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Abstract
Background: Microarray gene expression data are often analyzed together with corresponding
physiological response and clinical metadata of biological subjects, e.g. patients' residual tumor sizes
after chemotherapy or glucose levels at various stages of diabetic patients. Current clustering
analysis cannot directly incorporate such quantitative metadata into the clustering heatmap of gene
expression. It will be quite useful if these clinical response data can be effectively summarized in the
high-dimensional clustering display so that important groups of genes can be intuitively discovered
with different degrees of relevance to target disease phenotypes.

Results: We introduced a novel clustering analysis approach, response projected clustering (RPC),
which uses a high-dimensional geometrical projection of response data to the gene expression
space. The projected response vector, which becomes the origin in the projected space, is then
clustered together with the projected gene vectors based on their different degrees of association
with the response vector. A bootstrap-counting based RPC analysis is also performed to evaluate
statistical tightness of identified gene clusters. Our RPC analysis was applied to the in vitro growth-
inhibition and microarray profiling data on the NCI-60 cancer cell lines and the microarray gene
expression study of macrophage differentiation in atherogenesis. These RPC applications enabled
us to identify many known and novel gene factors and their potential pathway associations which
are highly relevant to the drug's chemosensitivity activities and atherogenesis.

Conclusion: We have shown that RPC can effectively discover gene networks with different
degrees of association with clinical metadata. Performed on each gene's response projected vector
based on its degree of association with the response data, RPC effectively summarizes individual
genes' association with metadata as well as their own expression patterns. Thus, RPC greatly
enhances the utility of clustering analysis on investigating high-dimensional microarray gene
expression data with quantitative metadata.

Background
Microarray expression profiling has been widely applied
to biological studies because of its ability to simultane-
ously examine tens of thousands of gene expression pat-

terns. Microarray experiments have also proven to be
quite useful for investigating associations between genes
and physiological and clinical response measurements of
many human diseases [1-3]. In particular, unsupervised
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learning techniques such as hierarchical clustering analy-
sis have become one of the most commonly-used tech-
niques for analyzing microarray data since these
techniques can effectively summarize high-dimensional
gene expression data in a two-dimensional color-coded
cluster heatmap based on many genes' expression associ-
ations [4]. Several other clustering techniques such as k-
means clustering, self-organization maps, and gene shav-
ing have been used for microarray data analysis [5-7]. The
main objective of these clustering analyses, however, has
been to summarize the expression pattern associations
among genes, but not the direct association with interest-
ing physiological response data on study subjects.

Several supervised learning and statistical modeling
approaches have also been used to analyze the gene
expression data along with other response variables such
as treatment group variables [8], clinical response data
such as survival times [9], and Bayesian regression mode-
ling [10]. However, these approaches are often based on
the dichotomization of quantitative response data, result-
ing in significant loss of information. Furthermore, these
methods are mainly used for the discovery of gene factors
and prediction models between different response groups
and cannot provide high-dimensional association infor-
mation between genes and response variables.

In this study, we propose a novel clustering analysis
approach, the so-called response projected clustering
(RPC), which accounts for both the relationships among
gene expression patterns themselves and their association
with response data. This RPC approach is motivated by a
relatively simple geometrical observation that a relevant
response vector can be projected to each gene vector in
their high-dimensional space to reflect each gene's associ-
ation with the response data prior to the clustering analy-
sis. For RPC analysis, all gene or response vectors are first
standardized (so that the mean and variance are 0 and 1).
The response vector is then projected into each gene so
that its resulting projection resides in each gene's subspace
proportional to the association strength with the response
variable, not changing each gene vector's direction (so
expression pattern) in the high-dimensional gene expres-
sion space (grey arrows in Fig. 1a). Clustering analysis on
the remaining fractions of the genes (so that the genes
with higher associations with the response variable have
shorter lengths from the origin; dark arrows in Fig. 1a,
which are redrawn in Fig. 1b) is then performed in the
projected gene space based on their pairwise Euclidean
distances. RPC thus transforms each gene expression vec-
tor into the new variable that reflects its degree of associa-
tion with the response data. In this transformation, more
highly-correlated genes with the response variable will
have closer distances from the origin (response vector)
and each other (even though they were originally rela-

tively far apart) since they are shrunk toward the origin
(Fig. 1b). Note that the response vector itself becomes the
origin in this projection and that it is clustered together
with other gene vectors which directly shows which
groups of genes are highly associated with the response
metadata. Note also that the genes initially highly corre-
lated with each other and associated with the response
variable in a similar degree will maintain their close dis-
tance and association even after this projection.

Avoiding unstable clustering patterns due to small
changes of input data orders and heuristic clustering algo-
rithms, we further refined RPC by using bootstrap-based
counting measures in order to obtain robust clustering
patterns with statistical significance. Our RPC method is
applied to the drug activity data of in vitro growth inhibi-
tion by docetaxel and microarray data on the NCI-60 can-
cer cell lines [11] and the microarray study for atherogenic
macrophage differentiation to foam cells [12].

Results
Docetaxel chemosensitivity and microarray gene 
expression data on the NCI-60 cancer cell lines
Docetaxel is one of the most widely-used anti-neoplastic
chemotherapeutic compounds to treat various tumors
such as breast, non-small cell lung, gastrointestinal (stom-
ach), and prostate cancers [13]. Major target genes of
docetaxel are known to be BCL2 and TUBB1. However,
because this compound was originally derived from a nat-
ural extract (bark of the Pacific yew tree), its complete

RPC projection example for 7 gene expression variables (x1, ..., x7) and a response variable (y)Figure 1
RPC projection example for 7 gene expression varia-
bles (x1, ..., x7) and a response variable (y). (a) Grey 
arrows represent projected gene expression vectors by the 
response variable. The remaining fractions (dark arrows) are 
then used for our RPC analysis. (b) The remaining fraction 
(dark) arrows are redrawn to be centered at the origin. The 
response variable y becomes the origin in this space. Nega-
tively-correlated genes (e.g., x7) can be reversely directed in 
this transformation by multiplying their sign (-1) of correla-
tion.

(a) (b)
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molecular chemosensitivity mechanisms and pathways
are not completely understood [2].

In our current application, we use in vitro drug activity
data of docetaxel on the NCI-60 cancer cell line panel, so-
called GI50 (50% growth inhibition dose concentration
in two-day assays) [11], together with publicly-available
NCI-60 genome-wide expression profiling data of Affyme-
trix HG-U133A [14]. The NCI-60 cell line panel consists
of nine cancer subtypes: lung, colon, breast, ovarian,
leukemia, renal, melanoma, prostate, and central nervous
system cancers. All microarrays are normalized by IQR-
normalization which is a method that Q1 and Q3 of all
microarrays have the same value [15].

Fig. 2 shows the box-plots of -log(GI50) values for the
nine cancer subtypes of NCI-60. As shown, breast, non-
small lung, colon, and prostate cancer cells were generally
sensitive to this compound whereas melanoma and renal
cancer cell lines were less sensitive. Note that the NCI-60
gene expression profiling data were obtained prior to the
docetaxel treatment but we assumed that there were
innate molecular expression signatures that were highly
correlated with the docetaxel chemosensitivity as often
found in other studies [16].

We first identified genes that were strongly correlated with
the GI50 values of docetaxel on NCI-60. Fig. 3 shows the
top six genes' expression patterns which were either posi-
tively (with p-value < 0.0003) or negatively (with p-value
< 0.0002) highly-correlated with the GI50 values. As
shown in this figure, these genes' expression patterns are
somewhat different – some were lowly correlated to each
other, potentially implying different molecular mecha-
nisms of the drug mechanisms of action. Thus, this simple
correlation-based discovery could provide highly-corre-

lated genes with drug response data but it was not possi-
ble to directly understand and explore these genes'
interactive functional relationships with the drug's chem-
osensitivity. We thus applied RPC to project the NCI-60
drug activity data into its expression profiling data.

RPC Analysis on NCI-60 Data

After we standardized gene expressions and GI50 as
described in the Methods section, we derived the response
projected shrinkage factors between GI50 and gene

expression data with 1 -  for all the genes (histogram

bars; Fig. 4) and the null distribution obtained by 1000
permutations of labels in the drug sensitivity data (dashed
line; Fig. 4). r is the correlation between response GI50
and each gene expression. As shown, the observed distri-
bution of the RPC projection distances is skewed toward
1 and a relatively small number of genes were identified
with statistically short distances. For example, 19 genes
were selected with a false discovery rate (FDR) 0.2 or less
(or an RPC distance threshold 0.33 or shorter). This FDR
threshold is somewhat large, but 80% of the identified
genes would still be biologically relevant to the drug activ-
ity (GI50); no gene was found with FDR < 0.05. Table 1
shows the list of these 19 selected genes, their RPC dis-
tances, and functional information.

To examine the relationships among these selected genes
themselves and with the drug sensitivity GI50 values, we
performed the standard hierarchical clustering analysis

| |r

Ranges of -log(GI50) values for nine NCI-60 cancer subtypesFigure 2
Ranges of -log(GI50) values for nine NCI-60 cancer 
subtypes. The higher the range, the more sensitive the can-
cer subtype to docetaxel.

Expression profiles of 12 correlated genes with docetaxel chemosensitivityFigure 3
Expression profiles of 12 correlated genes with 
docetaxel chemosensitivity. (a) Six top positively-corre-
lated genes and (b) Six top negatively-correlated genes.

(a)

(b)
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with correlation distance (Fig. 5a), the standard hierarchi-
cal clustering with absolute value of correlation (Fig. 5b),
and the RPC analysis (Fig. 5c). Note that the clustering
analysis was performed among genes but not among
arrays since the clustering order among the conditions
was not very informative in this analysis. Fig. 5a, 5b and
5c were the heatmaps using hierarchical clustering with
complete linkage. In Fig. 5a, other than a few genes
(DGKZ, FEN1, NUP160) that were highly correlated with
the drug activity data, most other genes were clustered
based on their own gene expression associations, espe-
cially negatively and positively correlated genes sepa-
rately. In Fig. 5b, FEN1 were clustered with GI50;
however, DGKZ and NUP160 were clustered with other
genes similar to the results of Fig. 5a. On the contrary, the
RPC heatmap (Fig. 5c) shows that gene subclusters have

gradually weaker associations with drug activity as they
are away from the drug (response) vector. Furthermore,
L1CAM, CDKN1C, and FEN1, which have been reported
to be relevant to breast cancer – the most sensitive subtype
to docetaxel among the nine NCI-60 cancer subtypes –
were clustered just next to the drug vector. Also, CAPG and
FEN1, which showed the highest correlation with GI50,
were clustered together with this drug in this RPC analysis
whereas CAPG was clustered in a completely different
branch from the drug in the standard clustering analysis.
Also note that both positively and negatively-correlated
genes were well clustered together in this RPC analysis if
they were highly associated to each other.

For the above selected genes, we also obtained their Gene
Ontology (GO) information and further analyzed them
using GOstat for evaluating statistical significance of over-
represented functional and molecular mechanisms [17].
The majority were found to belong to the molecular com-
ponent of intracellular membrane-bound organelle
(GO:0043231): CAPG, CCNB1, CDKN1C, FEN1, GATA4,
SNRPN, DGKZ, SMC2L1, NUP160, POLE3, RAB5B,
PTPN1, and PRPF4. We found that one of the known tar-
get genes of docetaxel, TUBB1, belongs to the same intra-
cellular organelle category even though this target itself
was not significant on the NCI-60 data. Many of these
genes have also been found to be quite relevant to carci-
nogenic mechanisms. For example, L1CAM, GATA4,
CCNB1, CDKN1C, and FEN1 have been reported for their
association with breast cancer: L1CAM was shown to
inhibit the growth of breast carcinoma cells [18]. GATA4
was reported to regulate aromatase PII promoter activity

RPC distanceFigure 4
RPC distance. Distributions of the observed (histogram) 
and permutated null (dashed smooth line) RPC distances.

Table 1: The 19 selected genes by RPC. The 19 selected genes by RPC FDR < 0.2 for docetaxel chemosensitivity on the NCI-60 cell 
lines.

Gene symbol Gene description RP distance FDR

CAPG capping protein (actin filament), gelsolin-like 0.274 0.168
FEN1 flap structure-specific endonuclease 1 0.28 0.168

GATA4 GATA binding protein 4 0.29 0.168
NUP160 nucleoporin 160 kDa 0.293 0.168

CDKN1C cyclin-dependent kinase inhibitor 1C (p57, Kip2) 0.295 0.168
ANKRD7 ankyrin repeat domain 7 0.3 0.176
L1CAM L1 cell adhesion molecule 0.307 0.176
PTPN1 protein tyrosine phosphatise, non-receptor type 1 0.311 0.176
SNRPN small nuclear ribonucleoprotein polypeptide N 0.312 0.176
PRPF4 PRP4 pre-mRNA processing factor 4 homolog (yeast) 0.313 0.176
ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1 0.314 0.176
SMC2L1 structural maintenance of chromosomes 2-like 1 0.314 0.176
SFT2D2 SFT2 domain containing 2 0.315 0.176
POLE3 polymerase (DNA directed), epsilon 3 (p17 subunit) 0.317 0.176
RAB5B RAB5B, member RAS oncogene family 0.318 0.176
CCNB1 cyclin B1 0.324 0.193
DGKZ diacylglycerol kinase, zeta 104 kDa 0.324 0.193
PPM1A protein phosphatase 1A (formerly 2C), magnesium-dependent, alpha isoform 0.325 0.193
CNIH3 cornichon homolog 3 (Drosophila) 0.325 0.193
Page 4 of 11
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:76 http://www.biomedcentral.com/1471-2105/9/76

Page 5 of 11
(page number not for citation purposes)

Heatmaps and clustering dendrogramFigure 5
Heatmaps and clustering dendrogram. (a) hierarchical clustering with the correlation distance, (b) hierarchical clustering 
with the absolute correlation, (c) RPC analysis both for 19 genes and the docetaxel drug activity data (GI50), (d) the dendro-
gram of RPC analysis is shown with the branch lengths, (e) genes involved in the DAN replication pathway, (f) genes involved in 
the cell cycle growth factor and checkpoint pathway.

(a) (b)

(c) (d)

(e) (f)
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in breast cancer cells [3]. cAMP-responsive gonad-type PII
promoter ultimately leads to increased intratumoral estro-
gen production and tumor growth. CCNB1 was reported
to be upregulated in MCF-IR20 breast cancer cells by
microarray experiment and to significantly reduce the clo-
nogenic survival of MCF-IR20 cells [19]. CDKN1C
showed a loss of heterozygosity for 11p15.5. 11p15.5 is
an important tumor-suppressor gene region showing loss
of heterozygosity in Wilms tumor, rhabdomyosarcoma,
adrenocortical carcinoma, and lung, ovarian, and breast
cancer [20]. FEN1 was shown to be repressed in E2 in ER-
positive breast cancer cells [21]. ABCB1 is especially found
to be highly relevant to the docetaxel response. It was
reported that resistance arose by the overexpression of
drug efflux pumps including MDR1 (P-glycoprotein/
ABCB1) when docetaxel is medicated [22]. PPM1A,
SNRPN, RAB5B, and CAPG were also reported to be
related to cancer [23-25].

We performed the bootstrapping-based RPC analysis as
described in the Methods section in order to obtain more
statistically consistent subclusters in Fig. 5d. For the iden-
tified gene subclusters in this figure, we investigated sev-
eral pathway databases to understand whether some of
these subclusters of genes were relevant to certain carcino-
genic pathway mechanisms. Interestingly, a subcluster of
four genes – CDKN1C, FEN1, CCNB1, and POLE3 – were
found to be directly associated with the PCNA pathway
(proliferating cell nuclear anigen) which is relevant to
DNA replication and cell cycle control/check point (Fig.
5e). The other subcluster of PPM1A, CDKN1C, and
CCNB1 was also found to belong to the pathway of cell
cycle growth factor and damage check points (Fig. 5f).
Thus, it will be quite interesting to further investigate
functional and pathway mechanisms of some of these
tightly-clustered genes.

RPC analysis for PPARγ during macrophage differentiation 
in atherogenesis
A microarray gene expression study was performed to
identify novel atherogenic mechanisms involved in mac-
rophage (MΦ) differentiation to foam cells at the Univer-
sity of Virginia [12]. In this experiment, human
monocyte-derived macrophages (MDM) were incubated
with different types of low density lipoproteins (LDL)
conditions such as naïve LDL, oxidized LDL (OxLDL),
and minimally modified LDL (mmLDL), which provide
quite different microenvironments in atherogenesis. In
this microarray experiment, peroxisome proliferator-acti-
vated receptor type γ (PPARγ), which plays important
roles in atherogenesis and is a molecular target for phar-
maceutical products such as Avandia® for treating cardio-
vascular complication among type 2 diabetic patients
(GlaxoSmith Kline, Inc.), was found to be highly upregu-
lated by OxLDL and naïve LDL during the macrophage

differentiation to foam cells. This selective regulation
again demonstrates that PPARγ is highly relevant to
atherogenesis, necessitating more targeted investigation
on this gene under its respective cellular environments.
However, PPARγ, as a transcription factor has been found
to interact with many different genes, and its complete
pathway mechanisms in atherogenesis still need to be
carefully investigated associated with this gene's expres-
sion patterns on different microenvironments.

Thus, we applied our RPC approach to the macrophage
differentiation microarray data as if the gene expression
values of PPARγ were response data in order to find the
gene networks closely associated with this gene factor
(Fig. 6). In order to remove random genes clustered with
other biologically relevant genes, we preselected genes
based on the significance of their differential expression
among different LDL conditions with FDR < 0.05 [12].
The standard clustering analysis led to gene clusters with
PPARγ based simply on each gene's correlation with other
genes or PPARγ's correlation with genes (Fig. 6a). Many

RPC analysis for PPARγ on macroarray data during macro-phage differentiation to foam cellFigure 6
RPC analysis for PPARγ on macroarray data during 
macrophage differentiation to foam cell. (a) standard 
hierarchical clustering, and (b) RPC analysis. Genes are 
colored based on their known relevance in LDL (blue), 
OxLDL (red), mmLDL (turquoise), and macrophage (MΦ, 
pink) mechanisms.

(a)

(b)
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lowly-correlated genes with PPARγ, e.g., FEZ2 (r = 0.06),
TPT1 (r = 0.19) are closely clustered with it whereas highly
negatively-correlated genes, e.g. INSIG1 (r = -0.89) and
CCL1 (r = -0.84) are found further away from it. On the
contrary, in the RPC analysis, many genes highly corre-
lated with PPARγ such as apoE, LPL, CD36, MT1, and IL1B
are tightly clustered by themselves and closely clustered
with it (Fig. 6b). PPARγ is also closely clustered with P8,
PPARβ, and ABCG1 which are well-known for their roles
in atherosclerosis. Lowly-correlated genes are assigned
away from PPARγ gradually in this RPC analysis, and both
positively and negatively highly-correlated genes are
closely clustered with this gene despite their opposite
expression directions.

PPARγ has also been reported to regulate many fatty acid
factors during the form-cell formation including a group
of fatty acid regulation genes such as CD36, ABCA1, apoE,
and LPL [26]. In our RPC analysis, we could effectively
identify their tight associations with PPARγ and discover
novel gene factors such as CCL1 and IL1B which are also
known to play a role in atherogenesis but have not been
reported for any direct association with PPARγ. For exam-
ple, the two transcripts of CD36 (correlation with PPARγ
r = 0.65, 0.58) are tightly clustered with CCL1 (r = -0.84)
which implies their close functional association in the
opposite direction, or potentially inhibition. Note that
these clustering results could not be observed by a stand-
ard clustering analysis. Overall, applying RPC to PPARγ
expression patterns on the MΦ-differentiation microarray
data, genes relevant to atherogenic PPARγ functions, e.g.,
LDL (blue) and OxLDL (red) groups move closer to the
PPARγ gene whereas the groups of genes less relevant to
PPARγ, e.g., mmLDL (turquoise) groups move away from
it.

Discussion
We introduced a novel clustering analysis approach here
– response projected clustering (RPC) that can simultane-
ously summarize associations both with important phys-
iological response data and with gene expression patterns
themselves. The RPC method effectively performs such an
integrated analysis by directly projecting response data
into the high-dimensional gene expression vectors. We
believe that since clustering analysis plays a significant
role in exploring coexpression patterns of a large number
of genes in microarray profiling data, the RPC approach
will be quite useful by examining such high-dimensional
data simultaneously with those genes' association with
the response data. Using a bootstrapping-based clustering
measure, we also performed RPC analysis based on statis-
tical significance of tightness of subclusters.

RPC can be utilized in many different clustering analyses
to investigate high-throughput biological profiling data

together with relevant physiological response data if
molecular signatures exist in the profiling data highly
associated with the physiological response. It can also be
used for a particular gene in microarray data to investigate
the gene's associated groups of other genes. We, however,
suspect that the degrees of molecular association with
some response data such as patient long-term survival and
outcome data may be weak and noisy, and careful under-
standing on such an association may improve the utility
of the RPC technique.

In our current study, we first applied RPC to the docetaxel
drug activity and the microarray expression profiling data
on the NCI-60 cancer cell lines. In this application, the
selected genes (many of which were known for their carci-
nogenic mechanisms) were found to be quite tightly asso-
ciated with DNA replication and cell cycle pathways. The
above findings may suggest that this compound interferes
with the DNA replication process in order to inhibit
tumor cell growth; it will be interesting if the roles and
functions of these genes are further investigated for their
involvement in this drug activity to administer this chem-
otherapeutic compound more effectively in treating
patients.

We showed a different utilization of the RPC approach in
our second application by using the expression values of
a targeted gene factor, PPARγ, as response data in order to
find other genes' expression patterns and networks closely
associated with this gene. In this analysis, we were able to
confirm many known genes as well as novel gene factors
relevant to this target gene's functions and pathways in
atherogenesis. In order to apply RPC to a subset of biolog-
ically relevant genes, we preselected genes that were differ-
entially regulated between the experimental conditions of
atherogenesis with FDR < 0.05; bigger FDR cutoff values
resulted in much larger numbers of genes of which clus-
tering results were less clear and difficult to interpret. This
application demonstrates well that one can utilize RPC
analysis in searching gene association networks on vari-
ous contexts of genome-wide expression studies associ-
ated with a particular gene factor.

In this study, we used 1 -  as an RPC (projection) dis-

tance based on correlation (association) between the gene
expression and drug activity data (e.g., Pearson, Spear-
man, or binary correlation). Of course, any projection dis-
tance of c-f(r) formed with a monotone function f can be
used as such a distance if such a projection transformation
can effectively discriminate different degrees of associa-
tion with response data among candidate molecular sig-
natures. Also note that the RPC transformed distance,

| |r
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directly derived from the RPC geometrical projection, can
be modified into an even simpler form such as:

dRPC(xg1, xg2) = [1 - f(|r1|) f(|r2|)] || xg1 - xg2||,

when xg1 = {xg11,...,xg1n} and xg2 = {xg21,...,xg2n} are the
g1 and g2 gene vectors, respectively. The r1 is the correlation
between the g1 gene vector and response vector and the r2
is between the g2 gene vector and response vector. We also
note that several different clustering algorithms have been
explored in our preliminary studies such as single, com-
plete, average linkages (data not shown). While they show
slightly different tree structures, the tightly clustered genes
were found to be consistent. Thus, the clustering results
presented here use the average linkage algorithm.

Other forms of modification are certainly possible which
may deserve a full comparison study both by simulation
and practical application in a future study. More gener-
ally, RPC can be applied with different measures of asso-
ciation beyond correlation evaluation if the association
between the biological profiling data and response data
can be identified with a different measure, e.g. SNP data
with linkage association scores. These different functions
and algorithms need to be further investigated in the
future. Also note that we introduced our RPC algorithm
using hierarchical clustering but our RPC projection can
be applied to other clustering algorithms such as k-means,
SOM, and others. Finally, we note that RPC application
will be more difficult if the degrees of molecular associa-
tion are weak and noisy with some response data such as
patient long-term survival and outcome data. In these
cases, careful understanding on such association may
improve the utility of the RPC technique.

Conclusion
We introduced a novel clustering analysis approach here
– response projected clustering (RPC) – that can simulta-
neously summarize associations both with important
physiological and clinical response data and with gene
expression patterns themselves. RPC can be considered as
an enhanced integration of the unsupervised learning
with supervised learning techniques, effectively perform-
ing such an integrated analysis by directly projecting
response data into the high-dimensional gene expression
vectors. Using its simple projection transformation, the
RPC approach allows one to effectively examine high-
dimensional gene expression data simultaneously with
relevant response data or with a specific gene target which
would be extremely useful in many biomedical gene
expression studies.

Methods
RPC shrinkage distance and analysis
We assume all microarray data are IQR normalized
(among different chips) prior to our analysis. Suppose
there are n subjects and p genes on microarray profiling
together with n subjects' response data y = {y1,...,yn}. Let
xi = {xi1,...,xin} be an n-dimensional vector of the ith
gene's expression, i = 1,...,p. We first standardize each of
these response and expression vectors (so that the mean
and variance are 0 and 1) to have the same scale (on a unit
sphere). Denote the new standardized variables as:

i = 1,...,p, j = 1,...,n. Note that the same notations are used
for these standardized vectors as the original vectors
because there is no loss of information after this standard-
ization if pairwise distances are evaluated based on their
co-expression (or association) patterns by, e.g., Pearson
correlation for clustering analysis.

For the projection of response data into gene variables, we
then calculate the inner product between the standardized
response vector and each standardized gene expression
vector:

The resulting inner product is the cosine value of the inter-
nal angle (in the n-dimensional space) between the
response vector and each gene vector. Note that this value
is thus the projected magnitude of the response vector to
each gene vector; it is also the correlation between the two
vectors. For example, if the two vectors have an inner
angle close to 0° (or 180°) or a strong correlation, this
value will be close to 1 or -1. Without changing its direc-
tion, each gene vector is then resized with RPC shrinkage
factor si:

xi* = si xi, where si = (1-ri), i = 1,...,p

(The dark fractions of arrows in Fig. 1a). Note again that
the response vector itself then becomes the origin
(because r = 1) and a gene vector with a higher correlation
(≈1) with the response vector will have a bigger shrinkage
effect (so closer to the origin).

If one wants to group both negatively and positively-cor-
related genes together as long as they are highly correlated
to each other, the shrinkage factor can be obtained with a
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general monotone function f on the absolute magnitude
of ri as:

xi* = si xi, where si = 1 - f(|ri|), i = 1,...,p

For example, xi* = (1 - ) xi with f(x) = (1 - ), =

(1- ) xi with f(x) = x2, or = {c-log|(1+ri)/(1-ri)|} xi with

Fisher's z-transformation where c = max log|(1+r)/(1-r)| if
r < 1. These transformations may be used in order to make
the RPC analysis more sensitive to small differences in a
highly-skewed correlation distribution. In our current

study, we use xi* = (1 - ) xi, i = 1,...,p, because this

choice was found to be sensitive in the range of a com-
monly-observed value of |ri| around 0.5.

The clustering distance between two gene expression vec-
tors, say xg1 and xg2, is thus calculated based on their Eucli-
dean distance (Fig. 1b):

dRPC(xg1, xg2) = || (1 - f(|r1|) xg1 - (1 - f(|r2|) xg2 ||

where r1 and r2 are the inner products (or correlations) of
xg1 and xg2 with the response vector y. Note that the origi-
nal Euclidian distance was d(xg1, xg2) = ||xg1 - xg2|| prior to
the RPC transformation. More discussions on this dis-
tance will be found later. Therefore, in this RPC analysis,
the gene vectors highly associated with the response vec-

tor will have very short distances from the origin and con-
sequently short clustering distances would be obtained
between them. All other genes will be gradually clustered
away from the response vector as their degrees of associa-
tion with the latter weakens.

The utility of this RPC approach can be illustrated in a
simple example as below. For example, drug response
data and seven other gene expression vectors are syntheti-
cally generated with correlation coefficients 0.87, 0.67,
0.87, 0.67, 0.31, 0, and -0.81 between drug response
"Drug" vector and each of the seven gene vectors g1-g7
(also refer to Fig. 1 depicted as y and x1,...,x7 within a two-
dimensional unit circle). So, g1, g3, and g7 are the most
highly-correlated with the drug response, especially g7
negatively. Each of the seven genes is then shrunk based
on the projected length of the drug response as in Fig. 1b.
Note that if a gene like g7 is reversely correlated, the direc-
tion is also reversed in this projection. The effects of RPC
are then demonstrated in Fig. 7. First, in an application of
the standard hierarchical clustering algorithm to these
synthetic genes, the first three pairs of the seven genes, g1-
g2, g3-g4, and g5-g6 were tightly clustered together (Fig.
7a). However, this clustering does not reflect the associa-
tion with the drug response; the least correlated gene g6
(correlation 0) appears just next to the drug response due
to the ordering in this clustering algorithm. Furthermore,
the most highly-correlated gene g3 is assigned away from
it and the negatively highly-correlated gene g7 appears to
be quite irrelevant to the drug response. The clustering

| |ri | |x

ri
2

| |ri

Effects of response projected clusteringFigure 7
Effects of response projected clustering. (a) standard hierarchical clustering using the correlation, (b) hierarchical cluster-
ing using the absolute value of the correlation, (c) response projected clustering.

(a) (b) (c)
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based on the absolute correlation distance cannot yet
identify all the genes highly associated with the response
vector (Fig. 7b). By contrast, in the RPC analysis, both
positively and negatively-correlated genes are tightly clus-
tered with the drug response (Fig. 7c). Specifically, the cor-
relation structure of g1 and g7, which are perfectly
negatively correlated and the most highly-correlated genes
with the drug response, is well reflected in this clustering.
Note that this simulation example is shown to explain the
mechanistic procedure and effects of RPC which may not
be obvious in RPC applications in large real microarray
data sets. Also note that RPC is always performed with the
transformed response vector so that one knows exactly
where the RPC vector falls among the gene clusters.

Significance and consistency of RPC sub-clusters
In order to evaluate the statistical significance of each RPC
gene's association with the response data, we can generate
random data directly using the original microarray data by
repeatedly permutating sample identities in the response
data. From such a permutation-based null distribution,
we can evaluate the statistical significance of each
observed di for the ith gene, i = 1,...,p, compared to dim, m
= 1,...,M from M permutated samples:

The false discovery rates (FDR) from these (empirical) p-
values are then derived for the multiple test adjustment
[27]. We use these FDR values for selecting genes for our
final clustering analysis, e.g. FDR < 0.2.

Due to the nature of its heuristic allocation algorithms,
clustering analysis can often provide different groups of
clustered genes with slightly different input data or even
with different orders of genes. Statistical confidence eval-
uation on clustered gene groups has thus been suggested

using resampling techniques such as bootstrap [28,29].
We also use a bootstrapping technique to assess the stabil-
ity of our RPC clustering results among RPC selected, say,
s genes. We obtain B bootstrapped samples of size n {z1

b,
..., zn

b}, b = 1,...,B from the original n subjects (column
vectors) {z1*, ..., zn*} with replacement where zj* = {x1i*,
..., xpi*} is the s-dimensional vector of the j-th subject. The
consistency of sub-clusters of the s genes can be examined
from these bootstrapped samples. For example, the prob-
ability that two genes belong to a common subcluster can
be assessed by counting the frequencies of their co-cluster-
ing occurrences at a particular node, e.g. 75-percentile
node of each cluster dendrogram (Fig. 8).

At the q-percentile node of cluster dendrogram, an s by s
counting table Cq can be constructed, each cell with the
fraction of bootstrapped dendrograms in which each pair
of genes were clustered together (Table 2). The higher the
fraction, the more likely its corresponding pair of genes
would cluster together. Therefore, using 1-Cq as a pseudo
pairwise distance matrix, we can perform the cluster anal-
ysis for s genes. In general, we found that a 50-percentile
node well reflects the consistent co-clustering patterns of
genes. This bootstrap-counting clustering algorithm can
thus be summarized in the following three steps:

(1) Generate bootstrapped samples of size n {z1
b, ..., zn

b},
b = 1,...B.

(2) Apply hierarchical clustering to each of the bootstrap
samples. At the q-percentile node, construct a counting
table Cq across B bootstrapped dendrograms.

(3) Perform hierarchical clustering using a pseudo dis-
tance matrix 1-Cq.

Thus, this bootstrap-based clustering can effectively sum-
marize the statistical confidence on the tightness of gene
clusters. Note that the height of a clustering dendrogram
node then represents how strongly the members of the
cluster are clustered; the closer to the bottom of the den-
drogram tree, the tighter the elements in a cluster.

p i pi

I di dim
m

M

M= =
≤

=
∑ ( )

, , ,1 1 K

Table 2: Bootstrapped counting table. Bootstrapped counting 
table for co-clustering of genes

G1 G2 G3 G4

G1 1 0.85 0.3 0.2
G2 0.85 1 0.2 0.25
G3 0.3 0.2 1 0.78
G4 0.2 0.25 0.78 1

Co-clustering countingFigure 8
Co-clustering counting. The q-percentile node for co-
clustering counting.
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