted
data. The dominant theme in the tree is that the decisions
are made on the basis of the specific amino acids in the
first, second, or third positions in the peptide sequence.

This is also represented by the number of basic amino
acids to the right of the N2 bond (NumRHK_RN2).

This model suggests several hypotheses:

1. if arginine is the first amino acid, then the N2 cleavage
is well-predicted;

2. if:

a. arginine is not the first amino acid;

b. the second amino acid is not glycine, asparagine, histi-
dine, proline, or lysine;

c. the third amino acid is not proline or lysine;

then the N2 cleavage is well-predicteded;

BoxplotsFigure 2
Boxplots. Boxplots of observed molecular weights (OMW) for under-predicted ions (UP, left) and well-predicted ions (WP, 
right). On average, the under-predicted ions have lower OMWs than well-predicted ions.
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3. if:

a. arginine is not the first amino acid;

b. proline or lysine is in the third position;

then the N2 cleavage is well predicted;

4. if a peptide:

a. has a relatively short sequence;

b. does not have histidine, proline, lysine, or arginine in
it's first position;

c. does not have proline or lysine in it's third position;

then it is under-predicted.

We generated many different decision trees using different
thresholds on the observed to theoretical N2 ratio to
define the well-predicted and under-predicted classes, dif-
ferent attribute subsets, and different parameters of the
algorithm. Although the decision trees were always differ-
ent, some properties were invariant including: (1) two or
more basic residues to the right of the N2 bond leads to
well-prediction; (2) conversely, zero or one basic amino
acids to the right of the N2 bond is an under-prediction
indicator; (3) a small OMW leads to under-prediction;
and (4) the presence of basic amino acids, proline, or gly-

Amino acid distribution for first position of the observed peptidesFigure 3
Amino acid distribution for first position of the observed peptides. The amino acids are represented by the single 
amino acid code (A, C,..., Y), and the magnitude of the bar is sqrt(4*observed+2)-sqrt(4*expected+1), where "observed" refers 
to the observed numbers of the amino acids at the first amino acid position, and "expected" refers to the expected numbers 
based on the frequency of the amino acids in the data base. Bars that extend beyond the dashed-line limits indicate greater 
departures from the expected count than would occur simply by chance alone. For well-predicted ions, arginine (R) is more 
common than in the general data base; for under-predicted ions, it is less common. The given statistic is based on a transforma-
tion of an assumed Poisson count that tends to have a standard normal distribution; hence, departures that exceed three in 
magnitude (location of dashed lines) might be considered unexpected.
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cine in the second position is an indicator of under-pre-
diction. Peptides with a large OMW tend to be well-
predicted, because they are less likely to have the second
mechanism in operation (that is, the oxazolonium mech-
anism predominates in generation of the fragment ions).

These results suggest that the second mechanism might be
the generation of a diketopiperazine leaving group (the
two amino acid neutrally charged product). This mecha-
nism involves attack of the amino terminal amine on the
back of the N2 carbonyl, producing a resonance stabilized
six-member ring. The increased frequency of proline in
the second position is consistent with the steric effects of
proline in that position, which strongly favors the six-

membered ring configuration. The diketopiperazine
product should also be favoured when the amino termi-
nus is uncharged, or when the N2 bond is less basic [4];
these tendencies can be observed in the decision tree
results. In addition, the number of ions (NumIons) is
highly correlated with OMW; larger peptides in this data-
set are more likely to produce good fragmentation at all
peptide bonds, by the oxazolonium mechanism. This
would reduce the amount of chemical energy available for
the diketopiperazine mechanism.

The DataSqueezer algorithm [15] was used to generate
prediction rules for the under-predicted vs. well-predicted
data. Only strong rules, those that cover at least 5% (UP

Observed to theoretical N2 Intensity ratios for all combinations of amino acids in the first and second positionsFigure 4
Observed to theoretical N2 Intensity ratios for all combinations of amino acids in the first and second posi-
tions. The 20 × 20 table of the median values of the N2 ratio of observed intensity to theoretical intensity when the amino 
acid in the second position is preceded by the amino acid in the first position. The table is displayed as a grid of colored rectan-
gles with the colors corresponding to the values in the table. Glycine, leucine, and proline in the second position consistently 
have higher observed:theoretical ratios which means the peptides with glycine, leucine, or proline in the second position tend 
to be under-predicted.
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Amino Acid Distributions for the third position of the observed peptidesFigure 5
Amino acid distributions for the third position of the observed peptides. Frequencies of amino acids in the third 
position are plotted as described in Figure 3. For well-predicted ions, proline (P) is much more common than in the general 
data base; for under-predicted ions, it is highly less common. The displayed statistic (see Figure 3 label) is based on a transfor-
mation of an assumed Poisson count that tends to have a distribution that is standard normal; hence, departures that exceed 
three in magnitude (location of dashed lines) might be considered unexpected.
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class) and 3% (WP class) of the corresponding positive
data from training data set, were generated. A larger
threshold for the under-predicted class was used to
accommodate the larger number of samples in this class.
Note that the order of attributes/rules does not indicate
their importance.

Machine learning rules for the under-predicted class (true 
positives 61.9%, false positives 28.8%)
1. If:

a. lysine is the second to last amino acid in the peptide
sequence;

b. the number of arginine residues in the peptide
sequence is zero;

c. the number of basic amino acids to the left of the N2
bond is zero;

d. number of basic amino acids to the right of the N2
bond is 1;

then it is under-predicted.

2. If:

a. arginine is the second to last amino acid in the peptide
sequence;

b. the total number of arginines in the peptide sequence is
1;

c. number of basic amino acids to the right of the N2 bond
is 1;

Linear regression modelFigure 6
Linear regression model. This shows "residuals vs. prediction" in the linear regression model. The blue cluster is the result 
of regression on data for the N4 bond and the red cluster is the same but with data for the N2 bond. The N2 cluster has a 
clear spread beyond the N4 cluster center, suggesting the N2 data is not as well predicted as the N4 data. Similar results were 
observed with the N5 data (not shown).
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Decision tree for WP vs. UPFigure 7
Decision tree for WP vs. UP. Visualization of Well-predicted (WP) vs. Under-predicted (UP) decision tree, demonstrating 
the sequence determinants that affect the theoretical prediction at the N2 bond between the second and third amino acid 
positions. The first number in parenthesis following the classification (either UP or WP) is the number of true positive training 
points for that rule; that is, the number of instances that are covered by the rule. The subsequent number after the slash indi-
cates the number of counter-instances to the rule; that is, the number of training points that are covered by the rule but are 
not the class indicated. The four paths through the tree illustrated via bolded black edges and non-filled boxes outlined in red 
are the sequence determinants leading to under- and well-prediction in the theoretical model. The numbers of data points in 
the tree do not sum to the total shown at the top due to node pruning.
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then it is under-predicted.

3. If:

a. OMW is between 900 and 1950;

b. OYMinusB is greater than or equal to -0.10;

c. interScore is between 0 and .16;

d. Osum is between .50 and .98;

e. the number of basic amino acids to the left of the N2
bond is zero;

f. the number of basic amino acids to the right of the N2
bond is 1;

then it is under-predicted.

Machine learning rules for the well-predicted class (true 
positives 7.0%, false positives 0.7%)
4. If:

a. proline is the third amino acid in the peptide sequence;

b. arginine is the second to last amino acid in the peptide
sequence;

c. the number of basic amino acids to the right of the N2
bond is 1;

then it is well-predicted.

5. If:

a. Arginine is the first amino acid in the peptide sequence;

b. lysine is second to last in the peptide sequence;

then it is well-predicted.

Comparison of rules generated by the three machine 
learning approaches
The DataSqueezer rules are consistent with the decision
trees and association rules in several ways. In all three
methods, determining strong rules for the well-predicted
class was more difficult than for the under-predicted class,
in part because the under-predicted class had more repre-
sentation in terms of the number of instances (approxi-
mately 65% more cases of under-predicted examples than
well-predicted). However, this is an acceptable outcome
for the purposes of this study, because we are interested in
describing the sequence determinants that lead to under-

prediction in order to improve the model in that noticea-
bly deficient area.

Additionally, all three methods demonstrate several gen-
eral chemical properties: (1) if only one basic residue lies
to the right of the N2 bond, the peptide will be under-pre-
dicted in the current model; (2) small OMW leads to
under-prediction; and (3) arginine in the N1 position
and/or proline in the N3 position facilitates a chemical
mechanism that is currently well-modelled (i.e., is well-
predicted). Although the first rule is difficult to explain, it
may represent a higher rate of fragmentation by the oxa-
zolonium mechanism in the bonds to the right of N2,
under those conditions. Smaller peptides often show a
larger effect of mechanisms other than the oxazolonium
mechanism in their MS/MS spectrum, while a strong
charged group in the N1 position favours the oxazolo-
nium over the diketopiperazine because the N-terminal
amine is more basic. The increased observation of proline
in the third amino acid position is generally seen for pro-
line at other positions as well; this is the basis of the so-
called proline effect, where fragment ions produced by
cleavage at the N-terminal side of a proline are often the
most intense ions in an MS/MS spectrum.

The same data were analyzed using association rules (ARs)
as implemented in Weka, an unsupervised learning
method. ARs are useful for discovering correlations
among underlying data. For example, an AR might be
stated as: "70% of under-predicted ions also have a basic
residue in the N2 position".

The strength of an AR is measured by the support for that
rule (i.e., number of cases that support the rule), and by
the confidence (i.e., joint occurrence in the relations). ARs
require nominal data, which has been categorized, but
where the order of the categories is arbitrary.

To compare results between the rule generating programs
and the association rule program, we ran association rules
as a classifier. In other words, we forced the consequent of
the rule (the attribute on the right-hand side of the associ-
ation) to have only one member: a decision attribute. In
all of the following association rules, the class is the con-
sequent of the rule; that is, these are all rules for classifying
under- or well-predicted peptides. (Refer to table 1 for
translation of attribute names.)

AR Rules for under-predicted cases
1. If OMW is between 1016.28 and 1550.6 then it is well-
predicted.

2. If:

a. OMW is between 1016.28 and 1550.6;
Page 12 of 15
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b. the total number of arginines in the peptide sequence is
zero or one;

c. number of basic amino acides to the left of the N2 bond
is zero;

then it is under-predicted.

3. If OMW is between 1016.28 and 1550.6 and arginine is
not the first amino acid in the peptide sequence, then it is
under-predicted.

4. If the number of basic amino acids to the left of the N2
bond is zero and the number of basic amino acids to the
right of the N2 bond is 1, then it is under-predicted.

5. If:

a. OMW is between 1016.28 and 1550.6;

b. OYMinusB is greater than -0.102481;

c. the number of amino acids to the left of the N2 bond is
zero;

then it is under-predicted.

6. If:

a. OMW is between 1016.28 and 1550.6;

b. OYMinusB is greater than -0.102481;

c. arginine is not the first amino acid in the peptide
sequence;

then it is under-predicted.

AR Rules for well-predicted cases
1. If the hydrophobicity of the third amino acid is -4.92,
then it is well-predicted.

2. If the basicity of the third amino acid is 214.4, then it is
well-predicted.

3. If the number of basic amino acids to the right of the
N2 bond is 1, then it is under-predicted.

These rules generated by the unsupervised association rule
algorithm are very similar to those implied by the decision
trees and the DataSqueezer rule algorithm. Again, it is
clear that a small observed molecular weight leads to
under-prediction (and conversely, that large observed
molecular weight leads to well-prediction). The associa-

tion rules also detected the importance of arginine is in
the first amino acid position.

Additional association rules also support a recurring
theme; namely, with only zero or one basic residue (HKR)
to the right of the N2 position, the peptide tends to be
under-predicted. This finding is related to the mobile pro-
ton model [4,5]: the proton required to cleave the peptide
bonds is relatively more free to move about the peptide
when arginine is present. When present, arginine seques-
ters the proton to its side-chain, because it has a very high
pKa (proton binding constant). If the overall number of
protons on the peptide is equal to or less than the number
of arginine residues, then protons are available only at
local sites. This is most important when the charge on the
peptide is equal to or less than the number of arginine res-
idues. In that situation, cleavages are directed mostly by
so-called charge-remote mechanisms catalyzed by a pro-
ton from the acidic side-chain of aspartate or glutamate.
These effects can also occur locally, which probably is the
situation in this case, where the N-terminus may be steri-
cally isolated from the rest of the peptide.

The number of basic residues to the left and right of the
N2 bond is clearly an important feature of the underlying
chemistry. Basic residues to the right of the fragmentation
site tend to draw the protons and fragment in well-pre-
dicted or chemically well-behaved ways; but basic resi-
dues to the left of the N2 bond led to under-prediction.
This finding is likely a consequence of our focus on only
the neutral-loss cases (where the leaving piece is
uncharged), and inadequate modelling of the charge on
the N-terminal amine by the Zhang simulation, so that
the neutral loss is under-predicted [2]. It may also be due
to the difficulty of charging the N-terminus, with the con-
sequence that the uncharged amine can form a stable six-
member diketopiperazine with the carbonyl of the N2
bond [4], leading to cleavage of the N2 bond.

Association rules number one and two for well-predicted
cases both capture the same relationship (hydrophobicity
of proline is -4.92 and basicity of proline is 214.4), that
proline in the third amino acid position is associated with
well-prediction. This relationship was observed also in
exploratory data analysis, the decision tree, and the rule
algorithm (see Figures 4 and 6, respectively), and reflects
the strong proline effect discussed above. The fact that all
three approaches identified, in supervised and unsuper-
vised methods, the strong proline effect gives reassurance
that the features uncovered here may in fact be real and
not spurious.

We tested the nine features identified by ARs as the most
important (OWM, numRs, NumHKR_RN2,
numHKR_LN2, BasicityN1, BasicityN3, BasicityN4,
Page 13 of 15
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HydnN3, and OYMinusB) using the DataSqueezer classi-
fier. With the nine features, DataSqueezer generated 3
rules with 62.7% true positives and 33.3% false positives
for the UP class, and 2 rules with 16.7% true positives and
4.5% false positives for the WP class. These results were
similar to results obtained with the eighteen attributers,
with similar accuracies and true positive rates. This per-
formance is impressive considering that only 9 attributes
of the selected 18 were used. In fact, similar results are
achieved with just OMW, NumHKR_RN2,
NumHKR_LN2, but provides little additional informa-
tion about the underlying chemistry. The number of basic
residues both to the right and left of the N2 bond is a gen-
eral measure of the amino acid distribution and does not
capture the effect of other amino acids like proline, leu-
cine, and glycine.

Conclusion
The different methods that were used to analyze the data
all generated similar results. Importantly, the unsuper-
vised method gave approximately the same results as the
supervised methods. This consistency is compelling evi-
dence for the identification of the underlying chemical
mechanisms and that the overall analysis, using a combi-
nation of chemical knowledge, exploratory data analysis,
and machine learning algorithms, is a valuable combina-
tion to apply in future studies. Some relationships were
indicated more strongly by some methods, confirming
that data analysis from different perspectives is useful.

The exploratory data analysis and supervised and unsu-
pervised data mining models elucidated the following
pieces of new information/knowledge:

1. Intensities of fragment ions for the N2 cleavage of large
OMW peptides are well-predicted.

2. Lysine, proline, histidine, asparagine, glycine, or leu-
cine, in the N2 position leads to under-prediction of the
N2 cleavage.

3. Basic amino (HKR) acids in the N1 or N2 position lead
to under-prediction. Arginine in the N1 position is a nota-
ble exception. This rule is the first split in the decision tree,
and as such is a strong sequence determinant. However,
this rule is likely influenced by the distribution of the
other amino acids in the sequence. In other words, a pep-
tide with arginine as the first amino acid will be well- or
under-predicted depending on the distribution of basic
residues to the right of the N2 bond as well.

4. The amino acids in the N1, N2, and N3 positions are
key determinants.

5. The amino acids in the N5 position or further from the
N2 bond do NOT play a role in theoretical prediction at
the N2 site.

6. The distribution of basic residues in the sequence to the
left and right of the N2 fragmentation site affect the theo-
retical prediction.

7. Two or more basic amino acids to the right of the N2
site are well predicted; this could be due to the focus on
neutral loss of the small product.

The characteristics of MS/MS spectra that cause significant
deviations from predicted spectra will be used to improve
the kinetic model for theoretical prediction. Further study
will be required to confirm our findings derived here from
exploratory data analysis and machine learning, and to
identify the best combination of analysis tools to reveal
new chemical mechanisms. In addition, the analysis
methods described in this study provide a reliable work
flow for further studies analyzing the other poorly pre-
dicted aspects of the MassAnalyzer simulated spectra.

Abbreviations
Ave_Basicity: attribute representing the average basicity of
the peptide; BasicityN1: attribute representing the basicity
of the amino acid in the N1 position (have a similar
attribute for seven amino acid positions in total); CAIM:
Class-attribute Interdependence Maximization; HydnN1:
attribute representing the hydrophobicity of the amino
acid in the N1 position (have a similar attribute for seven
amino acid positions in total); MAE: Manual Analysis
Emulator software program; ML: Machine Learning;
mobileH: attribute representing to the mobile proton
hypothesis; NumIons: attribute representing the number
of ions in a peptide; NumRHK_LN2: feature representing
the number of basic amino acids (R, H, K) to the left of the
N2 bond; NumRHK_RN2: feature representing the
number of basic amino acids (R, H, K) to the right of the
N2 bond; NumRs: feature representing the number of
arginine amino acids in the peptide; OMW: Observed
Molecular Weight; OSum: feature representing the
observed sum of ion intensities; OYMinusB: feature that
represents the balance between y and b ions; PIC: feature
representing the proportion of the total ion current score
for each MS/MS spectrum which accounts for fragment
ion assignments; SIM: Similarity scoring; SumScore: Sum-
mary score is a combination of Sequest's XCorr and Mas-
cot's Mowse score; TSum: feature representing the
theoretical sum of ion intensities; XCorr: Sequest's cross-
correlation score.
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