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Abstract
Background: The previous studies of genome-wide expression patterns show that a certain percentage
of genes are cell cycle regulated. The expression data has been analyzed in a number of different ways to
identify cell cycle dependent genes. In this study, we pose the hypothesis that cell cycle dependent genes
are considered as oscillating systems with a rhythm, i.e. systems producing response signals with period
and frequency. Therefore, we are motivated to apply the theory of multivariate phase synchronization for
clustering cell cycle specific genome-wide expression data.

Results: We propose the strategy to find groups of genes according to the specific biological process by
analyzing cell cycle specific gene expression data. To evaluate the propose method, we use the modified
Kuramoto model, which is a phase governing equation that provides the long-term dynamics of globally
coupled oscillators. With this equation, we simulate two groups of expression signals, and the simulated
signals from each group shares their own common rhythm. Then, the simulated expression data are mixed
with randomly generated expression data to be used as input data set to the algorithm. Using these
simulated expression data, it is shown that the algorithm is able to identify expression signals that are
involved in the same oscillating process. We also evaluate the method with yeast cell cycle expression data.
It is shown that the output clusters by the proposed algorithm include genes, which are closely associated
with each other by sharing significant Gene Ontology terms of biological process and/or having relatively
many known biological interactions. Therefore, the evaluation analysis indicates that the method is able to
identify expression signals according to the specific biological process. Our evaluation analysis also
indicates that some portion of output by the proposed algorithm is not obtainable by the traditional
clustering algorithm with Euclidean distance or linear correlation.

Conclusion: Based on the evaluation experiments, we draw the conclusion as follows: 1) Based on the
theory of multivariate phase synchronization, it is feasible to find groups of genes, which have relevant
biological interactions and/or significantly shared GO slim terms of biological process, using cell cycle
specific gene expression signals. 2) Among all the output clusters by the proposed algorithm, the cluster
with relatively large size has a tendency to include more known interactions than the one with relatively
small size. 3) It is feasible to understand the cell cycle specific gene expression patterns as the phenomenon
of collective synchronization. 4) The proposed algorithm is able to find prominent groups of genes, which
are not obtainable by traditional clustering algorithm.
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Background
Since Hereford et al. [1] first discovered yeast histone
mRNAs oscillate during cell division cycle, several experi-
mental studies have identified that many genes are
expressed in a cell-cycle-specific manner. These studies
have motivated the study of global extent of cycle-specific
gene expression. To this end, there have been a number of
studies using DNA microarrays to understand whole-
genome expression patterns during cell division cycle [2-
8]. A particular example is flagella biogenesis in Caulobac-
tor, which has four distinct and dependent waves of tran-
scription. Laub et al. [3] showed that 20% of Caulobactor
genes are cell cycle regulated, their expression level con-
sistently having peaks when they function. Another exam-
ple is the study of yeast Saccharomyces cerevisiae [6], in
which they also discovered that between 10 and 20% of
yeast genes are periodically expressed during cell division.
Therefore, it suffices to say that a certain percentage of
genes may have the periodicity for its oscillatory activity
throughout the cell division. These cell-cycle-specific
oscillatory activities can be explained by a biological phe-
nomenon in terms of efficiency and logical order. The cell
only makes the enzyme when it is needed. If the enzymes
were made all the time, the cell would be inefficient in an
environment devoid of the substrates of the enzymes [9].

In this study, we are motivated to apply the theory of mul-
tivariate phase synchronization to cell-cycle-specific gene
expression data. Synchronization is one of the most com-
monly present phenomena in various fields of science
[10,11]. Generally, we understand synchronization as a
complete coincidence of the states between oscillating sys-
tems due to their interactions. Rosenblum et al. [12] show
that the phase difference of two coupled oscillating sys-
tems is bounded while the amplitude is uncorrelated and
irregular. There have been numerous applications in dif-
ferent areas such as cardiorespiratory interaction [13-15],
brain activity of Parkinsonian patients [16], EEG measure-
ments [17-20], ecology [21], and climate systems [22].
Because our interests of this study are cellular activity dur-
ing cell cycle, our interested systems are the cell cycle spe-
cific genes. Based on the theory of phase synchronization,
we pose a hypothesis that expression signals from two
genes could be synchronized if these two genes are biolog-
ically interacting with each other. That is, two biologically
interacting genes produce oscillating expression signals
with a common rhythm. Therefore, we propose the phase
synchronization as a measure to identify biologically rele-
vant interactions using cell-cycle-specific gene repression
data and the cell cycle specific genes are oscillating sys-
tems, which produce gene expressions with rhythms
(periodicity).

In this study, we present the effort of applying the theory
of multivariate phase synchronization to find groups of

cell cyclic gene expression signals according to the specific
biological process, which is based on the study of Allefeld
and Kurths [17]. They present a method for the multivar-
iate analysis of statistical phase synchronization phenom-
ena in empirical data, which is based on the theory of
synchronization cluster. The basic idea of their analysis is to
consider the oscillating systems forming a cluster in which
each one contributes to the cluster in different degree. The
cluster consists of a common rhythm that is a mean oscil-
lation for all oscillating systems inside the cluster. Based
on their theory, we propose an algorithm named as Phase
Synchronization Clustering (PSC) algorithm, which pro-
duce the clusters of cell cycle specific genes from genome
expression data set, and the genes from the same cluster
are expected to be involved in the specific biological proc-
ess. The PSC algorithm is evaluated with synthetic data
and cell cycle specific expression data of Saccharomyces cer-
evisiae from the study of Spellman et al. [6], in which they
analyze gene expression levels in yeast cell cultures whose
cell cycle has been synchronized by various methods.

Results and discussion
Case study 1: in silico experiments
The purpose of this experiment is to show how the pro-
posed PSC algorithm is able to identify the signals that are
expressed in the same specific process. In this study, it is
assumed that a certain group of gene expression levels
during cell cycle can be explained as the synchronization
of large ensembles of oscillators, in which each element of
the ensemble interacts with all others and is driven by the
mean field that is formed by all elements, provided that
every members from the group play a role for a certain
biological process. The driving force, or the mean field, is
not predetermined, but arises from interactions within the
ensemble. This force determines whether the systems syn-
chronize, but it itself depends on their oscillation. We use
the modified Kuramoto model [23] as a phase governing
equation that gives the long-term dynamics of globally
coupled oscillators

where the φis are the instantaneous phase, the ψ are the
mean phase, and the positive constant C represents the
coupling strength. It should be noted that the autono-
mous (or natural) frequency term is excluded from the
original Kuramoto model for this model, and the mean
phase ψ is roughly approximated by averaging the phases
of all oscillators at current time point. The original
Kuramoto model describes a large population of coupled
limit-cycle oscillators [23]. With this modified model, it is
assumed that the instantaneous rate of phase change is
proportional to the mean sinusoidal coupling between
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the mean phase and each instantaneous phase. Given a set
of initial conditions and a step size, we can simulate the
instantaneous phase using the following for each gene i

With given initial random instantaneous phase signals,
the expression signal can be simulated and converted into
real signals as

xi(t) = real[A exp[(jφi(t))] = A cos(φi(t)),

where A is the instantaneous amplitude and is set to 1 for
all signals. Then the simulated signals are updated by add-
ing random noise from Gaussian distribution with mean
μ = 0 and standard deviation ε.

To evaluate the PSC algorithm, we generate four sets of the
expression signals with four different standard deviations
of random Gaussian noise (i.e. noise levels) ε = 0.1, 0.2,

0.3, 0.4. For each set, we generate two groups of 100 sig-
nals. For first group, 20 measurements of signals are sim-
ulated with the coupling strength C = 3.0, and for second
group, 20 measurements with the coupling strength C =
2.0. It suffices to say that these two groups are separately
involved in their own oscillating process because each
group has different coupling strength. It means that each
group has different driving forces or mean field for their
own signals. For each data set, we generate a group of ran-
dom signals with same number of genes and measure-
ments. This random group is combined with two other
groups of simulated signals. Thus, in each data set, two-
thirds of signals are simulated signals and one-third of sig-
nals are random signals. Then, we randomly shuffle the
locations of all expression signals for each data set. We use
four different values of cutoff (=0.9, 0.8, 0.7, 0.6) for these
four data sets. Figure 1 shows all three groups of sorted
expression signals without any addition of noises, and
Figure 2 displays the change of the simulated signals of
first group (C = 3.0) as the noise level increases from 0.1 to
0.4.

φ φ δ φ
i it t t

d i
dt

+( ) = ( ) +1 .

Two groups of simulated expression signals sorted by two most significant principal components p1 and p2 and a group of ran-dom signalsFigure 1
Two groups of simulated expression signals sorted by two most significant principal components p1 and p2 and a group of ran-
dom signals: (a) simulated signals with coupling constant C = 3.0 (b) simulated signals with C = 2.0 (c) random signals. The sim-
ulated expression signals show traveling waves from 1st time measurement to 20th time measurement. The number of signals 
for each group is set to 100.
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As an initial step, the algorithm creates a set of clusters of
which the size is equal to the number of signals in the
input data set. In this case, the algorithm creates 300 ini-
tial clusters, of which all sizes are equal to one. After the
final step of the algorithm, the size of each cluster will be
different depending on the values of cutoff and noise level
ε. For each non-empty cluster, the signals from the group
with simulated signals are counted and labeled as true
positive (TP) for each group, and the signals from the
group with random signals are also counted and labeled
as false positive (FP).

In Figure 3, we explore the relationship between the size
of clusters and the number of TP from the two groups of
simulated signals with four different values of cutoff and
noise level ε, and it is shown that all of them have linear
relationship. It is also shown that the 1st and 2nd largest
clusters contain the most TP signals among the output
clusters. Hence, only these two largest output clusters are
used as the output of the algorithm, and we explore the
effect of the cutoff and noise level on the performance of the
algorithm with these two clusters. We then systemically

compare the sensitivity (percentage of correctly identified
from input expression signals) and precision (percentage
of TP expression signals among the output expression sig-
nals) for different cutoff and noise levels ε (Figure 4, 5, 6, 7)
See Table 7 for the index of each figure. To test the varia-
bility of the results, we run the algorithm 20 times for each
value of cutoff and noise level ε. Note that the simulated
expression signals are different for each run due to ran-
dom generations of initial phase signals and random
noise addition, and the results are also expected to have
certain degree of variability.

It is shown that the more noises are included in the data
set, the less the sensitivity is obtained by the method (Fig-
ure 4, 5). On the other hand, the overall precision is
almost constant (i.e. = 100%) as the noise level ε increases
(Figure 6, 7), i.e. the almost 100% of the output signals
are TP signals. It is shown that the sensitivity are approxi-
mately 82 – 96% with cutoff = 0.7 for all noise levels. If we
assume that the noise level ε is ≤0.4, the cutoff values to
obtain the sensitivity ≥82% for both groups should be 0.7.
Based on this experiment, we conclude that the cutoff

The changes of simulated expression signals with coupling constant C = 3.0 are displayed as the noise level increases from 0.1 to 0.4Figure 2
The changes of simulated expression signals with coupling constant C = 3.0 are displayed as the noise level increases from 0.1 to 
0.4. (a) noise level ε = 0.1, (b) noise level ε = 0.2, (c) noise level ε = 0.3, (d) noise level ε = 0.4.
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value ≥ 0.7 should be used for the analysis of yeast expres-
sion data to evaluate the PSC method, provided that the
noise level in yeast data is ≤0.4. This could be reasonable
assumption, because it is believed that the noise level =
0.4 is relatively large.

Case study 2: α factor-synchronized cell cycle gene 
expression data analysis
We evaluate the PSC algorithm with expression data from
the study of Spellman et al. [6], in which they monitor
genome-wide mRNA levels by using four different cell
cycle synchronization techniques. We evaluate the PSC
algorithm with the data sets by three yeast experiments
(Alpha, Cdc15, and Cdc28), in which mRNA levels of
6,178 yeast ORFs are measured simultaneously over
approximately two cell cycle periods. A fourth data set
using elutriation-based experiment by Spellman et al. [6]

is not used, since it only covers a single cell cycle and
because most published methods were not applied to this
data set. There are many missing values in Spellman et al.
[6]'s data set – only 605 genes have no missing values in
all three data sets. These missing values can lead to prob-
lems in the data analysis, because they obviously interfere
with computation of any statistical test or clustering. The
one of default ways to handle these missing values is to
exclude all data points that have missing data in at least
one of the selected genes. However, if missing data points
are randomly distributed across the arrays, there could be
very few "valid" data points left to be analyzed in the data
sets, because of the abundance of missing values in our
chosen data sets. Therefore, we replace the missing values
for each gene by the mean expression levels of its gene. We
perform mean imputation in the gene expression levels
for the K = 4,201 genes, which have no more than one

The relationship between the size of clusters and the number of True Positives (TP) for the two groups of simulated signals with four different values of cutoff and noise level εFigure 3
The relationship between the size of clusters and the number of True Positives (TP) for the two groups of simulated signals 
with four different values of cutoff and noise level ε. For all figures, the x-axis corresponds to the size of clusters, and the y-axis 
the number of TP. The circle corresponds to the cluster that consists of signals from the first group, and the triangle the ones 
from the second group. The expression signals of first group are simulated with coupling constant C = 3.0, and the ones of sec-
ond group with C = 2.0. See Table 7 for the index of each figure depending on cutoff and noise level ε.
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missing value in each expression data set. Then the expres-
sion profile is normalized to the standardized variable.
Let's say we have an expression profile z(t), t = 1, 2, ..., n.
If the expression profile has mean μ and variance σ2, then
the corresponding normalized expression value

has the mean 0 and variance 1.

It is clear that each expression data set contains artifacts,
which would not occur in freely growing cells, due to the
treatment of the cells for the cell cycle synchronization.
For example, in Cdc15 and Cdc28 experiments, cells are
released from arrest by an abrupt drop in temperature,
which likely results in changes in expression of e.g. heat
shock genes. To avoid the artifacts due to each cell cycle
synchronization treatment, three expression data sets

should be combined to uncover the "correct" sets of genes
using the PSC algorithm as follows. The PSC algorithm
mainly consists of the estimation of the strength between
a system and the cluster, ρaC in Eq. (9). For the estimation
of ρaC, the algorithm requires the strength values of the
bivariate synchronization between all systems within the
cluster of interest to us, ρa,b in Eq. (4). As a step for com-
bining three data sets, we calculate the average ρa,b values
from the three data sets as follows

where ρa,b
α is the values of bivariate synchronization by

alpha-factor data set, ρa,b
cdc15 by cdc15 data set, and

ρa,b
cdc28 by cdc28 data set. It is noteworthy that this step

could also reduce the noises in expression data due to the
missing values.
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The sensitivity versus cutoff values for the first group of simulated signalsFigure 4
The sensitivity versus cutoff values for the first group of simulated signals. The expression signals of first group are simulated 
with coupling constant C = 3.0. (a) noise level ε = 0.1, (b) noise level ε = 0.2, (c) noise level ε = 0.3, (d) noise level ε = 0.4. For all 
figures, the x-axis corresponds to the cutoff values, and the y-axis the sensitivity.
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The main purpose of the PSC algorithm is to find groups
of genes according to the specific biological process using
the cell-cycle-specific expression data. The previous in sil-
ico experiment provide the effectiveness of the PSC algo-
rithm to reach this purpose. Based on the theory of
multivariate phase synchronization [17], it is assumed
that each gene from the same output cluster is closely
associated by having relevant biological interactions and/
or sharing significant Gene Ontology (GO) terms. That is,
each cluster is related with a certain specific biological
process. To evaluate the PSC algorithm, all of output clus-
ters with different cutoff = 0.9, 0.8, 0.7, 0.6, 0.5 are ana-
lyzed with the GO Term Finder. It is a tool for searching
significant GO terms, or parent GO terms, used to anno-
tate genes in a given cluster and is available from Saccha-
romyces Genome Database [24]. The significant GO terms
for each output clusters depending on cutoff are presented
as Additional files 1, 2, 3, 4, 5 and the summary of the GO
analysis is also provided in Table 1. Note that the p-value

cutoff for significant GO terms is set to 0.05. It is found
that significant number of clusters from the output have
significant GO terms. It should be noted that genes within
those significant clusters are evidently associated with cer-
tain specific biological processes depending on the GO
terms of their own.

As another evaluation experiment, experimentally identi-
fied physical and genetic interactions between genes are
mined from BioGRID database for each cluster from the
output. Note that the BioGRID database is a freely acces-
sible database of physical and genetic interactions availa-
ble at [25]. The numbers of known interactions are
presented for clusters only with significant GO terms in
Table 2, 3, 4, 5, 6. Note that the clusters are sorted accord-
ing the size of clusters for each output. It is noticed that
the relatively large clusters tend to have many known bio-
logical interactions. It means that the genes within rela-
tively large clusters are evidently interacting each other

The sensitivity versus cutoff values for the second group of simulated signalsFigure 5
The sensitivity versus cutoff values for the second group of simulated signals. The expression signals of second group are simu-
lated with coupling constant C = 2.0. (a) noise level ε = 0.1, (b) noise level ε = 0.2, (c) noise level ε = 0.3, (d) noise level ε = 0.4. For 
all figures, the x-axis corresponds to the cutoff values, and the y-axis the sensitivity.
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during cell division cycle by participating in the certain
specific biological process depending on the significant
GO terms of their own. Therefore, it suffices to say that the
relatively large clusters are prominent clusters among the
output clusters.

The traditional clustering algorithms focus on relation-
ships based on similar expression profiles, identifying
cluster of genes whose expression signals simultaneously
rise or fall with an assumption that genes with similar
expression profiles have similar biological functions. For
example, Spellman et al. [6] identify a large number of
genes (~800) as giving a cell-cycle-specific patterns of gene
expression by fitting the expression profile of given gene
to a sine wave, which is used as a surrogate pattern of ideal
cyclicity. Then, they use the hierarchical clustering algo-
rithm to linearly correlate the expression profile for a
given gene with the expression profile of other genes,
which are considered to be confirmed as certain cell-cycle-

regulated genes. To this end, they cluster genes into five
cell cycle phases (G1, S, S/G2, G2/M, and M/G1). On the
other hand, the PSC algorithm use the theory of multivar-
iate phase synchronization, in which the mean phase
coherence in Eq. 4 are used to find closely related genes
that have relevant biological interactions and/or sharing
significant GO terms. Here, the PSC algorithm deal with a
special case of random variable that is defined on a circu-
lar scale, such that values whose difference is an integral
multiple of a certain period (i.e. 2π) are regarded the
same, and all values are wrapped into a single period.
Note that the phase difference between expression pro-
files (or the phase of a expression profile) is an example of
circular random variables φi (i = 1, 2,...). It is noteworthy
that standard (or linear) statistical measures and
moments like mean and variance are not applicable,
because they yield different values if the period is added
to or subtracted from some values, though the physical
meaning of these changed values is the same. Based on the

The precision versus cutoff values for the first group of simulated signalsFigure 6
The precision versus cutoff values for the first group of simulated signals. The expression signals of first group are simulated 
with coupling constant C = 3.0. (a) noise level ε = 0.1, (b) noise level ε = 0.2, (c) noise level ε = 0.3, (d) noise level ε = 0.4. For all 
figures, the x-axis corresponds to the cutoff values, and the y-axis the precision.
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theory of phase synchronization, it is assumed that
expression signals from two genes could be synchronized
if these two genes are biologically interacting with each
other. That is, two biologically interacting genes produce
oscillating expression signals with a common rhythm.
This phenomenon is explained in terms of coincidence of

frequencies defined as "phase locking" [12]. With this the-
ory, it is possible to measure the coupling strength
between genes, which describes how strong the interac-
tion is between genes.

Table 2: The number of known biological interactions mined 
from BioGRID database [25] for each output cluster with cutoff = 
0.9.

ci n1 n2 n3 size ci n1 n2 n3 size

1 4 4 12 12 5 0 0 5 5
2 3 4 7 7 6 0 0 4 4
3 0 0 6 6 9 0 0 4 4
4 5 4 5 5 10 6 4 4 4

ci corresponds to the cluster index, n1 the number of known 
biological interactions, n2 the number of genes within each cluster 
having interactions with other genes, n3 the number of known cell-
cycle regulated genes according to the Spellman et al. [6], and size the 
number of genes within each cluster.

Table 1: The result from the analysis for significant GO terms 
according to the cutoff value.

cutoff n1 n2 Tables of significant GO terms for the 
output clusters

0.9 8 10 See Additional file 1
0.8 57 109 See Additional file 2
0.7 148 417 See Additional file 3
0.6 151 447 See Additional file 4
0.5 21 57 See Additional file 5

n1 corresponds to the number of output clusters that have at least 
one significant GO terms and n2 the total number of output clusters.

The precision versus cutoff values for the second group of simulated signalsFigure 7
The precision versus cutoff values for the second group of simulated signals. The expression signals of second group are simu-
lated with coupling constant C = 2.0. (a) noise level ε = 0.1, (b) noise level ε = 0.2, (c) noise level ε = 0.3, (d) noise level ε = 0.4. For 
all figures, the x-axis corresponds to the cutoff and the y-axis the precision.
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To compare the capabilities of the PSC algorithm over the
traditional clustering algorithm, we investigate whether
genes from the output clusters are linearly correlated with
each other as follows. Let's suppose that we have n
number of genes in one of output clusters. Then, there are
(n2-n)/2 number of all possible pairs of genes in the clus-
ter. For each pair of genes, the linear correlation coeffi-
cients can be calculated for three expression data sets (i.e.
alpha, cdc15, and cdc28), and the mean value of these
three linear correlation coefficients is used as the "true"
linear correlation coefficient for the given pair of genes.
Note that the average values are used because of artifacts
due to different cell cycle arrest treatments. Then, the
mean linear correlation coefficient of all possible pairs
can be obtained for each cluster, and the distribution of
mean linear correlation coefficients for each output clus-
ter with cutoff = 0.9, 0.8, 0.7, 0.6, 0.5 are presented in Fig-
ure 8. It is observed that the overall mean linear
correlation coefficients are relatively low, and some of
them are significantly low enough to be considered that
their clusters are randomly created based on the linear cor-
relation. That is, there is a significant portion of output
clusters that are not obtainable by the traditional cluster-
ing algorithm. As an example, let's consider the 1st cluster
from the output clusters with cutoff = 0.7, which consists
of genes associated with DNA metabolism process. From
all possible pairs of genes in this cluster, we present two
types of pairs: 1) similar expression profiles in Figure 9a
and 2) time-shifted expression profiles in Figure 9b. It
should be noted that all of these presented pairs in Figure
9 are identified as having known biological interactions
between genes from the BioGRID database [25]. It is obvi-
ous that the time-shifted expression profiles are not
obtainable by traditional clustering algorithm, because

these profiles have significantly low linear correlation
coefficients (<0.5). It is noteworthy that these time-shifted
profiles are "similar" expression profiles that are con-
stantly time-shifted from each other, and each gene is
identified as having peak levels during different cell cycle
phases according to the classification by Spellman et al.
[6]. That is, these profiles are oscillating expression signals
with a common rhythm during cell division process,
which can be obtainable by PSC algorithm based on the
theory of multivariate phase synchronization. As an
another example, let's consider a relatively smaller cluster
(41st cluster from the output cluster with cutoff = 0.7) than
1st cluster at this point. The 41st cluster consisted of 11
genes, which are associated with translation process
resulting in the formation of proteins. There are 23 known
biological interactions identified from the BioGRID data-
base [25], and these interactions are presented in Figure
10 (also see Table 9). It should be noted that none of
genes in this cluster are identified as cell cycle regulated by
Spellman et al. [6], and this example also includes expres-
sion profiles with significantly low linear correlation coef-
ficient. This is another evidence that PSC algorithm is able
to find prominent groups of genes, which are not obtain-
able by traditional clustering algorithm. It means that the
PSC algorithm is able to find prominent groups of non-
cell-cycle-regulated genes, which share significant GO
terms and/or have relatively many known biological inter-
action from the BioGRID database [25]. There are more
examples of such output clusters that have relative many
known interactions and small (or zero) number of identi-
fied as cell-cycle-regulated genes by Spellman et al. [6]: e.g.
1) 3rd, 9th, 18th, 41st clusters with cutoff = 0.7 (Table 4). 2)
5th, 19th, 37th, 50th, 169th clusters with cutoff = 0.6 (Table
5) 3) 1st, 4th, 6th, 7th, 11th, 24th clusters with cutoff = 0.5

Table 3: The number of known biological interactions mined from BioGRID database [25] for each output cluster with cutoff = 0.8.

ci n1 n2 n3 size ci n1 n2 n3 size ci n1 n2 n3 size ci n1 n2 n3 size

2 2 2 16 16 19 1 1 2 7 47 3 3 0 5 80 0 0 0 4
3 5 5 14 14 22 0 0 7 7 48 1 1 0 5 83 2 3 3 4
4 2 2 11 11 23 0 0 7 7 49 3 3 0 5 86 1 1 0 4
5 1 1 11 11 26 4 4 0 6 61 2 2 0 4 91 0 0 0 4
6 0 0 11 11 27 2 2 0 6 63 0 0 2 4 92 1 1 0 4
7 0 0 9 9 28 4 4 6 6 66 1 2 4 4 95 2 2 4 4
9 6 5 9 9 32 0 0 5 6 67 1 1 4 4 96 0 0 4 4

10 2 3 8 8 33 2 2 6 6 68 1 2 3 4 100 2 2 1 4
11 8 6 8 8 37 7 5 0 5 69 2 2 0 4 103 0 0 0 4
12 1 1 8 8 38 0 0 5 5 70 1 1 0 4 104 0 0 0 4
13 1 2 8 8 39 0 0 5 5 73 1 1 0 4 106 0 0 2 4
14 1 1 8 8 41 1 1 1 5 74 1 1 0 4 109 0 0 1 4
15 1 1 7 7 44 3 3 0 5 75 0 0 4 4
16 2 3 7 7 45 3 3 0 5 76 1 2 0 4
18 2 2 6 7 46 0 0 0 5 79 2 2 0 4

ci corresponds to the cluster index, n1 the number of known biological interactions, n2 the number of genes within each cluster having interactions 
with other genes, n3 the number of known cell-cycle regulated genes according to the classification by Spellman et al. [6], and size the number of 
genes within each cluster.
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(Table 6). It should be reminded that these clusters have
relatively low linear correlation. Therefore, it suffices to
say that the PSC algorithm has capabilities to find many
prominent groups of genes that can not be obtained by
the traditional clustering algorithms.

For clarification of the significant of cutoff value, the P-
value from the distribution of strength of phase synchro-
nization between each oscillator (gene) and the cluster is
calculated. It is reasonable to assume that the complete
understanding of cellular process during cell division
cycle in whole genome scale is not available yet. However,
it is well known that the cell division process is a single
continuous process. The cell division process is mainly
consisted of interphase (G1, S, and G2 phase) and divi-

sion (M phase). During the S phase, the DNA in the
nucleus is replicated, and the M phase includes two sepa-
rate processes, i.e. mitosis and cytokinesis. The G1 phase
is an interval phase between the end of M phase and the
beginning of DNA synthesis, and the G2 phase is an inter-
val phase separating the end of DNA synthesis from the
beginning of M phase. It is assumed that genes during a
certain cell cycle have relatively fewer interactions with
genes during the other cell cycle phase. Therefore, the cell
division process is a single continuous process and each
process is "weakly" connected with other process in the
downstream of cell cycle process. Based on this point of
view, it is assumed that the whole cell division process is
consisted of genes that create a single interacting network
with heterogeneous connectivity distribution; thus, whole 

Table 4: The number of known biological interactions mined from BioGRID database [25] for each output cluster with cutoff = 0.7.

ci n1 n2 n3 size ci n1 n2 n3 size ci n1 n2 n3 size ci n1 n2 n3 size

1 24 19 50 50 51 0 0 2 10 138 2 3 0 7 283 0 0 0 6
2 25 25 44 44 53 3 4 5 10 140 2 2 0 7 284 3 3 0 6
3 14 12 8 31 56 1 1 0 10 149 0 0 0 7 285 1 2 0 6
4 14 15 25 27 57 3 3 4 10 150 2 2 3 7 292 2 2 1 6
5 3 5 21 24 58 0 0 3 10 151 2 2 0 7 297 0 0 0 6
6 3 3 10 24 60 4 3 7 10 154 1 1 0 7 305 3 3 0 6
9 14 9 1 18 61 0 0 5 10 155 2 2 2 7 306 2 2 1 6

10 4 4 17 18 62 1 1 0 9 160 0 0 1 7 307 3 2 4 6
11 7 4 18 18 66 3 3 8 9 164 2 2 0 7 309 8 6 0 6
12 8 6 11 17 69 1 1 3 9 168 0 0 2 7 313 1 1 2 6
13 4 5 15 17 72 2 3 2 9 173 8 5 5 7 315 1 1 0 6
14 2 3 17 17 76 5 6 0 9 175 2 2 4 7 320 1 1 0 6
16 7 5 3 16 77 0 0 1 9 177 2 3 0 7 321 0 0 0 6
17 10 11 13 16 78 2 3 6 9 181 1 1 0 7 322 3 3 0 6
18 19 12 0 16 82 1 1 8 9 182 1 1 1 7 334 1 1 1 5
19 1 1 2 16 83 3 5 1 9 185 2 2 0 7 347 3 3 0 5
20 4 6 0 15 87 0 0 0 8 190 0 0 4 6 348 1 1 2 5
21 3 3 8 14 91 4 4 0 8 204 1 2 0 6 349 2 2 0 5
22 2 2 14 14 93 0 0 5 8 205 1 2 0 6 353 0 0 0 5
23 8 7 0 14 94 0 0 2 8 206 2 2 0 6 356 2 3 0 5
24 0 0 13 13 96 1 1 2 8 209 4 4 0 6 359 0 0 1 5
26 5 6 0 13 99 3 3 0 8 210 0 0 0 6 360 1 1 0 5
28 2 3 0 12 100 0 0 0 8 211 1 1 2 6 368 2 2 0 5
29 0 0 3 12 101 11 6 0 8 218 0 0 0 6 374 1 1 2 5
31 1 1 0 12 102 5 4 0 8 228 5 4 2 6 387 2 2 1 5
34 1 2 5 12 103 0 0 5 8 229 1 2 4 6 388 2 2 2 5
35 4 4 0 11 104 3 3 0 8 230 0 0 0 6 389 0 0 0 5
36 3 3 0 11 105 4 4 1 8 233 1 1 0 6 393 2 3 4 5
39 2 2 1 11 106 0 0 0 8 235 1 1 0 6 395 0 0 5 5
41 23 9 0 11 107 0 0 3 8 239 2 2 0 6 396 3 3 0 5
42 4 6 1 11 113 0 0 5 8 243 0 0 0 6 397 1 1 0 5
43 2 2 0 11 119 0 0 8 8 244 1 2 0 6 401 0 0 0 5
44 4 4 0 11 120 3 3 4 8 246 2 2 0 6 403 1 1 0 5
45 1 1 1 11 125 1 1 2 8 263 1 1 0 6 413 1 2 0 5
46 4 5 8 10 127 0 0 0 8 274 1 1 1 6 414 1 2 1 5
48 1 1 2 10 128 2 3 0 8 275 2 2 0 6 415 1 1 0 5
50 2 2 1 10 130 4 4 0 8 278 1 1 0 6 417 1 2 0 5

ci corresponds to the cluster index, n1 the number of known biological interactions, n2 the number of genes within each cluster having interactions 
with other genes, n3 the number of known cell-cycle regulated genes according to the Spellman et al. [6], and size the number of genes within each 
cluster.
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Table 6: The number of known biological interactions mined from BioGRID database [25] for each output cluster with cutoff = 0.5.

ci n1 n2 n3 size ci n1 n2 n3 size ci n1 n2 n3 size ci n1 n2 n3 size

1 483 244 30 429 11 133 88 1 170 27 48 39 4 98 46 11 14 6 57
2 464 165 242 277 13 73 61 14 159 29 56 44 5 92 50 16 13 2 51
4 187 113 30 245 14 257 78 13 150 32 33 31 7 81 54 10 11 1 33
6 146 110 15 212 15 69 57 36 148 39 22 21 2 68
7 185 107 12 204 16 72 55 86 147 43 8 11 4 63
8 63 54 19 184 24 80 59 1 116 45 8 11 5 58

ci corresponds to the cluster index, n1 the number of known biological interactions, n2 the number of genes within each cluster having interactions 
with other genes, n3 the number of known cell-cycle regulated genes according to the Spellman et al. [6], and size the number of genes within each 
cluster.

Table 5: The number of known biological interactions mined from BioGRID database [25] for each output cluster with cutoff = 0.6.

ci n1 n2 n3 size ci n1 n2 n3 size ci n1 n2 n3 size ci n1 n2 n3 size

1 109 58 108 118 80 2 3 0 20 184 5 5 4 13 297 1 2 2 9
2 108 61 105 116 84 3 3 0 19 186 2 2 1 13 307 0 0 1 8
3 32 31 19 88 86 1 1 7 19 187 1 1 0 13 312 0 0 0 8
4 24 23 32 83 91 3 4 0 19 188 2 2 0 13 313 0 0 0 8
5 104 41 1 69 97 6 6 0 18 196 2 2 2 13 315 1 2 1 8
9 19 20 33 43 100 8 10 0 18 197 0 0 1 13 316 2 2 1 8
11 13 12 8 43 108 7 7 0 18 198 0 0 1 13 325 2 2 0 8
12 11 10 34 41 112 7 6 0 18 199 2 2 0 13 330 0 0 0 8
15 16 14 20 35 113 0 0 17 18 202 1 1 5 12 332 1 1 0 8
17 15 13 0 33 116 4 5 0 17 206 2 2 1 12 334 5 4 0 8
19 96 22 0 32 117 3 5 2 17 207 5 6 1 12 340 1 1 1 8
20 15 13 2 30 120 5 4 2 17 213 1 1 5 12 354 2 3 0 8
22 4 4 0 30 121 5 5 0 17 214 3 3 1 12 355 5 5 0 8
27 7 8 2 29 122 2 3 14 16 215 1 1 4 12 356 2 2 0 8
30 18 12 0 28 124 1 1 7 16 217 2 2 0 12 358 0 0 3 8
31 8 12 6 28 127 0 0 2 16 219 0 0 0 12 364 1 1 0 8
34 3 3 11 27 129 0 0 0 16 221 2 3 0 12 365 2 2 0 8
36 7 7 9 26 132 4 4 7 16 222 1 1 3 12 366 1 1 1 8
37 25 16 0 26 134 4 5 3 16 230 5 6 0 11 372 2 3 0 7
38 4 5 1 26 137 4 6 0 16 231 1 1 0 11 374 3 3 1 7
39 7 8 0 26 138 5 7 1 16 232 1 1 2 11 375 0 0 0 7
40 4 4 1 26 139 3 4 3 16 236 0 0 2 11 377 2 2 0 7
41 4 4 2 26 140 3 3 0 15 237 2 2 0 11 378 2 2 0 7
42 5 5 13 26 143 1 2 0 15 240 0 0 2 11 388 0 0 2 6
44 17 12 18 26 145 4 4 3 15 241 7 5 0 11 389 0 0 1 6
46 2 2 10 25 147 9 9 0 15 242 2 2 2 11 395 1 1 2 6
50 31 11 2 24 150 2 2 0 15 243 3 3 0 11 413 1 1 0 6
51 3 3 22 23 151 6 6 2 15 245 4 4 0 11 416 0 0 0 6
52 23 13 10 23 152 0 0 1 15 249 2 2 0 10 420 0 0 0 6
53 4 4 0 23 153 2 2 0 14 255 3 3 0 10 421 0 0 0 6
54 8 10 2 23 154 4 5 0 14 259 2 3 0 10 429 1 1 0 6
58 4 3 0 22 155 1 2 3 14 267 4 5 2 10 431 1 1 0 6
63 7 8 0 22 166 2 2 0 14 270 1 1 2 10 433 1 1 0 6
67 1 1 3 21 167 2 2 2 14 285 3 3 0 10 441 2 2 0 6
71 7 7 12 21 169 10 6 0 14 289 1 1 2 10 442 3 3 0 6
74 12 12 1 20 175 4 5 1 14 290 0 0 0 10 444 1 1 0 6
76 2 2 9 20 176 1 1 0 14 291 6 4 0 10 445 0 0 0 6
79 3 3 0 20 180 4 4 0 13 296 4 4 0 9

ci corresponds to the cluster index, n1 the number of known biological interactions, n2 the number of genes within each cluster having interactions 
with other genes, n3 the number of known cell-cycle regulated genes according to the Spellman et al. [6], and size the number of genes within each 
cluster.
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genomes are considered to estimate the P-value. In order
to estimate a P-value for a given strength of phase syn-
chronization between each gene and the cluster ρkC, a set
of random expression signals is generated by shuffling the
expression signals at different time points by interchang-
ing the expression signal at time points 3 and 14. Using
Eq. 9, the strength values of phase synchronization
between each gene and the cluster ρkC are calculated and
tabulated their distribution with combined expression set
of alpha-factor, cdc15 and cdc28 (Figure 11). This distri-
bution is an approximation of true negatives for input
expression signals. By integration, we could estimate a P-
value, which is defined as the probability of obtaining a
ρkC larger than the cutoff from the random distribution:
the smaller the P-value, the more significant the strength
value ρkC and vice versa.

For further understanding of the significance of cutoff val-
ues, we examine two biological processes (i.e. mitotic cell

cycle and protein amino acid glycosylation) in three output
clusters: 11th cluster (cutoff = 0.7), 1st cluster (cutoff = 0.6),
and 2nd cluster (cutoff = 0.5), and the known physical or
genetic interactions from BioGRID database [25] are visu-
alized for the selected clusters in Figure 12. It is reasonable
to assume that genes associated with mitotic cell cycle are
more "tightly" interacting with each other than the ones
associated with protein amino acid glycosylation. Figure 12
shows that genes with protein amino acid glycosylation have
relatively fewer known interactions than the ones with
mitotic cell cycle. Therefore, it suffices to say that genes with
protein amino acid glycosylation are "weakly" connected to
the genes with mitotic cell cycle, and the genes with protein
amino acid glycosylation are combined with genes with
mitotic cell cycle as cutoff decreases. It means that the size of
cluster increases as cutoff decreases, and the PSC algorithm
creates relatively small clusters with significantly promi-
nent genes with relatively larger cutoff value and these
clusters grows in size by combining other "weakly" inter-

The distribution of mean linear correlation coefficients for each output cluster with cutoff = (1) 0.9, (2) 0.8, (3) 0.7, (4) 0.6, (5) 0.5Figure 8
The distribution of mean linear correlation coefficients for each output cluster with cutoff = (1) 0.9, (2) 0.8, (3) 0.7, (4) 0.6, (5) 
0.5. For all figures, the x-axis corresponds to linear correlation coefficient and the y-axis the number of output clusters that fall 
within the range of linear correlation coefficient.
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Example pairs of expression profiles from the 1st cluster in the output with cutoff = 0.7, which are identified as known interac-tions from BioGRID database [25]Figure 9
Example pairs of expression profiles from the 1st cluster in the output with cutoff = 0.7, which are identified as known interac-
tions from BioGRID database [25]. Note that these are expression profiles from the alpha-factor data set. For all figures, the x-
axis corresponds to the time points for expression measurements in minutes, and y-axis expression levels. See Table 8 for sys-
tematic gene names, cell cycle phases according to the study of Spellman et al. [6], and linear correlation coefficients for each 
pair of genes in all figures
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acting genes as cutoff decreases. Therefore, it can be con-
cluded that the larger the cutoff, the more portions of
prominent genes in the output clusters and vices versa.

Conclusion
PSC algorithm is mainly based on the theory of multivar-
iate phase synchronization, and the phase synchroniza-
tion could be understood as a common rhythm of
oscillatory activities of systems due to their interactions
with each other. We develop the strategy of identifying
and categorizing cell cycle specific gene expressions
according to the specific biological process, in which
expression signals share a common rhythm during cell
cycle. That is, PSC algorithm is efficient to find groups of
genes that share same periodic variations of expression
profiles, which is coincident with the length of the cell
cycle. On the other hand, the traditional clustering algo-
rithms search similar expression profiles with an assump-
tion that genes with similar expression profiles have

similar biological functions. Our evaluation analysis
clearly indicates that PSC algorithm produces prominent
clusters, which are not obtainable by traditional clustering
algorithms.

Our evaluation analysis also shows that the PSC algo-
rithm is able to find groups of gene, which are signifi-
cantly associated with each other by sharing significant
GO terms of biological process and/or relevant biological
interactions. However, the algorithm does not have a
capability to create a directed and weighted network of
synchronization. Recently, Motter et al. [26] showed that
the maximum synchronizability can be achieved when
the network of synchronization is weighted and directed
for a given degree distribution of heterogeneous connec-
tivity. Therefore, the study for the analysis of cell cycle spe-
cific genome expression data could be further advanced
by considering the directed and weighted network struc-

Example pairs of expression profiles from the 41st cluster in the output with cutoff = 0.7, which are identified as known interac-tions from BioGRID database [25]Figure 10
Example pairs of expression profiles from the 41st cluster in the output with cutoff = 0.7, which are identified as known interac-
tions from BioGRID database [25]. Note that these are expression profiles from the cdc15 data set. For all figures, the x-axis 
corresponds to the time points for expression measurements in minutes, and y-axis expression levels. See Table 9 for system-
atic gene names and linear correlation coefficients for each pair of genes in all figures.
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ture and addressing the effect that asymmetry has on the
synchronizability of complex networks.

Based on the evaluation experiments, we draw the conclu-
sion as follows: 1) Based on the theory of multivariate
phase synchronization, it is feasible to find groups of
genes, which have biological interactions and/or signifi-
cantly shared GO slim terms of biological process, with
cell cycle specific gene expression signals. 2) Among all
the output clusters by PSC algorithm, the cluster with rel-
atively larger size has a tendency to include more known
interactions than the one with relatively smaller size. 3) It
is feasible to understand the cell cycle specific gene expres-
sion patterns as the phenomenon of collective synchroni-
zation. 4) PSC algorithm is able to find prominent groups
of genes, which are not obtainable by traditional cluster-
ing algorithms.

Methods
1) Fundamental mathematical concept: multivariate 
synchronization
The proposed algorithm builds on the concepts of ana-
lytic signal and phase synchronization. Hence, we first
explain the basic idea of analytic signal and phase syn-
chronization [12, 29]. Then we continue to describe the
basic idea of synchronization in ensembles of oscillating
systems. By "oscillating systems", we mean systems that
produce the response signals with period and frequency.
As a first step, we convert the gene expression signal x(t)
into analytic signal xa(t) using Hilbert transform (HT).
The analytic signal of gene expression signal x(t) is
defined by

xa(t) = x(t) + jxh(t) (1)

The relationship between ρkC and P-valueFigure 11
The relationship between ρkC and P-value. (a) Top panel shows the distribution of the strength value ρkC for random expression 
data. The x-axis corresponds to the strength value ρkC and the y-axis the number of values of ρkC that fall within the range of 
ρkC. (b) The bottom panel shows how the P-value can be calculated by integrating the random distribution. The x-axis corre-
sponds to the strength value ρkC and the y-axis P-value.
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The visualization of known physical or genetic interactions from the BioGRID database [25] for (a) 11th cluster (cutoff = 0.5), (b) 1st cluster (cutoff = 0.6), and (b) 2nd cluster (cutoff = 0.5)Figure 12
The visualization of known physical or genetic interactions from the BioGRID database [25] for (a) 11th cluster (cutoff = 0.7), (b) 
1st cluster (cutoff = 0.6), and (b) 2nd cluster (cutoff = 0.5). The nodes are labeled with color according to three GO terms of bio-
logical process: mitotic cell cycle process, protein amino acid glycosylation, and other biological processes.
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where j is the imaginary unit and xh(t) is the HT of x(t)

From this equation, it is noticed that the HT of x(t) may
be considered as the convolution of the x(t) and 1/πt. Due
to the properties of convolution, the Fourier transform
(FT) Xh(ς) of xh(t) is the product of the FT of x(t) and 1/πt.
For physically relevant Fourier frequencies ς > 0, Xh(ς) = -
jX(ς). In other words, the HT can be considered by an
ideal filter whose amplitude response is unity and phase
response is a constant π/2 lag at all Fourier frequencies.
The analytic signal can also be expressed in terms of com-
plex polar coordinates

xa(t) = A(t)exp(jφ(t)), (3)

where  and φ(t) =

arg{xa(t)}. These two functions are respectively called the

amplitude and instantaneous phase of the signal x(t). The
basic idea of the analytic signal is that the negative fre-
quency components of the FT (or spectrum) of x(t)s are
superfluous, due to the hermitian symmetry of such a
spectrum. These can be removed without any loss of infor-
mation, if an analytic signal is used instead. But note that
the removal of the negative frequencies will eliminate
such spectral symmetry; the inverse FT of such a one-sided
spectrum will give back a complex analytic signal.

In this study, we use the phase of the analytic signal xa(t)
to detect phase synchronization between oscillating sys-
tems; i.e. the phase synchronization can be defined as
locking of the phases, while the amplitudes can be quite
different. Using the methods of analytic signal, it can be
shown that the interaction of nonidentical oscillators can
lead to a perfect locking of their phases, whereas their
amplitudes remain uncorrelated [12]. The strength of
phase synchronization between two signals can be meas-
ured using the mean phase coherence [20] as follows

The values of ρa,b are confined between 0 (no synchrony)
and 1 (perfect synchrony) and this value monotonically
increases with the strength of phase synchronization [18].

For multivariate oscillating systems, we use the concept of
synchronization in ensembles of oscillators, in which
each component interacts with all others. This can be

described as global coupling. Let's consider an ensemble of
non-identical oscillators to understand the process of col-
lective synchronization. From the previous section, it is
understood that a pair of systems can be synchronized,
and it is expected that synchronization can be extended to
a whole population of systems, or at least to a large por-
tion of it. Pikovsky et al. [11] explained how such cou-
pling results in synchronization in the ensemble with a
drawing as shown in Figure 13. With this figure, they have
described the driving inputs that come to each system
from all others by one input from the whole ensemble. It
means that a common force operates each system and this
force is proportional to the sum of outputs of all systems
in the ensemble. This force can entrain many oscillating
systems if their frequencies are close. In the case of global
coupling this force is not predetermined, but comes from
interaction within the ensemble. To explain qualitatively
this force, we consider the study of Allefeld and Kurths
[17]. They described the basic idea of multivariate syn-
chronization analysis to understand the oscillating sys-
tems as constituting a cluster, in which each component
system participates in different degree. The cluster consists
of a common rhythm and it is described by the dynamics
of a cluster phase Φ. For each measurement, the phase of
the cluster is defined as a circular weighted mean of all
phases inside the cluster,

where the participation index cm can be obtained as a
function of the synchronization strength between a sys-
tem and the cluster,
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The globally coupled oscillating systems are graphically repre-sented by Pikovsky et al. [11]Figure 13
The globally coupled oscillating systems are graphically repre-
sented by Pikovsky et al. [11].
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This participation index cm measure both how close each
system inside the cluster follow the common rhythm Φ as
well as how much a system contribute to the cluster. In
this definition, it is not clear which function f should be
chosen for the relationship between the ρm,C and the cm.
They modified the idea of synchronization cluster analysis
in a way that is much more generally applicable. For the
strength values of the bivariate synchronization ρa,b can be
defined as

where Δφa = φa - Φ and Δφb = φb - Φ. They introduce the
phase of the mean field to factorize the strength of phase
synchronization as follow,

where a ≠ b (ρaa = 1). This factorization makes possible to
estimate the strength of the synchronization between a
system and the cluster, ρaC, thus this leads to the deriva-
tion of an iteration equation for estimating ρkC as follow

with Fik = 1/(1 - ρiC
2ρik

2)2 for i ≠ k and Fik = 0 for i = k.

2) Phase synchronization clustering algorithm
Based on the concept of synchronization in ensembles of
oscillating systems, we propose the strategy to make clus-
ters of genes based on the theory of multivariate synchro-
nization. There are 5 steps in this procedure. The
descriptions for each step are listed as follow. Inputs to
this method are the time series of expression data set and
cutoff value for synchronization strength.

Step 1. Obtaining the phase vector φi
Let's say there are signals xi(t) of the K systems i = 1, 2, ...,
K with n number of observations t = 1, 2, ..., n of the sto-
chastic process. In this step, the analytical signal can be
approximated using Fast Fourier transform [27]. The out-
put of this step is phase vector φi, which is defined as φi =
{φi(1), φi(2), ..., φi(n)}, for 1 ≤ i ≤ K.

Step 2. Initialization of cluster array
First, an array for K number of clusters is produced. For
each cluster cluster(i), a phase vector φi is stored for 1 ≤ i ≤
K. The output of this step is cluster array cluster(i), for 1 ≤
i ≤ K. The pseudo algorithm of this step is presented in
APPENDIX A.

Step 3. Initial clustering
For each phase vector, this step finds how closely the
phase vector follows the common rhythm for each cluster
from the array. This can be measured by the synchroniza-
tion strength between the phase vector and the cluster.
Then the algorithm finds the cluster in which the phase
vector has the highest value of the synchronization
strength. If the synchronization strength between the
phase vector and the selected cluster is greater or equals to
the pre-defined cutoff value, this cluster is updated by
appending the phase vector to the selected cluster. This
procedure is repeated for the entire phase vectors. The out-
put of this step is the updated cluster array. The pseudo
algorithm of this step is presented in APPENDIX B.

Step 4. Filtering cluster
If the cluster contains no more than a system, this does
not constitute as a cluster. Thus, the cluster is set to empty
list. The pseudo algorithm of this step is presented in
APPENDIX C.

Step 5. Combining clusters
Empty clusters are not considered in this step. For each
non-empty cluster, the algorithm finds a cluster from the
array such that these two clusters will have the most com-
mon rhythm when they are combined. If all of the syn-
chronization strength between the combined cluster and
each element are greater or equals to the cutoff value, these
two clusters are combined. The pseudo algorithm is pre-
sented in APPENDIX D.

Appendix A: The pseudo algorithm for 
initialization of cluster array
Input: phase vectors, φi for 1 ≤ i ≤ K.

Output: cluster array, cluster(i) for 1 ≤ i ≤ K.

for 1 ≤ i ≤ K

cluster(i) = {φi}

end

Appendix B: The pseudo algorithm for initial 
clustering
Input: cutoff and cluster array, cluster(i) for 1 ≤ i ≤ K.

Output: cluster array, cluster(i) for 1 ≤ i ≤ K.
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for 1 ≤ i ≤ K

Initialize [SynStrength](j) with 0, for 1 ≤ j ≤ K

for 1 ≤ j ≤ K, i ≠ j

temp_list = {cluster(j), φi}

n = the size of temp_list

Compute ρmC using φm from temp_list, for 1 ≤ m ≤ n

[SynStrength](j) = ρnC

end

Find max_SynStrength = max{[SynStrength](j), 1 ≤ j ≤ K, i
≠ j}

If max_SynStrength ≥ cutoff

cluster(j) = {cluster(j), φi}

end

end

Appendix C: The pseudo algorithm for filtering 
cluster
Input: cluster array, cluster(i) for 1 ≤ i ≤ K.

Output: cluster array, cluster(i) for 1 ≤ i ≤ K.

for 1 ≤ i ≤ K

if the size of cluster(i) equals to 1

cluster(i) = {}

end

end

Appendix D: The pseudo algorithm for 
combining clusters
Input: cutoff and cluster arrays, cluster(i) for 1 ≤ i ≤ K.

Output: cluster array, cluster(i) for 1 ≤ i ≤ K.

for 1 ≤ i ≤ K

Initialize [SynStrength](j) with 0, for 1 ≤ j ≤ K

for 1 ≤ j ≤ K, i ≠ j

if cluster(i) and cluster(j) are not empty lists

Table 7: The index for each figure depending on cutoff and noise 
level ε in Figure 3.

Figures noise level ε cutoff

(a) 0.1 0.6
(b) 0.1 0.7
(c) 0.1 0.8
(d) 0.1 0.9
(e) 0.2 0.6
(f) 0.2 0.7
(g) 0.2 0.8
(h) 0.2 0.9
(i) 0.3 0.6
(j) 0.3 0.7
(k) 0.3 0.8
(l) 0.3 0.9
(m) 0.4 0.6
(n) 0.4 0.7
(o) 0.4 0.8
(p) 0.4 0.9

Table 8: Systematic gene names, cell cycle phases according to the study of Spellman et al. [6], and linear correlation coefficients for 
each pair of genes in Figure 9.

Solid lines Dotted lines

Index Gene name Cell cycle Gene name Cell cycle linear correlation coefficient

(a)
(1) YBL003C S phase YDR225W S phase 0.9102
(2) YBR010W S phase YDR224C S phase 0.9441
(3) YBR010W S phase YDR225W S phase 0.9422
(4) YDR224C S phase YDR225W S phase 0.9619

(b)
(1) YBL003C S phase YIL026C G1 phase 0.3129
(2) YBL003C S phase YNL262W G1 phase 0.2275
(3) YBR010W S phase YML102W G1 phase 0.1558
(4) YDL055C G1 phase YER095W G1 phase 0.4358
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temp_list = {cluster(j), cluster(i)}

n = the size of temp_list

Compute ρmC using φm from temp_list, for 1 ≤ m ≤ n

[SynStrength](j) = min{ρmC, 1 ≤ m ≤ n}

end

end

Find max_SynStrength = max{[SynStrength](j), 1 ≤ j ≤ K, i
≠ j}

If max_SynStrength ≥ cutoff

cluster(j) = {cluster(j), cluster(i)}

cluster(i) = {}

end

end

Authors' contributions
CSK conceived this study, developed the proposed
method, and performed the evaluation experiments. CSK,
CSB, and HJT participated in the interpretation of the
evaluation experiments. CSK, CSB and HJT drafted and
finalized the manuscript. All authors approved the manu-
script.

Additional material

Additional file 1
Tables of significant GO terms of biological process for the output clusters 
with cutoff = 0.9. This file includes 8 clusters from the PSC algorithm 
with cutoff = 0.9, which have significantly GO terms of biological process. 
These significant GO terms are obtained by a tool called GO Term 
Finder, which is available from Saccharomyces Genome Database [24].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-56-S1.txt]

Additional file 2
Tables of significant GO terms of biological process for the output clusters 
with cutoff = 0.8. This file includes 57 clusters from the PSC algorithm 
with cutoff = 0.8, which have significantly GO terms of biological process. 
These significant GO terms are obtained by a tool called GO Term 
Finder, which is available from Saccharomyces Genome Database [24].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-56-S2.txt]

Additional file 3
Tables of significant GO terms of biological process for the output clusters 
with cutoff = 0.7. This file includes 148 clusters from the PSC algorithm 
with cutoff = 0.7, which have significantly GO terms of biological process. 
These significant GO terms are obtained by a tool called GO Term 
Finder, which is available from Saccharomyces Genome Database [24].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-56-S3.txt]

Additional file 4
Tables of significant GO terms of biological process for the output clusters 
with cutoff = 0.6. This file includes 151 clusters from the PSC algorithm 
with cutoff = 0.8, which have significantly GO terms of biological process. 
These significant GO terms are obtained by a tool called GO Term 
Finder, which is available from Saccharomyces Genome Database [24].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-56-S4.txt]

Table 9: Systematic gene names, and linear correlation coefficients for each pair of genes in Figure 10.

Index solid line dotted line linear correlation coefficient index solid line dotted line linear correlation coefficient

1 YGL103W YGL123W 0.64664 13 YHR203C YJL177W 0.65787
2 YGL103W YGL147C 0.60397 14 YHR203C YLR075W 0.60341
3 YGL103W YHR203C 0.53591 15 YHR203C YML063W 0.67265
4 YGL103W YJL177W 0.5584 16 YHR203C YOL127W 0.50694
5 YGL103W YLR075W 0.51294 17 YJL177W YLR075W 0.75556
6 YGL103W YLR325C 0.45147 18 YJL177W YML063W 0.75692
7 YGL103W YML063W 0.43962 19 YJL177W YOL127W 0.47048
8 YGL103W YOL127W 0.6723 20 YLR075W YML063W 0.76566
9 YGL123W YJL177W 0.70109 21 YLR075W YOL127W 0.47712
10 YGL147C YJL177W 0.70483 22 YLR325C YOL127W 0.47861
11 YGL147C YML063W 0.72561 23 YML063W YOL127W 0.46216
12 YGL147C YOL127W 0.40261
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