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Abstract

Background: Information extraction (IE) efforts are widely acknowledged to be important in
harnessing the rapid advance of biomedical knowledge, particularly in areas where important factual
information is published in a diverse literature. Here we report on the design, implementation and
several evaluations of OpenDMAP, an ontology-driven, integrated concept analysis system. It
significantly advances the state of the art in information extraction by leveraging knowledge in
ontological resources, integrating diverse text processing applications, and using an expanded
pattern language that allows the mixing of syntactic and semantic elements and variable ordering.

Results: OpenDMAP information extraction systems were produced for extracting protein
transport assertions (transport), protein-protein interaction assertions (interaction) and assertions
that a gene is expressed in a cell type (expression). Evaluations were performed on each system,
resulting in F-scores ranging from .26 — .72 (precision .39 — .85, recall .16 — .85). Additionally, each
of these systems was run over all abstracts in MEDLINE, producing a total of 72,460 transport
instances, 265,795 interaction instances and 176,153 expression instances.

Conclusion: OpenDMAP advances the performance standards for extracting protein-protein
interaction predications from the full texts of biomedical research articles. Furthermore, this level
of performance appears to generalize to other information extraction tasks, including extracting
information about predicates of more than two arguments. The output of the information
extraction system is always constructed from elements of an ontology, ensuring that the knowledge
representation is grounded with respect to a carefully constructed model of reality. The results of
these efforts can be used to increase the efficiency of manual curation efforts and to provide
additional features in systems that integrate multiple sources for information extraction. The open
source OpenDMAP code library is freely available at http://bionlp.sourceforge.net/
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Background

Conceptual analysis is the process of mapping from natu-
ral language texts to a formal representation of the objects
and predicates (together, the concepts) meant by the text.
The history of attempts to build programs to do concep-
tual analysis dates back to at least 1967 [1]. Recent
advances in the availability of high quality ontologies, in
the ability to accurately recognize named entities in texts,
and in language processing methods generally have made
possible a significant advance in concept analysis, argua-
bly the most difficult and general natural language
processing task. Here we report on the design, implemen-
tation and several evaluations of OpenDMAP, an ontol-
ogy-driven, integrated concept analysis system that
significantly advances the state of the art. We also discuss
its application to three important information extraction
tasks in molecular biology.

Information extraction (IE) efforts are widely acknowl-
edged to be important in harnessing the rapid advance of
biomedical knowledge, particularly in areas where impor-
tant factual information is published in a diverse litera-
ture. In a recent PLoS Biology essay Rebholz-Schuhmann
[2] argued, "It is only a matter of time and effort before we
are able to extract facts [from articles in the primary liter-
ature] automatically. The consequences are likely to be
profound." Existing examples include extraction of infor-
mation about gene-gene interactions [3], alternative splic-
ing [4], functional analysis of mutations [5],
phosphorylation sites [6], and regulatory sites [7]. The pri-
mary significance of OpenDMAP to these efforts is that it
leverages the large-scale efforts being made in biomedical
ontology development, such as the Open Biomedical
Ontologies Foundry (OBO Foundry) [8].

Logical representations of reality, such as those built on
the OBO Foundry, use a set of predicates that formally
describe properties of, or relationships among, objects.
Predicates are defined with a specific number and type of
admissible arguments. For example, the predicate expresses
might be specified to take two arguments, a gene and a cell
type, meaning that the specified gene is expressed in all
normal cells of the specified type. Such predicates can also
be related to each other through abstraction ("is a") and
packaging ("part of") hierarchies, as done in the OBO
Foundry. The semantics defined by the predicates and
hierarchies in such ontologies provide a powerful tool for
natural language processing.

Independently constructed ontologies have played at best
a modest role in prior natural language processing sys-
tems. Guarino [9] characterizes various uses of ontologies
in information systems: only systems that use an ontology
at run time (rather than during system construction) to
explicitly represent the domain knowledge exploited by
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the system qualified for what Guarino called an "ontol-
ogy-driven information system proper." To our knowl-
edge, OpenDMAP is the first system developed to exploit
a community consensus ontology as the central organiz-
ing principle of an information extraction system; for
example, none of the systems that participated in the
2004 TREC Genomics evaluation for recognizing
instances of Gene Ontology terms in text [10] meet the
Guarino definition. Other language processing systems
have used either small, ad hoc conceptual representations
developed specifically for the application, or structured
linguistic resources, such as WordNet [11], which do not
meet the logical requirements for an ontology. While the
implementation reported below exploits only a small por-
tion of the OBO Foundry, and the crucial Relationship
Ontology component of the Foundry is still in an early
stage of development, the organizing principles of
OpenDMAP generalize straightforwardly.

The MetaMap system [12] identifies biomedical concepts
from free-form textual inputs and maps them to entries in
the Unified Medical Language System (UMLS) metathe-
saurus; SemRep [13] is a related system that maps to pred-
ications drawn from the UMLS semantic network, and
SemGen [14,15] is another related system that is focused
on mapping to UMLS terms relevant to the etiology of
genetic disease. These systems and their extensions have
been used to extract semantic relationships relevant to
pharmacogenomics [16] and to compare alternative
sources of information [17], among other applications.
OpenDMAP is like MetaMap and its descendents in that it
can only produce output drawn from a predefined seman-
tic representation. The main difference is that MetaMap,
SemRep and SemGen are structured as traditional NLP
systems, with a lexicon that enumerates possible concepts
that might be associated with a word or phrase. Multiple
possible mappings are returned, with rankings. OpenD-
MAP provides an alternative method of organizing knowl-
edge about language, so that each concept has associated
with it a set of patterns that describe how that concept can
be realized in language; there is no explicit lexicon.

To appreciate the differences between OpenDMAP and
previous work in biomedical text mining, it is also useful
to contrast its handling of syntactic structure and of
semantic content with other systems. At one end of the
spectrum are systems that employ essentially asyntactic
representations. Early in the modern period of genomic
natural language processing, some such systems were able
to achieve significant (and in some cases ground-break-
ing) results using techniques based on text literals only.
These include [18-20]. One line of subsequent work has
attempted to increase the coverage of these early systems,
which utilized manually-built patterns, by automatically
acquiring considerably larger sets of patterns - see, for
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example, Huang et al. 2004 [21]. Another line of subse-
quent work has focused on adding a modest, but still use-
ful, level of linguistic abstraction by explicitly including
either lexical categories (parts of speech), word stems, or
both [22,23]. These systems were essentially agrammati-
cal; in contrast, OpenDMAP utilizes a classic form of
"semantic grammar," freely mixing text literals, semanti-
cally typed basal syntactic constituents, and semantically
defined classes of entities.

Although OpenDMAP is capable of utilizing full syntactic
parses, the patterns for the three separate tasks discussed
in this paper utilize primarily shallow syntactic parses (the
development phase of the transport project reports results
using syntactic dependency information). It remains to be
seen what depth of syntactic parsing is useful in biomedi-
cal text mining. Some early systems explored full parsing
[24,25], but they were not generally fruitful, and typical
systems have employed at most shallow parsing [26-28];
only recently has productive attention returned to syntac-
tically ambitious approaches to biomedical text [29-31],
much of it taking a dependency-based, rather than a con-
stituent-based, approach.

All of the systems discussed thus far have in common the
fact that they employ some notion of explicit patterns, be
they agrammatical, syntactic, or semantic. In a separate
line of work, patterns are entirely implicit - that is, they
exist only to the extent that they are captured by orthogo-
nal features. This work approaches relation extraction as a
classification problem; a classic example is the work of
Craven and Kumlein 1999 [32]. Bunescu et al. 2005 [33]
presents a detailed analysis of a number of classification-
based approaches; the state of the art is characterized by
the participants in the recent BioCreative protein-protein
interaction shared task [34].

OpenDMAP has been applied in three domains: protein
transport, protein-protein interaction and the expression
of a gene in a particular cell type. The three application
domains are independently significant. Protein transport,
the directed movement of proteins from one cellular com-
partment to another, is a broadly important biological
phenomenon. Although protein subcellular localization
information is centralized (e.g. through ontological anno-
tations at NCBI and in various model organism data-
bases), information about transport is not. Protein
transport information is published throughout the scien-
tific literature, but no previous method was able to cap-
ture it systematically. Protein-protein interaction
extraction has been the subject of dozens of systems (see,
e.g. a review in [35]). Widely used web resources such as
IHOP [3] and Chilibot [36] are based entirely on auto-
mated extraction of protein-protein interactions from text.
This task was used in the BioCreative community evalua-
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tion, described below. The third application area, extrac-
tion of assertions that a particular gene is expressed in a
particular cell type, is of significance since it appears to be
the predicate found most frequently in the biomedical lit-
erature; a form of the verb "express," usually its nominal-
ization "expression," appears in nearly 20% of NCBI's
GeneRIFs [37].

The protein transport task is illustrative of another distin-
guishing aspect of the OpenDMAP approach: it provides
mechanisms for handling relationships involving more
than two entities. Note that the protein transport predi-
cate has at least three arguments: what protein is trans-
ported, from where, and to where (our model also
includes a fourth argument: the transporting protein).
Although some linguistic expressions of the concept may
elide an argument, the predicate itself inherently describes
a greater than binary relationship. Wattarujeekrit et al.
[38] and Cohen and Hunter [39] present evidence that
many important predicates in biomedicine require more
than two arguments. However, most previous efforts at
extracting relationships from biomedical text have
addressed exclusively binary relationships. Geneways [40]
and RLMPS-P [41] are the only other biomedical IE sys-
tems of which we are aware that extracted greater than
binary relationships, and neither is ontology-driven.

Assessing the accuracy of an information extraction sys-
tem is a very labor-intensive activity. In order to identify
information that could have been extracted, but was not
(a "false negative"), a person must go through a large vol-
ume of text to determine all of the relevant assertions. To
estimate the reliability of these manually derived asser-
tions, at least two people must complete that task to assess
inter-rater reliability. Once such data is used for one eval-
uation and system developers have seen it, further use of
the data will generate upwardly biased accuracy estimates
as system developers fit their systems to it. For these rea-
sons, large-scale community evaluations of information
extraction systems are particularly important. The second
Critical Assessment of Information Extraction in Biology,
(BioCreative) [34,42], community evaluation included a
test of systems designed to extract human protein-protein
interaction information from the full texts of hundreds of
journal articles, called the IPS task. Human curators from
the IntAct database [43] manually extracted interaction
assertions from these articles using the same curatorial
standards as for the database. The results produced by
human experts were compared to the results submitted
from 45 systems developed by laboratories around the
world, providing the best current assessment of the accu-
racy of protein interaction information extraction sys-
tems. The performance of OpenDMAP on the protein
interaction task was evaluated as part of this shared task.
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More limited evaluations of the accuracy in the other
applications are also reported in the results section.

The accuracy of an information extraction system depends
on the genre of texts on which it operates [44]. This report
demonstrates the application of OpenDMAP to full texts
of scientific journal articles, to Medline abstracts, and to
GeneRIFs (single sentences or sentence fragments that are
selected by human curators for relevance to the function
of a particular gene product). GeneRIFs are particularly
attractive targets for information extraction, due to their
roughly sentential length (identified by [44] as the opti-
mum), breadth of coverage, manual preselection for rele-
vance, and association with at least one normalized gene
reference. Despite these attractive features, this is the first
report of an information extraction system targeting them.

Results
OpenDMAP information extraction systems were pro-
duced for extracting protein transport assertions (trans-
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port), protein-protein interaction assertions (interaction)
and assertions that a gene is expressed in a cell type (expres-
sion). Each of these systems was run over all abstracts in
Medline as of June 18, 2007, producing a total of 72,460
transport instances, 265,795 interaction instances and
176,153 expression instances. These results are provided in
RDF format in the Additional Files 1, 2, 3, 4.

One particularly striking result is the diversity of journals
from which these assertions were mined. The transport
relationships were extracted from 2,340 different journals;
the interaction relationships from 4,103 different jour-
nals; and the expression relationships from 2,984 differ-
ent journals. A total of 4,434 unique journals contributed
to these results, nearly 40% of the journals indexed in
Medline each year (see Figure 1).

For the BioCreative evaluation, the interaction system was
run on the full texts of all of the 359 articles in the test set,
producing 385 interaction assertions. Performance was

% Journals providing Transport, Expression, and/or PPI relations in their
abstracts, by year
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OpenDMAP coverage of MEDLINE. The gray bars indicate the number of journals indexed by MEDLINE each year. The
red bars indicate the number of journal abstracts from which OpenDMAP extracted at least one assertion regarding transport,
interaction or expression. In recent years, more than 40% of biomedical journals contain such information. 2007 is partial data

(through July 1).
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averaged per article, since a few articles had a very large
number of interactions and would have dominated a per
assertion calculation. OpenDMAP's average F-measure of
0.29 was 10% higher than the next best scoring system,
and more than three standard deviations above the mean
performance. OpenDMAP's recall was similar to the other
high scoring systems; its advantage arose from being sub-
stantially more precise (fewer false positives), achieving
an average precision of 0.39, more than 20% better than
the next best system. Due to IntAct's curation criteria,
which require clear experimental evidence for an interac-
tion in the text, these results are quite conservative. Many
"false positives" were in fact assertions of interactions, but
fell short of the evidential requirements for IntAct cura-
tion.

A manual evaluation of the performance of the protein
transport recognition system was based on all 570 GeneR-
IFs containing a form of the word "translocate" (382 of
which were about protein transport, and 188 were about
the transport of something else). Since transport is a
greater than binary relationship, the extraction was only
counted as correct if all of the components extracted
matched the human annotation. For that strict criterion,
OpenDMAP achieved precision of 0.75 and a recall of
0.49 (F-score of 0.59). If incomplete extractions are
counted as correct, precision is unchanged at 0.75 and
recall rises to 0.67 (F-score of 0.71). A substantial propor-
tion of the errors were due to imperfect recognition of pro-
teins; if OpenDMAP is given correct protein
identifications as inputs, precision is 0.77, strict recall is
0.67 (F-score of 0.72) and incomplete recall is 0.85 (F-
score of 0.81).

A manual evaluation of the performance of the expression
recognition system was based on 324 GeneRIFs contain-
ing a form of the word "express," (these sentences con-
tained 469 assertions about expression, 205 of which were
about gene expression in 178 different cell types). Open
DMAP had a precision of 0.64, but missed many state-
ments that annotators identified as expression assertions,
achieving a recall of only 0.16 (F-score of 0.26). A sub-
stantial portion of these errors were due to imperfect rec-
ognition of gene names; if OpenDMAP is given correct
gene identifications as input, precision is 0.85 and recall
is 0.36 (F-score of 0.51). Many other failures to identify
expression assertions were related to coordination; the
test set had an average of more than two expression asser-
tions per sentence, but the IE system extracted only about
1.3 assertions per sentence.

Discussion

As demonstrated by its performance in the community
evaluation, OpenDMAP advances the state of the art for
extracting protein-protein interaction predications from
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the full texts of biomedical research articles. Furthermore,
this level of performance appears to generalize to other
information extraction tasks, including extracting infor-
mation about predicates of more than two arguments.

There are several reasons why OpenDMAP exhibits better
performance than any other biomedical information
extraction system to date. OpenDMAP is an extension of
the Direct Memory Access Parsing (DMAP) paradigm
described in [45] and [46]. Three innovations distinguish
the present work from those prior efforts. First, the ontol-
ogy component of OpenDMAP is independent of the rest
of the system. The knowledge representation component
is the well-established, open source Protégé ontology
development system [47,48], and OpenDMAP concept
analyzers can be associated with any ontology compatible
with Protégé, for example, the OBO Foundry. Second,
OpenDMAP is fully integrated with the open source
Unstructured Information Management Architecture,
(UIMA) [49-51], which allows the results of any text
processing application interfaced to UIMA to be exploited
by the OpenDMAP system. As demonstrated below, this
mechanism facilitates the use of many external language
processing systems, including tokenizers, sentence
boundary detectors, entity recognition systems, and syn-
tactic parsers. Since the inputs and outputs of each system
are mapped by UIMA to a common annotation structure
accessed by OpenDMAP, the use, comparison and combi-
nation of various approaches to language processing can
all be fully integrated into OpenDMAP patterns. The third
innovation in the OpenDMAP system is an expanded pat-
tern language for specifying how concepts can be
expressed in text. The pattern language not only allows
specifications of mixtures of any concepts available from
either the ontology (e.g. a protein transport process) or
the results of UIMA text processing (e.g. the head of a
noun phrase), but it also has new features that allow more
flexible concept ordering than previous DMAP analyzers
(see the description of the pattern language in the Meth-
ods section for details).

The intimate connection between the ontology and the
natural language processing system provides two signifi-
cant advantages over prior information extraction systems
generally. First, the output of the information extraction
system is always constructed from elements of the ontol-
ogy, ensuring that the knowledge representation is
grounded with respect to a carefully constructed model of
reality. In contrast, the outputs of most natural language
processing systems are grounded only in substrings of
text, not normalized to any model at all. Progress in nor-
malizing biological entities recognized in text to specific
database identifiers [52-54] has made the output of text
processing systems much more valuable. Mapping the
properties and relationships extracted to a community
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ontology similarly provides a significant increment in the
value of the output from text processing systems.

The second advantage of the OpenDMAP approach is that
all of the knowledge used by the system to recognize con-
cepts is structured by the ontology. In contrast, the nearly
universal alternative approach is to embody knowledge of
language into a lexicon, which associates individual lexi-
cal items with their possible semantic interpretations. In
the OpenDMAP approach, information about which con-
cepts are potentially relevant to the analysis of a particular
text passage straightforwardly places limits on the linguis-
tic knowledge relevant to analyzing that passage. This
approach finesses many difficult ambiguity resolution
problems faced by lexicon-driven systems, since these lim-
its on the knowledge applied to conceptual analysis pre-
vent many multiple interpretation problems from arising
at all. For example, the string "hunk" refers to a cell type
(human natural killer cells), a gene (hormonally upregu-
lated Neu-associated kinase), and the general English
word meaning a large piece of something without definite
shape. A traditional, lexicon-driven system would have an
explicit method for assigning the correct word sense to
any occurrence of the string "hunk." However, OpenD-
MAP patterns specify expectations of semantic classes (e.g.
in the transport application described below, the trans-
ported entity must be a protein or a molecular complex);
if it is possible to construe a string as an instance of an
expected class, the pattern matches. The fact that there
might be possible alternative interpretations of the match-
ing string has no consequence, and no explicit ambiguity
resolution step is necessary. Ambiguity is a leading cause
of errors in text processing systems, and this approach is
one of the contributing factors to OpenDMAP's superior
performance. Our top-down approach to restricting possi-
ble interpretations does not address all problems due to
ambiguity in language; for example, errors in preprocess-
ing systems (e.g. syntactic parsing, see below) are not
effected.

The use of UIMA greatly facilitates the incorporation of
various applications as input to OpenDMAP. The outputs
of NLP tools integrated into the system are described by
the extensible UIMA type system. In the case that a new
type of information is produced by a preprocessor,
OpenDMAP patterns would have to be modified to take
advantage of the new type of information available. For
example, the first time an external cell type tagging system
is added, the UIMA type of the result of that processor
must be linked to a cell-type concept in an OpenDMAP
ontology in order for it to be used in patterns. However, if
a new NLP tool produces a UIMA output type that has
been used by OpenDMAP previously, then no changes in
the ontology or patterns are needed.
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We believe that the outputs of information extraction sys-
tems are not likely to useful until the F-score (or at least
the precision) is greater than about 0.85 [34], so the vari-
ous sources of error in these systems must be addressed. A
significant cause of errors in the OpenDMAP system as
evaluated is incorrect identification of gene and protein
names. The UIMA architecture makes it trivial to adopt
and exploit better gene/protein recognition systems as
they are developed. The best gene name identification and
normalization systems from the BioCreative assessment
achieved F-scores greater than 0.8, significantly above the
~0.7 F-score of the ABNER system [55] used by OpenD-
MAP to achieve the reported performance. Use of such a
system should improve the performance of OpenDMAP.

Error analysis of the false positives in the transport data set
indicates that more than 80% are due to errors in the syn-
tactic analysis. For example, in the sentence "Rho protein
regulates the tyrosine phosphorylation of FAK through
translocation from the nucleus to the membrane," the
subject of the translocation was incorrectly identified as
FAK (rather than Rho) by the Stanford parser. That parser
was developed for general English rather than biomedical
text, so using specialized syntactic analysis systems may
improve the precision of OpenDMAP. Remaining prob-
lems in false positives are due to problematic tokeniza-
tion, failures to properly resolve anaphoric reference, and,
rarely, negation. False negatives are due to gaps in concept
recognition patterns, more than half of which arise from a
failure to properly handle coordinated clauses and con-
junctions. Addressing these issues remains an open area of
research.

Another issue was that the Stanford parser was too slow to
use in the application of the transport system to all of
Medline, so it wasn't run. OpenDMAP ignores aspects of
patterns that require inputs that aren't present, so the pat-
terns that contained syntactic dependencies did not have
to be altered. These syntactic constraints are important for
accuracy, however. Tested on the gold standard set for the
system without the parser precision drops to 0.62, while
strict recall remains largely unchanged, rising to 0.51.

Conclusion

Despite OpenDMAP elevating the state of the art for bio-
medical information extraction significantly beyond pre-
vious levels, error rates remain high. In the most
challenging BioCreative task, finding curatable assertions
in full text documents, only about 29% of the relevant
assertions were found, and only about 39% of the
extracted assertions were completely correct. Such error
rates mean that automatically generated databases cannot
replace manual curation efforts. However, the evidence is
quite clear that manual curation cannot keep up with the
rate of data generation [56]. The surprisingly large

Page 6 of 11

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:78

number of journals that contained information relevant
to these three IE tasks suggests that the temporal approach
taken in [56] may actually underestimate the severity of
the problem.

Although the outputs produced by large-scale IE systems
are not yet suitable for producing factual databases for
direct use by biomedical researchers, the current level of
performance provides two important facilities to the
research community. First, the results of these efforts can
be used to significantly increase the efficiency of manual
curation efforts. Each extracted assertion is tied to a spe-
cific text, which can be used to direct the attention of man-
ual curators both to relevant documents and to specific
relevant passages within a document. Effective integration
of IE results into curatorial workflows will require the
development of new tools. OpenDMAP developers are
working with curators at IntAct to address these issues.
The open source availability of OpenDMAP will facilitate
the work of others addressing this issue as well. The sec-
ond important use of the sorts of results that IE systems
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are currently able to generate is in statistical integration
with multiple sources of noisy data, such as those
described in [57] and [58]. As demonstrated in the latter,
the proper addition of even noisy data from the literature
substantially improves the quality and coverage of pro-
tein-protein interaction networks for several species.

Methods

OpenDMAP uses Protégé [47] to provide an object model
for the possible concepts (predicates and objects) that
might be found in a text. Protégé models concepts
(including actions) as classes that participate in abstrac-
tion and packaging hierarchies, and relationships as class-
specific slots. For example, protein transport is modeled
as a class (called PROTEIN-TRANSPORT) and the rela-
tionship between a transport event and the protein trans-
ported in that event is represented as a slot in that class
(called [TRANSPORTED-ENTITY]). Slots can take on val-
ues, which can be constrained to be instances of other
classes. For example, the [TRANSPORTED-ENTITY] slot of
the PROTEIN-TRANSPORT class is constrained to be an

i
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g Jc-aev rrotege s.1.1 1€/ znn l jeCiS/a NS/irAnsSioc-agviiransioc-aev.ppr g,_,f,\““L:]LEJLxJ
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NDed 4+ BB X wmwva ¢ 9% <€protégé
7 | 4 =
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For Froject: @ transloc-dev For Class: @ proteintransport (instance of :STANDARD-CLASS) 4 ©
Class Hierarchy s ¥ 8 o Name Documentation Const
¥ @ annotation schema e ‘protejn transport l The directed movement of a set
¥ @ biological entity of molecules and/or molecular
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Figure 2

Screenshot of the Protégé ontology for the protein transport task. The slots of the protein transport class are shown
in the lower right panel of this screen shot. Note that the subclasses of Cellular Component and Protein Transport are not

shown.
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instance of either of the classes PROTEIN or MOLECU-
LAR-COMPLEX. Figure 2 shows a portion of the model
used for the transport, which includes biological entities,
such as molecular complexes and cellular components,
and biological processes, particularly protein transport.
This model is drawn almost entirely from the Gene Ontol-
ogy (GO) [53] although the relationships that define the
four slots shown in Figure 2 are from a provisional sub-
mission to the OBO Foundry Relationship Ontology and
are not official. Preprocessing tools (ABNER [55] and
LingPipe [59]) were applied to tag instances of proteins,
genes, and cell types.

For the transport task, patterns were produced for 30
ontology concepts; eight directly related to transport and
22 others for cellular components that are the sources and
destinations of transport. A large number of other con-
cepts (e.g. genes, proteins and cell types) do not have
explicit patterns associated with them, but are instead
tagged as such by UIMA tools during preprocessing. The
protein-protein interaction task involved producing pat-
terns for nine concepts, and the cell expression task
required patterns for six additional concepts.

The UIMA architecture [49] manages the processing of
document sets. The collection of document processing
tools interfaced through UIMA includes the LingPipe
tools for sentence boundary detection and tokenization
[59], both the LingPipe and ABNER [55] tools for recog-
nizing protein mentions, ABNER for recognizing men-
tions of cell types, the Stanford Parser [60] to provide
syntactic trees, and a locally produced implementation of
the Modified Hobbs algorithm [61] for anaphora resolu-
tion. Various combinations of these tools were used in the
different applications. For example, the GeneRIFs used in
the transport application did not require sentence seg-
mentation, and the applications to all medline abstracts
did not use syntactic elements in patterns because the
Stanford Parser was too slow to run over all of Medline.
The results of this preprocessing are stored in UIMA's
common annotation structure.

In order to be able to recognize a concept in text, OpenD-
MAP associates one or more patterns with each concept. A
pattern describes the words, phrases, parts of speech, syn-
tactic structures or concepts that should cause an instance
of the associated concept to be recognized. A simple pat-
tern, such as the one shown in equation 1, enumerates a
disjunction of words that should trigger recognition of a
concept.

NUCLEUS := nucleus, nuclei, nuclear; (1)

The patterns for all of the CELLULAR-COMPONENT con-
cepts were derived from the GO term names and syno-
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nyms, supplemented with derivational variants, such as
the adjectival "nuclear" in equation 1. Twenty-two GO
cellular component terms were used, along with 19 syno-
nyms associated with the GO terms, and 78 additional
derivational variants generated by inspection of the train-
ing corpus.

More complex patterns can include references to non-ter-
minals, particularly other concepts. Equation 2 is one of
the patterns for recognizing instances of the PROTEIN-
TRANSPORT concept. This pattern specifies that a refer-
ence to PROTEIN-TRANSPORT can appear in text as a ref-
erence to a concept that can fill the [TRANSPORTED-
ENTITY] slot, followed by the word "translocation" fol-
lowed optionally by a phrase beginning with the word
"from", possibly including a word with the part of speech
determiner, and a concept that could fill the [TRANS-
PORT-ORIGIN] slot, also followed optionally by a similar
phrase that regarding the [TRANSPORT-DESTINATION]
slot.

PROTEIN - TRANSPORT :=[ TRANSPORTED — ENTITY ]translocation
( from{det}?[ TRANSPORT — ORIGIN ])?
(to{det}?[ TRANSPORT — DESTINATION ] )%;

()
When a pattern that includes a slot name is matched, the
instance created has its slots filled with the concepts that
matched the slot names in the pattern. For example, the
above pattern matches the GeneRIF that contains "... Bax
translocation to mitochondia..." (from Entrez GenelD
27113). Bax, which is recognized as a protein by ABNER,
will cause an instance of the protein concept to be created;
an instance of a protein matches one of the constraints on
filler of the [TRANSPORTED-ENTITY] slot, which causes
that slot to match to the Bax protein concept. The word
"translocation" matches, and, while the optional "from"
clause does not match, the "to" clause does match, since
"mitochondria" matches one of the patterns for a subclass
of CELLULAR-COMPONENT, the constraint on the filler
of the [TRANSPORT-DESTINATION]. Since the entire pat-
tern matches, an instance of PROTEIN-TRANSPORT is
created, with the Bax protein concept in its [TRANS-
PORTED-ENTITY] slot and an instance of the mitochon-
dria concept (from GO's cellular component hierarchy) in
its [TRANSPORT-DESTINATION] slot.

OpenDMAP patterns can express variability in word and
phrase order. Note, for example, that equation 2 would
fail to match the phrase "Bax translocation to mitochon-
dria from the cytosol." The special pattern marker @ is
used to identify a set of subpatterns that are both optional
and can occur before or after a required phrase; multiple
@ marked phrases can occur in any order. For example,
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equation 2 can be modified with this marker to recognize
the above text:

PROTEIN-TRANSPORT := ([TRANSPORTED-ENTITY] translocation)
@ (from {det}? [TRANSPORT-ORIGIN])
@ (to {det}? [TRANSPORT-DESTINATION]);

3)

Many sentences in the literature express multiple con-
cepts, making extraction of even simple assertions prob-
lematic. Consider the following GeneRIF from
GenelD:29560: "...HIF-1alpha which is present in glomus
cells translocates to the nucleus...." The intervening phrase
"which is present in glomus cells" prevents the pattern in
equation 3 from matching that sentence. OpenDMAP
does have a wildcard character (underscore) that could be
added to the pattern in equation 3, between the [TRANS-
PORTED-ENTITY] concept and the word "translocation,"
allowing this sentence to be matched. However, using
such a wild card would make any protein mentioned
before the word "translocation" match the pattern, which
is too promiscuous. To address this problem, OpenDMAP
allows patterns to specify syntactic constraints on poten-
tial matches. For example, the [TRANSPORTED-ENTITY]
slot can be constrained to have a syntactic dependency on
the head of a phrase that contains the translocate action,
thereby constraining it both semantically (it must be a
protein or molecular complex) and syntactically (it must
be the subject, object or modifier of the translocation).
Furthermore, the reliance on the exact word "transloca-
tion" can be relaxed to be any reference to a transport
action word, including both verbal and nominal forms of
multiple terms (e.g., transported, translocation). The
PROTEIN-TRANSPORT class is extended to have an
[action] slot that specifies the type of transportation
action, to keep track of the term that was used. Equation
4 demonstrates the pattern language for specifying syntac-
tic constraints:

PROTEIN-TRANSPORT := ([TRANSPORTED-ENTITY dep:x] _
[action ACTION-TRANSPORT head:x|)
@ (from {det}? [TRANSPORT-ORIGIN])
@ (to {det}? [TRANSPORT-DESTINATION]);

(4)

The use of the variable "x" in the specification identifies a
specific syntactic unit, linking the dependency to the head
of a phrase. Multiple variables can be used to specify con-
straints on different syntactic units within a sentence.

OpenDMAP patterns are very powerful. Only five such
patterns, shown in equations 5-9 were required for the
transport extraction system performance noted above.
These patterns were devised manually, based on expert
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knowledge of the domain and on a small training set of
sample GeneRIFs.

PROTEIN-TRANSPORT := [TRANSPORT-DESTINATION] [action ACTION-TRANSPORT] _
(of {det}? [TRANSPORTED-ENTITY])?
(by {det}? [TRANSPORTING-ENTITY])?;

(5)

PROTEIN-TRANSPORT := ([TRANSPORTED-ENTITY dep:x]| _
[TRANSPORT-DESTINATION]
[action ACTION-TRANSPORT head:x])
(by {det}? [TRANSPORTING-ENTITY])?;

(6)

PROTEIN-TRANSPORT := [action ACTION-TRANSPORT]
@ (of {det}? [TRANSPORTED-ENTITY])
@ (by {det}? [TRANSPORTING-ENTITY])
@ (from {det}? [TRANSPORT-ORIGIN])
@ (to|toward|towards|into {det}?
[TRANSPORT-DESTINATION]);

(7)

PROTEIN-TRANSPORT := ([TRANSPORTED-ENTITY dep:x] _
|action ACTION-TRANSPORT head:x])
@ (by {det}? [TRANSPORTING-ENTITY])
@ (from {det}? [TRANSPORT-ORIGIN])
@ (to|toward|towards|into {det}?
[TRANSPORT-DESTINATION]);

(8)

PROTEIN-TRANSPORT := ([TRANSPORTED-ENTITY] (is|were|are|was)

[action ACTION-TRANSPORT-PASSIVE])

@ (by {det}? [TRANSPORTING-ENTITY])

@ (from {det}? [TRANSPORT-ORIGIN])

@ (to|toward|towards|into {det}?

[TRANSPORT-DESTINATION]);

)

These patterns were augmented with 119 cellular compo-
nent patterns.

The test data used in the transport and expression evalua-
tions were marked up by domain experts trained in con-
ceptual annotation, using the Knowtator annotation tool
[62].

Availability of data and software

The OpenDMAP platform-independent Java 1.5 source
code, including UIMA wrappers for the tools used in this
work and the patterns for the three tasks, is available from
http://bionlp.sourceforge.net/ under the Mozilla Public
License v1.1 (OpenDMAP) and GPL v2.0 license (UIMA
wrappers). The results of the information extraction effort
are available as RDF format files in the Additional Files 1,
2,3, 4.
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