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Abstract
Background: The prediction of conformational B-cell epitopes is one of the most important goals
in immunoinformatics. The solution to this problem, even if approximate, would help in designing
experiments to precisely map the residues of interaction between an antigen and an antibody.
Consequently, this area of research has received considerable attention from immunologists,
structural biologists and computational biologists. Phage-displayed random peptide libraries are
powerful tools used to obtain mimotopes that are selected by binding to a given monoclonal
antibody (mAb) in a similar way to the native epitope. These mimotopes can be considered as
functional epitope mimics. Mimotope analysis based methods can predict not only linear but also
conformational epitopes and this has been the focus of much research in recent years. Though
some algorithms based on mimotope analysis have been proposed, the precise localization of the
interaction site mimicked by the mimotopes is still a challenging task.

Results: In this study, we propose a method for B-cell epitope prediction based on mimotope
analysis called Pep-3D-Search. Given the 3D structure of an antigen and a set of mimotopes (or a
motif sequence derived from the set of mimotopes), Pep-3D-Search can be used in two modes:
mimotope or motif. To evaluate the performance of Pep-3D-Search to predict epitopes from a set
of mimotopes, 10 epitopes defined by crystallography were compared with the predicted results
from a Pep-3D-Search: the average Matthews correlation oefficient (MCC), sensitivity and
precision were 0.1758, 0.3642 and 0.6948. Compared with other available prediction algorithms,
Pep-3D-Search showed comparable MCC, specificity and precision, and could provide novel,
rational results. To verify the capability of Pep-3D-Search to align a motif sequence to a 3D
structure for predicting epitopes, 6 test cases were used. The predictive performance of Pep-3D-
Search was demonstrated to be superior to that of other similar programs. Furthermore, a set of
test cases with different lengths of sequences was constructed to examine Pep-3D-Search's
capability in searching sequences on a 3D structure. The experimental results demonstrated the
excellent search capability of Pep-3D-Search, especially when the length of the query sequence
becomes longer; the iteration numbers of Pep-3D-Search to precisely localize the target paths did
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not obviously increase. This means that Pep-3D-Search has the potential to quickly localize the
epitope regions mimicked by longer mimotopes.

Conclusion: Our Pep-3D-Search provides a powerful approach for localizing the surface region
mimicked by the mimotopes. As a publicly available tool, Pep-3D-Search can be utilized and
conveniently evaluated, and it can also be used to complement other existing tools. The data sets
and open source code used to obtain the results in this paper are available on-line and as
supplementary material. More detailed materials may be accessed at http://kyc.nenu.edu.cn/
Pep3DSearch/.

Background
A B-cell epitope is defined as that part of antigen recog-
nized by either a particular antibody molecule or a partic-
ular B-cell receptor of the immune system. It may be linear
(continuous), i.e. a short contiguous stretch of amino
acids, or conformational (discontinuous), consisting of
sequence segments that are distantly scattered along the
protein sequence and are brought together in spatial prox-
imity when the protein is folded [1]. It has been estimated
that more than ninety percent of B-cell epitopes are con-
formational [2,3]. The main purpose of B-cell epitope pre-
diction is to provide the facilities for efficiently rational
vaccine design [4]. Furthermore, synthetic peptides mim-
icking epitopes, as well as anti-peptide antibodies, have
many applications in the diagnosis of human diseases
[5,6]. Therefore B-cell epitope prediction is very impor-
tant in medicine research.

Though B-cell epitopes can be directly identified using
many biochemical or physical experiments, such as X-ray
crystallography of antibody-antigen (Ab-Ag) complexes,
these experiments are usually costly, time-consuming and
are not always successful [7]. Computational methods to
predict B-cell epitope are much more efficient and cost-
effective. However they are mainly focused on the predic-
tion of linear epitopes [8-14], because only few antigens
are completely annotated with respect to their conforma-
tional epitopes, which makes it difficult to develop a con-
formational epitope prediction method. To the best of our
knowledge, DiscoTope [15] and CEP [16] are the only two
methods for conformational epitope prediction that are
based on antigen structure information. Recently,
researchers tested and evaluated existing epitope predic-
tion methods on benchmark datasets, and concluded that
the accuracies of these methods are not high enough to
significantly reduce the experimental workload [17-19].
Combining experiments with computational methods
can tremendously improve the accuracy of the epitope
prediction at a modest cost in biological experiments.
Therefore, it has attracted the attention of many research-
ers, especially in integrating computational methods with
random peptide libraries. Several researchers have
reported encouraging preliminary results using phage-dis-
play peptide libraries [20-29]. Mimotopes can be selected

from phage-displayed random peptide libraries by affinity
selection with monoclonal antibodies (mAb), so-called
biopanning. The mAb affinity-selected mimotopes can be
selected by their capacity of binding to the Ab directly
against a given Antigen (Ag). Obviously, the mimotopes
and Ag are both recognized by the same Ab paratope and
thus mimotopes are expected to mimic natural epitopes.
The purpose of the computational approach is to analyze
the set of mimotopes and then to localize the mimicked
region that is regarded as the epitope candidate. Thereaf-
ter, biological experiments, such as site-directed mutagen-
esis and deletion analysis, may be implemented for
further validation.

Generally, a computational method has three steps to
approach this goal: (i) the representation of the surface
residues of the antigen; (ii) the search (or alignment) of
the mimotopes (or motifs derived from the mimotopes)
on the antigen surface; (iii) the output of the epitope can-
didates based on screening and clustering. Pizzi et al [20]
were the first to combine computational methods with
experimental results to assign epitopes. Recently, they
published an improved method named MEPS [27]. In
MEPS, the surface of antigen is represented by a collection
of peptides below a certain length. The motifs that derived
from the mimotopes are searched against this surface and
alignment tools like BLAST can be directly used in the
method. However, finding all given length simple paths
(i.e. a sequence of neighboring residues) on a surface
graph representing the exposed residues of the antigen is
a NP-hard (Non-deterministic Polynomial-time hard)
problem [29]. Subsequently, several computational algo-
rithms were proposed, in which some new strategies were
adopted [21-26,28,29]. For example, SiteLight [23]
divides the antigen surface into overlapping patches and
then aligns each mimotope with each patch based on the
maximal bipartite matching algorithm. Mapitope [22,28]
converts a set of mimotopes into overlapping residue
pairs, then calculates them to rank the pairs' occurrences
to obtain a set of major statistically significant pairs (SSP),
and finally uses them to search the 3D structure of the
antigen and links the SSP into clusters on the antigen sur-
face. Lately, PepSurf [29], an epitope prediction program
based on a color-coding algorithm [30], proposed to
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search all possible simple paths in the surface graph of an
antigen and adopted a clustering strategy for epitope pre-
diction. However, the running time of PepSurf depends
exponentially on the length of a mimotope. Therefore, on
their online server, each mimotope used must be less than
or equal to 14 amino acids in length. Although epitopes
and mimotopes are functionally equivalent, they seldom
share a similar sequence. The mimicry is supposed to rely
on similarities in physicochemical properties and similar
spatial organization. Moreover, the binding site of an
antibody is a surface, not just a continuous sequence, so
the epitope prediction problem is outside the scope of
classical string alignment algorithms. Searching all the
surface residues on an antigen of interest for the mimo-
topes is problematical. Therefore, although numerous
phage display library based algorithms have been pro-
posed to characterize B-cell epitopes, the precise localiza-
tion of the interaction site mimicked by the mimotopes
on the antigen surface is still an open challenge [25,29].

In this research, we presented a method, Pep-3D-Search,
based on mimotope analysis for B-cell epitope prediction.
In Pep-3D-Search, a promising ACO (Ant Colony Optimi-
zation) algorithm was proposed to search matching paths
on an antigen surface with respect to the query mimo-
topes or a motif. The ACO algorithm adopted a novel heu-
ristic strategy that makes it powerful in dealing with
longer mimotopes or motifs. Moreover, the P-value calcu-
lation algorithm and the DFS (Depth-First Search) algo-
rithm, a graph search algorithm, were used to screen and
cluster the result paths at the output stage. A group of test
cases, which were all taken from published data, were
applied to Pep-3D-Search for validation of its perform-
ance. The experimental results showed that the predictive
performance of Pep-3D-Search was comparable to other
epitope prediction algorithms, and some novel, rational
results were provided.

Implementation
Algorithm flow
The Pep-3D-Search algorithm flow is shown in Figure 1.
Its input included a 3D structure of an antigen (a protein
data bank (PDB) [31] file) and a set of mimotopes or a
motif. Pep-3D-Search identified all exposed residues of
the given antigen and created a surface graph of it. The
algorithm can be employed in two modes. The first mode
is the mimotope mode, which searched for matching
paths on the antigen surface with each query mimotope
by the ACO algorithm. All paths were scored to the corre-
sponding mimotope according to an amino-acid substitu-
tion matrix. Putative candidate epitopes were then picked
out by the P-value calculation algorithm and the DFS
algorithm. The second mode is the motif mode, which
directly mapped the motif onto the antigen surface using

the ACO algorithm and took the top-scoring paths as
epitope candidates.

Graphical representation of the antigen surface
A B-cell epitope typically is a solvent accessible surface
consisting of some 15–20 exposed residues derived from
2 to 3 discontinuous segments of the antigen [32].
Whether or not a residue is exposed can be determined by
its solvent accessible surface area (SASA). In this study, the
exposed residues in the study antigen were determined by
three steps: (i) the total SASA of a residue composed of N
atoms was calculated by: SASA = ∑NAi, where Ai is the
SASA of the ith atom and determined by the Surface Racer
program 4.0 [33] with a probe sphere of radius 1.4 Å, cor-
responding to a water molecule; (ii) the relative solvent
accessibility (RSA) of a residue was calculated as the SASA
of the residue compared to the maximum exposed surface
of the same residue type in an extended ALA-X-ALA tripep-
tide, where the maximum exposed surface of the residue X
in the ALA-X-ALA tripeptide is that calculated by Ahmad
al. [34]; (iii) A residue was determined as being exposed if
the value of its RSA is greater than a predefined threshold
(default = 5%). A surface graph representing the exposed
residues, G = (V,E), was defined, where V is the vertex set
consisting of all exposed residues, and E is the edge set,
where any two vertices are connected by an edge if the
Euclidian distance between the two vertices is not greater
than a predefined threshold. In Pep-3D-Search, three
methods were provided to calculate neighbor residue
pairs on the antigen surface. Firstly the distance between
the two residues was taken as the distance between the Cα
atoms of the two amino acids. Using Cα atoms may better
reflect the backbone positions. Secondly, the distance
between the Cβ atoms was used, which may better reflect
the side chain position (the Cα atom was still used when
it is a glycine because it does not have a Cβ atom). Thirdly,
the minimum distances between all the heavy atoms of
the two residues were used. In Pep-3D-Search, we used
CA, CB and AHA to represent the three methods respec-
tively and took CA as the default parameter with a dis-
tance threshold 7 Å.

The ACO algorithm
ACO is a multi-agent heuristic algorithm used for combi-
natorial optimization. It was inspired by the capability of
real ants to find the shortest path between their nest and
a food source. The original ACO algorithm was intro-
duced by Dorigo et al [35] for solving the traveling sales-
man problem (TSP). Since then, many researchers have
extended the original algorithm, and have successfully
applied their new algorithms to large scale TSP and other
problems like the vehicle routing, scheduling, routing in
Internet-like networks, and so on [36]. The successful
application of ACO algorithms in the TSP inspired us to
develop a new heuristic algorithm for solving the mimo-
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tope prediction problem. Our aim was to find a simple
path on a surface graph that yielded the alignment to a
mimotope or a motif with a maximal score. Similarly to
the TSP, our problem was an ordering problem, i.e. the
algorithm's aim was to put the different vertices in a cer-
tain order. However, several different aspects had to be
considered: (i) our problem is a partial vertex permuta-
tion of a graph, in which the number of vertices in the per-
mutation equals the residue number in the mimotope (or
the motif); (ii) the edge of any two neighbor vertices must
be the same length, and scoring a resulting path is only
dependent on a vertex permutation, totally irrelevant to
the path length; (iii) in a resulting path, some insertions/
deletions may be permitted. Therefore, some new strate-
gies were needed for solving our problem. The details of
these strategies are described below.

Definition of the pheromone trail and the heuristic 
information
The pheromone trail and the heuristic information are
two important parameters in the ACO algorithm. Theoret-
ically, the pheromone trail can give the artificial ants a glo-
bal guide in their decision-making, whereas the heuristic
information can guide these ants to explore better paths
locally. The quality of an ACO application depends
greatly on the definition of the meaning of the pherom-
one trail and the heuristic information [35]. According to
the features of our problem, pheromone and the heuristic
information for each edge on surface graph were defined
as follows:

Let τ(k)(i, j) be the pheromone from vertex i to vertex j at
the kth searching step in a solution, which encodes the

An algorithmic flowchart of Pep-3D-SearchFigure 1
An algorithmic flowchart of Pep-3D-Search. Given the 3D structure of an antigen, Pep-3D-Search identifies all the sur-
face residues and creates a surface graph. After that, it can be used in two modes: mimotope or motif. In mimotope mode, 
every mimotope received as an input is aligned to the antigen surface and the epitope candidates are obtained through screen-
ing and clustering of the matched paths. In motif mode, a motif received as an input is mapped on to the antigen surface. Subse-
quently, the top scoring paths are output directly as the epitope candidates.
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favorability of visiting a certain vertex j after vertex i, where
1 ≤ k ≤ L, and L is the number of vertices in a resulting path
(i.e. the number of residues in the mimotope or motif). In
our approach, τ(k)(i, j) was assigned an initial value at the
start point and was updated after each iteration.

Let η(k)(i, j) be the heuristic information from vertex i to
vertex j at the kth searching step in a solution, which
encodes the preference of visiting a certain vertex j after
vertex i, where 1 ≤ k ≤ L, and L is the number of vertices in
a resulting path. The value of η(k)(i, j) was assigned accord-
ing to the input mimotope (or motif) and the amino-acid
substitution matrix used (see Scoring amino acid similar-
ities). For example, let the mimotope be "ANY-
NATRGTVSA", and a row of the amino-acid substitution
matrix used is supposed to be: "A←A(2.14), K(0.44),
I(0.39), G(0.25), V(0.07), D(-0.15), S(-0.22), N(-0.36),
Q(-0.36), T(-0.4), F(-0.61), C(-0.61), E(-0.7), L(-0.73),
M(-0.91), Y(-0.91), H(-1.15), P(-1.15), R(-1.67), W(-
2.61)" which represents the scoring values of each amino-
acid substitution for Alanine (A). It can be seen that the
first, the fifth and twelfth amino acid in the mimotope are
all alanine (A). In order to make the ants tend to find max-
imal alignment score in each step, for k = 1, 5 and 12, we
will set η(k)(i, j) = 2.14 if the vertex j is a Alanine (A) and i
is any neighbor vertex of j, and in the same way, η(k)(i, j)
= 0.44, if the vertex j is a Lysine (K) and i is any neighbor
vertex of j,..., finally, η(k)(i, j) = -2.61, if the vertex j is a
Tryptophan (W) and i is any neighbor vertex of j. In this
way, for all 1 ≤ k ≤ 12 and each edge on the surface graph,
η(k)(i, j) can be defined and it naturally represents the pref-
erence of an ant in vertex i for vertex j in each searching
step.

In the case of a motif, let Q = (q1, q2,...,qL) be the motif,
then qk (1 ≤ k ≤ L) may be a set of amino acids (e.g. [STDE],
see Epitope prediction based on motif mapping), a gap (-
) or a character "X" which means it can be any amino acid.
When qk is a set of amino acids (the set is named S), η(k)(i,
j) will be set to be the maximal value in all the scoring val-
ues of vertex i substitution for vertex j, where the vertex j
belongs to the set S and i is any neighbor vertex of j; When
qk is a gap or a character "X", η(k)(i, j) will be set to be the
average value of the substitution matrix, if j and i are a pair
of neighbors.

Scoring amino acid similarities
Algorithms for alignment of protein sequences typically
measure similarity by using a substitution matrix with
scores for all possible exchanges of one amino acid with
another. The choice of the substitution matrix will directly
influence the performance of the algorithms. However,
the optimal substitution matrices used by the existing
epitope prediction algorithms are generally not compati-
ble with each other. Following comparison experiments,

we chose the substitution matrix M_Blosum62 by May-
rose et al [29] as the default selection for the similar match
mode. Moreover, we defined the substitution matrix
STRICT as the default selection for the exact match mode,
in which the scoring value of substitution between the
same two amino acids is 1, whereas the scoring value of
substitution between any two different amino-acids is 0.
A simple path on the surface graph is a path in which all
vertices are distinct. When an ant has no no-visited edge
to connect to other vertices, it is allowed to jump to a no-
edge-connected vertex if the distance between the two ver-
tices is less than the double predefined distance threshold.
In this situation, a gap can be left on its path. For each
unmatched residue, a penalty was added.

According to the above analysis, two methods for scoring
the similarity of amino acids are proposed. For mimotope
analysis, the similarity score h(qi, pi) of amino acids qi and
pi is calculated by Equation (1):

Where minimum refers to the minimum value in the sub-
stitution matrix used; the values of penalty are set from 0
to -0.5 (default = -0.5); s(qi, pi) is the observed substitution
score in the substitution matrix used.

In the case of motif analysis, let Q = (q1, q2,..., qL) be the
motif and P = (p1, p2,..., pL) be the resulting path on the
surface graph, then we calculate the similarity score h(qi,
pi) (1 ≤ i ≤ L) by Equation (2):

Where average refers to the average value in the substitu-
tion matrix used; minimum denotes the minimum value in
the substitution matrix used; the values of penalty is set
from 0 to -0.5 (default = -0.5); s(qi, pi) is the observed sub-
stitution score in the substitution matrix used.

Building a solution
The pheromone trail and the heuristic information
defined above will now be used by the ants to find the best
solutions. Suppose the number of residues in the mimo-
tope is L. Every ant starts with a virtual original point
named "O", which is permitted to connect to any vertex
on the graph. Then an ant will randomly choose a vertex
as its first vertex, and builds a solution going from a vertex
to another connected vertex. The process will not stop
until the ant has visited L vertices on the graph. At the kth
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searching step (1 ≤ k ≤ L), the probability that an ant A in
a vertex i will choose a vertex j as its next vertex is given by
equation (3):

Where τ(k)(i, j) and η(k)(i, j) are the pheromone and the
heuristic information between i and j at kth searching
step, respectively. So the preference of an ant A in vertex i
for vertex j is partly defined by the pheromone between i
and j, and partly by the heuristic favorability of j after i.
Parameters α and β define the relative importance of the
pheromone information and the heuristic information
(default α = β = 2). JA(i) is the set of vertices that connect
to i and have not yet been visited by the ant A in vertex i.

The fitness function

In order to guide the algorithm towards good solutions, a
fitness function was defined to assess the quality of the
solutions. Let Q = (q1, q2,..., qL) be a mimotope (or a

motif) of length L and P = (p1, p2,...,pL) be a simple path

on the surface graph obtained by an ant. Then, the align-
ment score between Q and P is defined as:

, where h(qi, pi) denotes the amino

acid similarity score between qi and pi. Here, the average of

the alignment score between Q and P is chosen to define
the fitness of the solution P:

Updating the pheromone trail
After all the ants have completed one iteration, the phe-
romones were updated. Firstly, we defined the elite ant as
follows: an ant was appointed as the elite ant only if the
fitness value of the path obtained by the ant was greater
than a threshold. Only the elite ants were permitted to
leave the pheromones on its own path. The pheromones
were updated according to equations (5) and (6).

τ(k)(i, j) = (1 - ρ)τ(k)(i, j) + Δτ(i, j) (5)

Equation (5) consists of two parts and k represents the kth
searching step. The left part makes the pheromone on all

edges decay. The speed of this decay is defined by the
evaporation parameter ρ (0 <ρ < 1) (default ρ = 0.05). The
right part increases the pheromones on all the edges vis-
ited by the elite ants. The amount of pheromone that the
elite ant deposits on an edge is defined by the fitness value
of the path created by the ant, as in equation (6). In this
way, the increase of pheromone for an edge depends on
the number of the elite ants that use this edge, and on the
quality of the solutions found by those ants.

In order to enhance exploration of ants and overcome the
premature convergence of the ACO algorithm, an adap-
tive strategy was employed to determine the threshold
(which was used to select the elite ants): (i) initially, the
threshold was set to 1; (ii) within 300 iterations, if the
total number of the elite ants determined in each iteration
was less than 5, then the new threshold was set to equal
the original threshold minus 0.1; within 20 iterations, if
the total number of the elite ants determined in each iter-
ation was greater than 10, then the new threshold was set
to equal the original threshold plus 0.1. In addition,
according to Stützle and Hoos [37], we defined an upper
and lower limit (τmax and τmin) for the pheromone values.
Stützle and Hoos defined τmax and τmin algebraically based
on the probability of constructing the best solution found
when all the pheromone values have converged to either
τmax or τmin. In our approach, the aim of the ACO algo-
rithm was mainly to provide a set of good quality solu-
tions, rather than a best solution. Therefore we defined
τmax as being equal to the maximum value minus the min-
imum value in the amino-acid substitution matrix used,
and τmin as zero.

Output of epitope candidates
While running the ACO algorithm, all paths obtained by
the elite ants were stored in a local database. How were
putative epitope candidates produced from this set of
paths? According to the different kinds of input
sequences, i.e. a set of mimotopes or a motif, two different
strategies were adopted. For the set of mimotopes, a clus-
tering strategy was employed (described as next section);
for the motif, the n highest scoring paths were chosen
directly as the epitope candidates.

P-value calculation for a path
Typically, a set of input mimotopes contains a number of
amino-acid sequences with different lengths. In order to
rationally assess the paths obtained with different mimo-
topes, we calculated the probability of randomly obtain-
ing a path with a specific score, i.e. P-value of the path.
According to the work by Mayrose et al [29], the distribu-
tion of the scores of random paths can be approximated
using an extreme value distribution, whose parameters are
fitted from the empirical distribution using the method of
moments. To obtain rational empirical distribution of
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alignment scores, we generated a set of m (default m =
106) random simple paths on the surface graph for every
mimotope, and each random simple path was then
aligned to the mimotope.

Creating a weighted graph of the result paths
We then selected those paths whose P-values were less
than or equal to 10-3 as the result paths and created a
weighted graph of the result paths G = (V, E), where V is
the vertex set consisting of all the result paths, and E is the
edge set, where any two vertices are connected by an edge
if they share at least one residue. In addition, the weight
of each vertex in G was defined as the P-value of the path.

Clustering the result paths based on DFS algorithm
The weighted graph defined above was generally uncon-
nected. Each connection component in the graph, which
may consist of several connected paths, can be regarded as
a potential epitope candidate. Here, the DFS algorithm
[30] was employed to compute all the connection compo-
nents of the weighted graph. According to Mayrose et al
[29], the surface accessible areas of 95% of all available
epitopes in the PDB are not greater than 2000 Å2. Moreo-
ver, a native epitope is generally less than 40 residues.
Therefore, if the surface accessible area of a connection
component was greater than 2000 Å2 or the number of
residues in the connection component was greater than
40, this connection component was reduced in size. By
iteratively removing a path, the size was cut until the
remaining part met the conditions. In each such iteration,
the algorithm chose a path for removal such that the
remaining connection components kept the maximum
score. The score of a connection component was defined
as the sum of -log (P-value) of the paths within it. As a
consequence, n maximum score connection components
were output as the n epitope candidates (default n = 3).

Results
Epitope prediction based on mimotope analysis
In order to assess the predictive performance of Pep-3D-
Search, we applied it to ten test cases (see Table 1), which
were all taken from other similar published data. These
test cases fulfilled the following requirements: (i) a set of
mimotopes were derived by screening an antibody in a
biopanning experiment; (ii) a 3D structure of the anti-
body-antigen complex was available; (iii) the native
epitope of each test case had been crystallographically
defined. Due to the similar policy of fully scanning the
mimotopes (or neighbor amino acid pair (AAP) derived
from the mimotopes in Mapitope [22,28]) versus the 3D
structure of the antigen, we mainly compared the results
from Pep-3D-Search with those from PepSurf [29] and
Mapitope.

Epitope prediction using antibody-antigen test cases
The first test group (antibody-antigen test cases in Table 1)
contained eight test cases from Mapitope, PepSurf and
Mimox [26]. The first test case (labeled 1jrh in Table 1)
contains 59 mimotopes of 5 residues in length. Lang et al
[38] further analyzed the detailed interactions between
the mAb A6 and the interferon gamma receptor (IFNgR)
by selecting 59 fragments of the IFNgR mutants with high
affinity for the mAb A6 by phage display. These fragments
can thus be regarded as mimotopes of the IFNgR and the
crystal structure of the mAb A6-IFNgR complex has been
resolved (PDB id: 1jrh). In the second test case (labeled
1bj1 in Table 1), mimotopes were obtained by a similar
experiment to the first case, but here the Fab fragment of
a humanized neutralizing antibody (also known as rhu-
MAb VEGF) was mutated and selected for binding to the
vascular endothelial growth factor (VEGF) by phage dis-
play [39]. The structure of the rhuMAb-VEGF complex has
been deposited in the PDB (PDB id: 1bj1). In test cases
three to eight, the six sets of mimotopes were obtained by
screening phage display libraries with the 17b [22], 13b5

Table 1: The test cases used for Assessment of Pep-3D-Search's performance in mimotope anlysis.

PDB ID Antibody Antigen References Library size*

Antibody-antigen test cases
1jrh mAb A6 IFNgammaR Lang S et al.(2000) 59 × 5
1bj1 rhuMAb VEGF vascular endothelial growth factor ChenY et al. (1999) 36 × 6, 3 × 5, 2 × 4
1g9m mAb 17b gp120 Enshell-Seijffers D et al. (2003) 10 × 14,1 × 12
1e6j mAb 13b5 p24 Enshell-Seijffers D et al. (2003) 14 × 14, 2 × 7
1n8z Herceptin Fab Her-2 Riemer AB et al. (2004) 5 × 12
1iqd mAb Bo2C11 Coagulation factor VIII Villard S et al. (2003) 27 × 12
1yy9 Cetuximab Fab Epidermal Growth Factor Receptor Riemer AB et al. (2005) 4 × 10
2adf 82D6A3 IgG Von Willebrand factor Vanhoorelbeke K et al. (2003) 2 × 15, 3 × 6
Protein-protein test cases
1avz Fyn SH3 domain Nef Rickles RJ et al. (1994) 8 × 10, 10 × 12
1hx1 Bovine Hsc70 Bag chaperone regulator Takenaka IM et al. (1995) 8 × 15

*Number of sequences × sequence length.
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[22], Herceptin [40], Bo2C11 [41], Cetuximab Fab [42]
and 82D6A3 IgG [43] antibodies respectively (see Table
1), and their corresponding Ab-Ag complex structures
have been resolved (PDB id: 1g9m, 1e6j, 1n8z, 1iqd, 1yy9
and 2adf). In addition, the native epitope for each test
case (1–8) is present in the CED database [44]. We ana-
lyzed the mimotopes in the test cases with our Pep-3D-
Search, PepSurf and Mapitope, respectively. The results
predicted by the three algorithms and evaluation in terms
of the Matthews correlation coefficient (MCC) [45], sensi-
tivity and precision are shown in Table 2. The results in
Table 2 show that our Pep-3D-Search successfully pre-
dicted all the mimotopes in all eight test cases. Especially,
for the test cases 1bj1, 1n8z and 1yy9, the MCC, sensitiv-
ity and precision values of Pep-3D-Search were considera-
bly superior to those of PepSurf and Mapitope. For the test
case 1iqd, PepSurf yielded the best performance (MCC:
0.1272; sensitivity: 0.2581; precision: 0.5); though Map-
itope achieved the highest precision (0.9375), it gave the
lowest MCC (-0.3502) and sensitivity (0.1415); Pep-3D-
Search yielded inferior prediction (MCC: 0.0356; sensitiv-
ity: 0.1277; precision: 0.375) with default parameters,
whereas it obtained better prediction by using distance
parameter CB with threshold 6.5 (MCC: 0.1604; sensitiv-
ity: 0.2326; precision: 0.625, see Table 3). Furthermore,
for the test cases 1jrh, 1g9m, 1e6j and 2adf, Pep-3D-
Search and PepSurf gave better predictions, while Map-
itope failed in the test cases 1e6j and 2adf.

Using Pep-3D-Search for the prediction of protein-protein 
interacting sites
In order to compare Pep-3D-Search with previously pub-
lished algorithms, we applied it to detect the interface res-
idues of the interacting proteins for the two test cases,
1avz and 1hx1 (protein-protein test cases in Table 1),
which were taken from PepSurf. Rickles et al [46] used the
Fyn-SH3 domain to select a semi-combinatorial random
peptide library and obtained 18 affinity-selected peptides.
The co-crystal of Fyn-SH3 domain with its interacting pro-
tein Nef and Fyn-SH2 domain is now available (PDB id:
1avz). The second test case was taken from the work by
Takenaka et al. [47]. They screened a random phage
library against the 70 kDa heat shock cognate (Hsc70)
protein and obtained a set of peptides that bind Hsc70.
The structure of Hsc70 with its interacting protein Bag
chaperone regulator has been deposited in the PDB (PDB
id: 1hx1). For each of the above test cases, the prediction
was compared to the 'true' protein-protein interacting site
that was inferred using the 'Contact Map Analysis' server
[48].

From Table 2, it can be seen that both Pep-3D-Search and
PepSurf obtained better results than Mapitope. Especially,
for the test case 1hx1, the results showed a complementa-
rity between Pep-3D-Search and PepSurf: the 24 contact-
ing residues of protein Hsc70 and Bag chaperone
regulator inferred by Contact Map Analysis server were

Table 2: Evaluation and comparison of the performances of Pep-3D-Search.

PDB ID 1jrh 1bj1 1g9m 1e6j 1n8z 1iqd 1yy9 2adf 1avz 1hx1 Average

CED ID CE0179 CE0175 CE0058 CE0170 CE0096 CE0176 CE0199 CE0154 -- --
Epitope size 21 19 15 11 20 16 15 15 16 24
Antigen size 94 93 304 209 580 155 612 188 102 111
Pep-3D-Search
TP/PE 19/40 7/13* 10/39 11/36 20/35* 6/47 10/25 12/36 10/39 13/39
MCC 0.3902 0.1442 0.1394 0.2285 0.1856 0.0356 0.1030 0.2153 0.1643 0.152 0.1758
Sensitivity 0.475 0.5833 0.2564 0.3056 0.5714 0.1277 0.4 0.3333 0.2564 0.3333 0.3642
Precision 0.9048 0.3684 0.6667 1.0 1.0 0.375 0.6667 0.8 0.625 0.5417 0.6948
PepSurf
TP/PE 19/28 2/17 9/31 10/30 6/11 8/31 1/8* 10/18 14/25 12/25
MCC 0.4134 -0.0537 0.1257 0.2056 0.0596 0.1272 0.0067 0.1832 0.3348 0.1863 0.1589
Sensitivity 0.6786 0.1176 0.2903 0.3333 0.5455 0.2581 0.125 0.5556 0.56 0.48 0.3944
Precision 0.9048 0.1053 0.6 0.9091 0.3 0.5 0.0476 0.6667 0.875 0.5 0.5409
Mapitope
TP/PE 19/22 2/18 13/33 1/6 9/13 15/106 3/23* 0/10 6/9* 5/21
MCC 0.4224 -0.062 0.1899 0.0154 0.0909 0.2401 0.0209 -0.0173 0.1387 0.0135 0.1053
Sensitivity 0.8636 0.1111 0.3939 0.1667 0.6923 0.1415 0.1304 0.0 0.6667 0.2381 0.3404
Precision 0.9048 0.1053 0.8667 0.0909 0.45 0.9375 0.1429 0.0 0.375 0.2083 0.4081

TP: number of true positives; PE: number of residues in the predicted epitope; TN: number of true negatives; FP: number of false positives; FN: 

number of false negatives; Matthews correlation coefficient ; 

; .

*For the cases, the best prediction was found in the second-ranked candidate.

( ) ( ) ( )
( )( )( )( )

MCC = ⋅ − ⋅
+ + + +

TP TN FP FN
TP FP TP TN TN FP TN FN

Sensitivity Se( ) = +
TP

TP FN Precision Pr( ) = +
TP

TP FP
Page 8 of 17
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1jrh
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1bj1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1g9m
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1e6j
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1n8z
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1iqd
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1yy9
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2adf
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1avz
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hx1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1g9m
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1e6j
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1n8z
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1iqd
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1yy9
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2adf
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1bj1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1n8z
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1yy9
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1iqd
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1jrh
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1g9m
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1e6j
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2adf
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1e6j
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2adf
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1avz
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hx1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1avz
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hx1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hx1


BMC Bioinformatics 2008, 9:538 http://www.biomedcentral.com/1471-2105/9/538
R205 KA (208–209) IE (211–212) MK (215–216) LE
(218–219) IDTLIL (221–226) R234 RK (237–238) VK
(241–242) Q245 L248 D252 E255; the 39 contacting res-
idues predicted by Pep-3D-Search were GNS (150–152)
E155 V157 K161 H164 K167 K171 AD (173–174) L200
K202 D204 R205 R206 KA (208–209) I211 M215 L218
FKD (230–232) R234 LK (235–236) RK (237–238) G239
VK (241–242) K243 Q245 AF (246–247) L248 AE (249–
250); the 25 contacting residues suggested by PepSurf
were K161 KHL (163–165) KS (167–168) E182 GI (185–
186) D204 R205 R206 KA (208–209) I211 MK (215–
216) I217 LE (218–219) E220 DT (222–223) L248 E255.
From the above results, it is evident that in the predicted
results of Pep-3D-Search, six epitope residues R234,
R237,K238, V241, K242 andQ245 were missed by Pep-
Surf, while in the predicted results of PepSurf, five epitope
residues K216,E219, D222,T223 and E255 were missed
by Pep-3D-Search.

The overall performance of each method was measured by
average MCC, sensitivity and precision values. Compared
with PepSurf and Mapitope, Pep-3D-Search achieved the
best average MCC, precision values and second-best aver-
age sensitivity value (average MCC, sensitivity and preci-
sion values of predicted results by Pep-3D-Search were

0.1758, 0.3642, 0.6948; PepSurf were 0.1589, 0.3944 and
0.5409; Mapitope were 0.1053, 0.3404 and 0.4081, see
Figure 2). In addition, Pep-3D-Search provides three
parameters to calculate neighbor residue pairs on antigen
surface, which are CB, CA and AHA. The experimental
results that examined Pep-3D-Search's performance with
different parameters are listed in Table 3 to 5. The overall
performance analyses in terms of average MCC, sensitivity
and precision values are shown in Figure 3. Generally,
Pep-3D-Search obtained better results by using the param-
eter CA (distance threshold = 7) than by the other param-
eters. Subsequently the parameter CA with distance
threshold 7 was set as the default.

Epitope prediction based on motif mapping
Pep-3D-Search also provides the selection of predicting
epitope based on motif mapping. The motif sequence can
be derived from the set of mimotopes by using multiple
sequence alignment tools such as ClustalW [49] or
directly using the Mimox web service, and it is thus sup-
posed to contain important residues for interaction of the
Ab and the Ag. After mapping the motif sequence on to
the antigen surface, Pep-3D-Search obtained a set of
matched paths and those top-scoring paths were selected
as the epitope candidates. In order to assess the perform-

Table 3: Comparison of the predictive performance of Pep-3D-Search with different distance parameters (CB).

PDB ID 1jrh 1bj1 1g9m 1e6j 1n8z 1iqd 1yy9 2adf 1avz 1hx1 Average

CB (distance threshold = 6.5)
TP/PE 5/5 0/0 11/43 11/38 15/30* 10/43 6/28 8/29 8/27 2/27
MCC 0.1119 0.0 0.155 0.2285 0.1379 0.1604 0.059 0.1316 0.1380 -0.1271 0.0995
Sensitivity 1.0 0.0 0.2558 0.2895 0.5 0.2326 0.2143 0.2759 0.2963 0.0741 0.3139
Precision 0.2381 0.0 0.7333 1.0 0.75 0.625 0.4 0.5333 0.5 0.0833 0.4863
CB (distance threshold = 7)
TP/PE 13/18 6/9* 14/46 8/28 14/31* 9/46 9/29* 14/31 9/41 11/38
MCC 0.2747 0.1283 0.2048 0.1593 0.1282 0.127 0.0917 0.2604 0.1139 0.0939 0.1582
Sensitivity 0.7222 0.6667 0.3043 0.2857 0.4516 0.1957 0.3103 0.4516 0.2195 0.2895 0.3897
Precision 0.619 0.3158 0.9333 0.7273 0.7 0.5625 0.6 0.9333 0.5625 0.4583 0.6412
CB (distance threshold = 7.5)
TP/PE 19/41 12/27 10/40 9/35 14/33** 2/45 8/28* 10/45 8/29 9/29
MCC 0.3879 0.2349 0.1391 0.1806 0.1279 -0.0837 0.0809 0.1626 0.13 0.084 0.1444
Sensitivity 0.4634 0.4444 0.25 0.2571 0.4242 0.0444 0.2857 0.2222 0.2759 0.3103 0.2978
Precision 0.9048 0.6316 0.6667 0.8182 0.7 0.125 0.5333 0.6667 0.5 0.375 0.5921
CB (distance threshold = 8)
TP/PE 19/38 15/30 10/37 4/34* 18/37 4/42 7/26 10/18* 6/27 11/32
MCC 0.3947 0.3222 0.1401 0.0571 0.1664 -0.0101 0.0703 0.1832 0.0665 0.1271 0.1518
Sensitivity 0.5 0.5 0.2703 0.1176 0.4865 0.0952 0.2692 0.5556 0.2222 0.3438 0.3361
Precision 0.9048 0.7895 0.6667 0.3636 0.9 0.25 0.4667 0.6667 0.375 0.4583 0.5841

TP: number of true positives; PE: number of residues in the predicted epitope; TN: number of true negatives; FP: number of false positives; FN: 

number of false negatives; Matthews correlation coefficient ; 

; .

*For the cases, the best prediction was found in the second-ranked candidate.
**For the cases, the best prediction was found in the third-ranked candidate.

( ) ( ) ( )
( )( )( )( )

MCC = ⋅ − ⋅
+ + + +

TP TN FP FN
TP FP TP TN TN FP TN FN

Sensitivity Se( ) = +
TP

TP FN Precision Pr( ) = +
TP

TP FP
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ance of Pep-3D-Search, six test cases were applied and the
results are listed in Table 6 and Supplementary Table S1 to
S5 [see Additional file 1]. Here, we describe one experi-
ment of the test case 1e6j (Table 6) in detail. The test case
1e6j is taken from Mapitope and Mimox. Enshell-Seijffers
et al [22] used the mAb 13B5 (recognizing HIV-1 capsid
protein p24) to select a phage displayed random peptide
library and obtained a set of 16 mimotopes. The structure
of p24 with 13B5 has been resolved [PDB: 1e6j], and the
13B5 epitope, which is composed of ALGPAATEE (204–
210, 212, 213) TA (216–217), has been recorded in the
CED database as CE0170. Using Mapitope, Enshell-Sei-
jffers et al suggested that 13B5 epitope residues might
consist of E187 D197 A204 GPAA (206–209) EE (212–
213) A217, in which the epitope residues are marked in
bold. It should be noted that when all parameters were set
to default, Mapitope predicted candidate residues A194
N195 P196 D197 C198 A217 (i.e. among the six pre-
dicted residues, only one was epitope residue). Further-
more, Huang J et al [26] derived a motif sequence, [DE] V
[FM] GPL [STDE] TX-X [DE], from the 16 mimotopes

using Mimox. Mimox has no ability to directly analyze the
motif sequence of this type, therefore they derived three
fragments, GPL, ET and EE, from the motif by manual
parsing. Using the three fragments as the motif sequences
respectively, they predicted the 13B5 epitope using
MIMOX. For the fragment GPL, the top two candidates
given by MIMOX were G206 P207 L205 and G106 P49
L52; for the fragments ET, the top three candidates were
E212 T216, E213 T216 and E212 T210; for the fragments
EE, the top three candidates were E28 E29, E29 E28 and
E212 E213. Using Pep-3D-Search we directly mapped the
motif sequence, [DE]V [FM]GPL [STDE]TX-X [DE], on to
the antigen surface of p24 to predict the 13B5 epitope.
Under the similar match mode (i.e. using substitution
matrix M_Blosum62, see Scoring amino acid similarities)
and parameter AHA (distance threshold = 4), the top ten
predicted candidates by Pep-3D-Search are listed in Table
6. From Table 6, we can see that the ten candidates all suc-
cessfully localized in the epitope region. Especially, the
eighth-ranked candidate gave the best results: D197 I201
L205 G206 P207 A209 E213 T210 M214 A217 T216

Overall performance evaluation of Pep-3D-Search using average MCC, sensitivity and precision valuesFigure 2
Overall performance evaluation of Pep-3D-Search using average MCC, sensitivity and precision values. From 
Figure 2, it can be seen that Pep-3D-Search obtained the best average MCC, precision values and second-best average sensitiv-
ity value; PepSurf obtained the best average sensitivity value and second-best average MCC and precision values; Mapitope gave 
inferior results in comparison with the above two methods.
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E212. Taking the top ten candidates together, we obtained
a total of 25 residues suggested by Pep-3D-Search, which
overlap 10 of the 11 epitope residues in the 13B5. The
other five experiments for assessing the performance of
Pep-3D-Search are similar to the procedure mentioned
above, and their results are listed in Supplementary Tables
S1 to S5 [see Additional file 1]. These experiments show
that Pep-3D-Search is effective and efficient in predicting
epitopes in motif mode.

The searching capability of Pep-3D-Search
In general, the searching algorithm has a great impact on
the effectiveness and efficiency of an epitope prediction
program. Therefore it is the most important part of the
whole design process. In Pep-3D-Search, the ACO algo-
rithm, a kind of heuristic algorithm, is employed for
searching mimotopes or motifs on an antigen surface. In
order to evaluate the capability of the ACO algorithm for
searching the target paths with various lengths on the anti-
gen surface, we took gp120 (the envelope protein of HIV;
chain G; PDB id: 1g9m; the residue number of the antigen
is 304, see Table 2) as the target antigen and randomly
selected the paths with lengths from 9 to 25 (odd num-

bers) residues on the antigen surface as the search goals.
As shown in Figure 4, a path on the gp120 surface with 25
residues is localized firstly, E351 S347 K343 Q344 K348
I272 N234 G237 N94 K97 D99 M100 K487 V489 L226
V488 A224 A219 Y217 C218 Q246 V84 L86 N88 T240, in
which the Euclidian distance of any two neighbor residues
is less than or equal to 7.5 Å. From this path, 9 sub-paths
with lengths from 9 to 25 (odd numbers) residues were
randomly selected as the test cases (see Table 7 and Sup-
plementary Table S6 in Additional file 1). Here, we
describe one experiment in detail to explain the search
process of the target path with 21 residues on the gp120
surface. The target path is E351 S347 K343 Q344 K348
I272 N234 G237 N94 K97 D99 M100 K487 V489 L226
V488 A224 A219 Y217 C218 Q246 (see Table 7). We used
the target path itself and mutations of it as input sequence
for Pep-3D-Search to localize the target path on the gp120
surface. Some residues on the original sequence were ran-
domly changed (the mutation rates vary from 10% to
30%). From Table 7, it can be seen that Pep-3D-Search
quickly localized the target path with 5000 iteration num-
bers. When the input sequence was the target path itself
(ESKQKINGNKDMKVLVAAYCQ), the path localized by

Overall performance analysis of Pep-3D-Search with different distance parameters CB, CA and AHAFigure 3
Overall performance analysis of Pep-3D-Search with different distance parameters CB, CA and AHA. From Fig-
ure 3, it can be seen that with parameter CA (DT (distance threshold) = 7), Pep-3D-Search obtained the best average MCC 
value (0.1758), precision value (0.6948), and the better average sensitivity (0.3642). In Pep-3D-Search the parameter CA with 
distance threshold 7 is set as the default.
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Table 4: Comparison of the predictive performance of Pep-3D-Search with different distance parameters (CA).

PDB ID 1jrh 1bj1 1g9m 1e6j 1n8z 1iqd 1yy9 2adf 1avz 1hx1 Average

CA (distance threshold = 6.5)
TP/PE 5/5 2/10 13/42 10/43 18/36* 7/31 2/10* 0/20 12/31 13/31
MCC 0.1119 -0.0014 0.1887 0.2033 0.1664 0.1015 0.019 -0.0367 0.262 0.1889 0.1204
Sensitivity 1.0 0.2 0.3095 0.2326 0.5 0.2258 0.2 0.0 0.3871 0.4194 0.3474
Precision 0.2381 0.1053 0.8667 0.9091 0.9 0.4375 0.1333 0.0 0.75 0.5417 0.4882
CA (distance threshold = 7)
TP/PE 19/40 7/13* 10/39 11/36 20/35* 6/47 10/25 12/36 10/39 13/39
MCC 0.3902 0.1442 0.1394 0.2285 0.1856 0.0356 0.1030 0.2153 0.1643 0.152 0.1758
Sensitivity 0.475 0.5833 0.2564 0.3056 0.5714 0.1277 0.4 0.3333 0.2564 0.3333 0.3642
Precision 0.9048 0.3684 0.6667 1.0 1.0 0.375 0.6667 0.8 0.625 0.5417 0.6948
CA (distance threshold = 7.5)
TP/PE 19/38 12/27* 10/45 9/33 18/40 0/36 7/25 12/36 9/37 9/36
MCC 0.3947 0.2349 0.1374 0.1812 0.1662 -0.0895 0.0704 0.2153 0.1332 0.0411 0.1485
Sensitivity 0.5 0.4444 0.2222 0.2727 0.45 0.0 0.28 0.3333 0.2432 0.25 0.2996
Precision 0.9048 0.6316 0.6667 0.8182 0.9 0.0 0.4667 0.8 0.5625 0.375 0.6126
CA (distance threshold = 8)
TP/PE 20/39 12/28* 10/40 10/35 17/36 0/37 5/26 13/35 8/39 5/32
MCC 0.4248 0.2309 0.1391 0.2047 0.1565 -0.1144 0.0484 0.2378 0.0822 -0.065 0.1345
Sensitivity 0.5128 0.4286 0.25 0.2857 0.4722 0.0 0.1923 0.3714 0.2051 0.1563 0.2874
Precision 0.9524 0.6316 0.6667 0.9091 0.85 0.0 0.3333 0.8667 0.5 0.2083 0.5918

TP: number of true positives; PE: number of residues in the predicted epitope; TN: number of true negatives; FP: number of false positives; FN: 

number of false negatives; Matthews correlation coefficient ; 

; .

*For the cases, the best prediction was found in the second-ranked candidate.

( ) ( ) ( )
( )( )( )( )

MCC = ⋅ − ⋅
+ + + +

TP TN FP FN
TP FP TP TN TN FP TN FN

Sensitivity Se( ) = +
TP

TP FN Precision Pr( ) = +
TP

TP FP

Table 5: Comparison of the predictive performance of Pep-3D-Search with different distance parameters (AHA).

PDB ID 1jrh 1bj1 1g9m 1e6j 1n8z 1iqds 1yy9 2adf 1avz 1hx1 Average

AHA (distance threshold = 3.7)
TP/PE 17/20 7/16 12/44 11/34 17/36* 6/32 6/25* 9/33 13/36 8/32
MCC 0.375 0.1243 0.1716 0.2286 0.1565 0.0733 0.0595 0.1502 0.2855 0.0351 0.1659
Sensitivity 0.85 0.4375 0.2727 0.3235 0.4722 0.1875 0.24 0.2727 0.3611 0.25 0.3667
Precision 0.8095 0.3684 0.8 1.0 0.85 0.375 0.4 0.6 0.8125 0.3333 0.6349
AHA (distance threshold = 4)
TP/PE 16/20 7/10 13/42 8/30 15/30* 5/39 6/23 10/37 12/35 10/34
MCC 0.3491 0.1528 0.1887 0.1584 0.1379 0.0283 0.0598 0.1695 0.2525 0.0858 0.1583
Sensitivity 0.8 0.7 0.3095 0.2667 0.5 0.1282 0.2609 0.2703 0.3429 0.2941 0.3873
Precision 0.7619 0.3684 0.8667 0.7273 0.75 0.3125 0.4 0.6667 0.75 0.4167 0.6021
AHA (distance threshold = 4.3)
TP/PE 16/18 8/11 14/42 8/36 17/30* 9/37 4/16* 11/37 10/33 4/26
MCC 0.3537 0.1773 0.2052 0.1558 0.1571 0.1431 0.0394 0.1923 0.1869 -0.0514 0.1559
Sensitivity 0.8889 0.7273 0.3333 0.2222 0.5667 0.2432 0.25 0.2973 0.303 0.1538 0.3986
Precision 0.7619 0.4211 0.9333 0.7273 0.85 0.5625 0.2667 0.7333 0.625 0.1667 0.6048
AHA (distance threshold = 4.6)
TP/PE 19/36 9/24 9/44 4/41 18/38 0/34 8/25* 8/36* 5/37 6/27
MCC 0.3989 0.1483 0.1206 0.0495 0.1663 -0.1023 0.0813 0.1241 -0.0357 0.0051 0.0956
Sensitivity 0.5278 0.375 0.2045 0.0976 0.4737 0.0 0.32 0.2222 0.1351 0.2222 0.2578
Precision 0.9048 0.4737 0.6 0.3636 0.9 0.0 0.5333 0.5333 0.3125 0.25 0.4871

TP: number of true positives; PE: number of residues in the predicted epitope; TN: number of true negatives; FP: number of false positives; FN: 

number of false negatives; Matthews correlation coefficient ; 

; .

*For the cases, the best prediction was found in the second-ranked candidate.

( ) ( ) ( )
( )( )( )( )

MCC = ⋅ − ⋅
+ + + +

TP TN FP FN
TP FP TP TN TN FP TN FN

Sensitivity Se( ) = +
TP

TP FN Precision Pr( ) = +
TP

TP FP
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Pep-3D-Search with the iteration number of 5000 was
E351 S347 K343 Q344 K348 I272 N234 G237 N94 K97
D99 V488 K487 V489 L226 V245 A224 A219 Y217 C247
Q246, which overlaps 19 of the 21 residues in the target
path; when the iteration number was set to 25000, Pep-
3D-Search precisely localized the target path. When the
iteration number was 30000, the path localized by Pep-
3D-Search was E351 S347 K343 Q344 K348 I272 N234
G237 N94 K97 D99 M100 K487 V489 L226 V488 A224
A219 Y217 C247 Q246. Though the twentieth residue
(C247) on the localized path is not identical with the cor-
responding one (C218) on the target path in that posi-
tion, they are all Cysteine. When a mutated sequence is
used as input sequence, Pep-3D-Search still localized the
region of the target path. For example, using ESKDRING-
NCDMKVHVAAYAQ (the mutation rate is 25%) as input,
Pep-3D-Search gave the top-ranked output: E267 T232
K231 N229 K485 F233 N234 G237 N94 ___ D99 M100
K487 V488 ___ I491 G222 A219 F223 A224 Q246 with
10000 iteration numbers. As shown in Table 7, although
Pep-3D-Search got the worst result in the test case, it over-
laps 10 of 21 residues in the target path.

The experiments of other eight test cases for assessing Pep-
3D-Search's searching capability are all based on similar
procedures to the one described above. Those experimen-
tal results are listed in Supplementary Table S6 [see Addi-
tional file 1]. The experiments demonstrate the excellent
search capability of Pep-3D-Search, especially when the
length of the query sequence becomes longer; the itera-
tion numbers of Pep-3D-Search for localizing the target
paths on the protein surface did not change significantly.
Thus, Pep-3D-Search can be used for quickly localizing
the epitope regions mimicked by longer mimotopes
(more than 20-residues), and the proposed ACO algo-
rithm has further potential in other applications involving
sequence-structure alignment.

Discussion
In this study we developed a method, Pep-3D-Search, for
epitope prediction based on mimotope and motif analy-
sis. An ACO algorithm was proposed for aligning a 1D
mimotope sequence (or a motif sequence) to the 3D
structure of an antigen, and P-value calculation based
screening strategy and DFS algorithm based clustering
strategy were employed in localizing epitope candidate
regions. Compared with competing methods, our Pep-
3D-Search adopts a simple and natural strategy to deal
with matches, gaps and deletions in aligning a sequence
to an antigen surface, which makes it more efficient and
effective, not only for sequence search, but also for motif
discovery.

We conducted different sets of experiments to assess our
method's performance. The results show that our method
is comparable to other similar methods. In some test
cases, our method is superior to the others or can provide
complementary information to them. On the other hand,
in order to examine the searching capability of our
method, a set of test cases with different-length sequences
was constructed. The experiment showed that our method
has excellent capability in searching sequences on a struc-
ture, especially when the length of the query sequence
becomes longer (up to 25 residues); the iteration numbers
of Pep-3D-Search for precisely localizing sequence did not
change significantly. Thus the method has further poten-
tial for localizing the epitope regions mimicked by longer
mimotopes. For example, using an mRNA display tech-
nique, one can obtain affinity-selected peptides of more
than 20 residues against an antibody [50]. Moreover, the
method also has potential for other applications, such as
querying pathways in protein-protein interaction net-
works [51]. The Pep-3D-Search algorithm depends on sev-
eral parameters that may influence its prediction accuracy,
such as iteration number, gap penalty and distance thresh-
old defining two neighbor residues. However, because of

Table 6: Epitope prediction of the test case 1e6j (chain: P) based on motif mapping : motif sequence taken from Mimox is [DE]V 
[FM]GPL [STDE]TX-X [DE]; native epitope recorded in CED (id: CE0170) is ALGPAATEE (204–210, 212, 213) TA (216–217); 
parameters of Pep-3D-Search are similarity mode and AHA (distance threshold = 4).

No. Residues and Locations of Candidate Score

1* D197 I201 L205 G206 P207 A209 E213 T216 M215 R162 D163 D166 2.1385
2* D197 I201 L205 G206 P207 A209 E213 T210 L211 Y169 R167 D166 2.1385
3* D197 I201 L205 G206 P207 A209 E213 T216 E212 M215 R162 D163 2.1385
4* D197 I201 K203 G206 P207 A209 E213 T216 E212 L211 Y169 D166 2.1385
5* D197 I201 K203 G206 P207 A209 E213 T210 M214 M215 R162 D166 2.1385
6* D197 I201 L205 G206 P207 A208 A209 T210 L211 Y169 V165 D163 2.1385
7* D197 I201 L205 G206 P207 A208 A209 T210 E213 L211 Y169 D166 2.1385
8* D197 I201 L205 G206 P207 A209 E213 T210 M214 A217 T216 E212 2.1385
9* D197 I201 L205 G206 P207 A209 E213 T216 A217 Q219 M215 E212 2.1385
10* D197 I201 L205 G206 P207 A209 E213 T210 E212 M214 V191 E187 2.1385
Page 13 of 17
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the limited availability benchmark datasets, we only
examined a limited set of values for each parameter and
were constrained in properly learning these parameters. In
our experiments, varying these parameters within a rea-
sonable range did not significantly influence the predic-
tion results (see Table 3 to 5).

The Pep-3D-Search algorithm is basically divided into
three steps: generating random paths on the surface graph

of an antigen for P-value calculation (which is not needed
for motif analysis), searching the optimal paths for each
mimotope (or a motif), and clustering these paths into
several epitope candidates. The running time of the algo-
rithm mainly depends on the number of graph edges, the
number of mimotopes, the length of each mimotope (or
the motif), and the number of generated random paths
for P-value calculation. For a mimotope with 14 or 15
amino acids, generating 106 random paths to obtain the

A path on the gp120 (the envelope protein of HIV) surfaceFigure 4
A path on the gp120 (the envelope protein of HIV) surface. The path on the gp120 surface, which is used to evaluate 
the searching capability of Pep-3D-Search, is composed of 25 residues, E351 S347 K343 Q344 K348 I272 N234 G237 N94 K97 
D99 M100 K487 V489 L226 V488 A224 A219 Y217 C218 Q246 V84 L86 N88 T240, in which the Euclidian distance of the any 
two neighbor residues is less than or equal to 7.5 Å.
Page 14 of 17
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empirical distribution of alignment scores for P-value cal-
culation may take about 10 minutes (using a PC with a
Intel Core 2 processor at 1.86 GHz); searching the optimal
paths may take few minutes (the iteration number is
20000 in default); clustering paths can complete in a few
seconds. So the main computational burden of the algo-
rithm comes from the P-value calculation.

Theoretically, the estimation of the statistical parameters
for an alignment score distribution function requires a
large number of random paths on the surface graph of the
antigen for aligning to the mimotopes. Actually, the
number of the paths generated at random is determined
according to a given time limit, so that the algorithm can
make a trade-off between computational time consumed
and the accuracy of the final results. We set the number to
106 in default. In general, when a set of mimotopes is to
be analyzed, the running time of the algorithm will line-
arly increase with the number of mimotopes. However,
because a collection of paths generated at random for P-
value calculation can be used by all those mimotopes in
the same length in the set of the mimotopes, the actual
running time of the algorithm is much shorter in practice. 

We plan to improve our method by further research in at
least four areas: 1) by improving the method to identify
surface-exposed residues in an antigen; 2) by attempting
more effective strategies for searching a path and dealing
with matches, gaps and deletions in aligning a sequence
to antigen surface in the ACO algorithm; 3) by choosing a
better amino-acid substitution matrix in scoring proce-
dure for a specialized application; and 4) by studying
more efficient methods for P-value calculation.

Conclusion
This research makes two valuable contributions to the
field of epitope prediction. Firstly, a promising ACO algo-
rithm was proposed to align a sequence or a motif to an
antigen surface. Secondly, an application program, Pep-
3D-Search, was developed for epitope prediction based
on mimotope or motif analysis. As a stand-alone program

in this area, Pep-3D-Search is publicly accessible [see
Additional file 2]. The program was tested and evaluated
by several datasets [see Additional file 1, 3, 4 and 5]. The
results indicate that Pep-3D-Search is comparable to other
similar tools.

Availability and requirements
Project name: Pep-3D-Search

Project's homepage: http://kyc.nenu.edu.cn/
Pep3DSearch/

Operating system: Windows XP Professional with Service
Pack 2(or later) with Microsoft .NET Framework 1.1(or
later) installed

Programming language: Visual Basic.Net

License: GNU GPL

Any restrictions to use by non-academics: license needed
for commercial use

Authors' contributions
YXH designed the algorithm, performed the experiments
and the analysis, and drafted the manuscript. YLB con-
ceived of this study and discussed and suggested for algo-
rithm improvement. SYG and YW collected the test data
and carried out part of the experimental work and partic-
ipated in writing the manuscript. CGZ designed research
and contributed ideas. YXL supervised and directed the
development process of the whole project and revised the
manuscript critically. All authors have read and approved
the final manuscript.

Table 7: Evaluation of the Pep-3D-Search's searching capability.

Mutation Input sequence TP/PE
IT = 5000 IT = 10000 IT = 15000 IT = 20000 IT = 25000 IT = 30000

No ESKQKINGNKDMKVLVAAYCQ 19/21 19/21 19/21 19/21 21/21 20/21
10% ESKQRINGNKDMKVLPAAYCQ 19/21 15/21 19/21 18/21 15/21 19/21
15% ESNQKINGNKSMKVLVAAMCQ 16/21 20/21 18/21 16/21 16/21 17/21
20% ENKQKIDGNKDCKVLVPAYCQ 18/21 15/21 15/21 15/21 18/21 15/21
25% ESKDRINGNCDMKVHVAAYAQ 17/21 10/21 15/21 10/21 10/21 10/21
30% ASKQKLRGNKNMKVLCACYCQ 14/21 12/21 14/21 15/21 15/21 14/21

In the test case, the target path of 21 residues in length on the surface of the protein 1g9m (chain G) is E351 S347 K343 Q344 K348 I272 N234 
G237 N94 K97 D99 M100 K487 V489 L226 V488 A224 A219 Y217 C218 Q246.
TP: number of true positives; PE: number of residues in the predicted epitope; IT: iteration number of Pep-3D-Search.
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Additional file 1
Supplementary experiment-results. The file contains supplementary 
tables S1 to S6.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-538-S1.pdf]

Additional file 2
Source code, test datasets, Pep-3D-Search toolkit and operation man-
ual. The file is a ZIP archive containing the Visual Basic source code for 
Pep-3D-Search, licensed under the GNU General Public License. It also 
contains the test datasets, the Pep-3D-Search toolkit and the operation 
manual (in PDF format) of Pep-3D-Search. Updated versions will be 
available at http://kyc.nenu.edu.cn/Pep3DSearch/.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-538-S2.zip]

Additional file 3
An example of predicting epitopes based on mimotope analysis. The file 
is a ZIP archive containing all materials to predict the epitopes in the test 
case 1n8z using Pep-3D-Search based on mimotope analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-538-S3.zip]

Additional file 4
An example of predicting epitopes based on motif analysis. The file is 
a ZIP archive containing all materials to predict the epitopes in the test 
case 1e6j using Pep-3D-Search based on motif analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-538-S4.zip]

Additional file 5
An example of evaluating the searching capability of Pep-3D-Search. 
The file is a ZIP archive containing all materials to evaluate the Pep-3D-
Search's searching capability by localizing the target path of 21 residues 
in length on the surface of the protein 1g9m (chain G) with original and 
mutated sequences of the target path as inputs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-538-S5.zip]
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